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Abstract. We describe two methods for computing with the elements of un-
twisted groups of Lie type: using the Steinberg presentation and highest weight

representations. We give algorithms for element arithmetic within the Stein-

berg presentation. Conversion between this presentation and linear represen-
tations is achieved using a new generalisation of row and column reduction.

1. Introduction

The groups of Lie type are among the most important structures in modern
mathematics. Examples of such groups include reductive Lie groups, reductive
algebraic groups, and finite groups of Lie type (which include most of the finite
simple groups). Many problems in the representation theory of groups of Lie type
have been solved using computers (van Leeuwen et al., 1992; Geck et al., 1996). In
this paper, we give methods for computing within the groups themselves, a prob-
lem which has only recently been tackled (Haller, 2000; Riebeek, 1998). We have
implemented these algorithms in the Magma computer algebra system (Bosma and
Cannon, 1997). We confine our attention to the untwisted groups; automorphisms
and twisted groups will be dealt with in subsequent work.

Computational group theory has three main strands: permutation groups, ma-
trix groups, and finitely presented groups. The permutation group approach has
traditionally been the most effective because of the very efficient Schreier-Sims fam-
ily of algorithms (Butler, 1991). Recently, effective algorithms for matrix groups
over finite fields have started to appear, in particular, the matrix group recognition
project based on Aschbacher’s theorem (Leedham-Green, 2001). The Todd-Coxeter
and Knuth-Bendix algorithms for finitely presented groups (Sims, 1994) are the old-
est methods in computational group theory.

Permutation group methods are clearly useless for infinite groups of Lie type.
Even for finite groups of Lie type, these methods soon become impractical; for
example, the smallest permutation representation of E8(2) has degree

293, 091, 386, 578, 365, 375 ≈ 2.9× 1017,

well beyond the reach of existing computers (Liebeck and Saxl, 1987).
On the other hand, for any field F, there is a faithful linear representation of

E8(F) over F of degree 248, which makes it feasible to do element operations (pro-
vided we can compute in F). Howlett et al. (1999) construct matrix representations
for finite Chevalley groups; this has been implemented in Magma.
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The groundbreaking work of Steinberg (1962, 1968) gives a presentation for the
groups of Lie type. In the presentation for E8(F), each element can be expressed as
a word of length at most 368. This does not necessarily give us a finitely presented
group, however, because some of our generators are parametrised by the field (more
precisely, 240 terms are parametrised by the additive group F, 8 are parametrised
by the multiplicative group F×, and 120 are field independent). A word in this
presentation requires less memory than a matrix representation, except for type
An where the memory usage is asymptotically the same. An additional advantage
is that there is a normal form for elements (the Bruhat decomposition) which reflects
the Lie theoretic structure of the group, thus facilitating the use of Lie theoretic
techniques. Another computationally important presentation for finite groups of
Lie type is described in (Babai et al., 1997; Hulpke and Seress, 2001).

In this paper, we describe methods for doing arithmetic in the Steinberg pre-
sentation over any field F in which computation is possible. We note that Riebeek
(1998), mainly for F = F2, and Haller (2000), mainly for unipotent subgroups,
have done part of this work before. We also give algorithms for conversion be-
tween the Steinberg presentation and highest weight representations over the field
F. Converting a word to a matrix builds on the methods of de Graaf (2001) for
Lie algebras. Converting a matrix to a word requires a generalisation of row and
column reduction—this is the main result of this paper. Given these conversion
algorithms, we can compute with either the presentation or a linear representation,
whichever is most effective for the problem at hand.

A motivating application for this work is the matrix group recognition project
(Leedham-Green, 2001), which provides a framework for decomposing a matrix
group over a finite field into a subnormal subgroup chain whose quotients are almost
simple. Our methods are useful for this project since most almost simple groups
are finite groups of Lie type. Firstly the Steinberg presentation gives a computer
representation of these groups in which conjugacy classes and other such properties
can be computed efficiently using Lie theory. Secondly our generalised row and
column reduction algorithm gives a membership test for these groups as matrix
groups, which is necessary for recognising simple groups of Lie type (Kantor and
Seress, 2001).

We use standard group theoretic notation (Alperin and Bell, 1995). Our group
actions are on the right, so conjugation is given by xy = y−1xy and the commutator
by [x, y] = x−1y−1xy. We occasionally use left conjugation: yx = yxy−1.

In Sections 2 and 3, we discuss the computation of root systems and struc-
ture constants. Section 4 describes the Steinberg presentation. Section 5 contains
element arithmetic and canonical form algorithms for groups of Lie type; an im-
plementation of these algorithms is available in release 2.8 of Magma. We describe
algorithms for converting between the Steinberg presentation and highest weight
representations in Sections 6 and 7; these will be available in the next release of
Magma.

2. Root data

A root system is the basic structure used for the classification of complex semisim-
ple Lie algebras; a pair of root systems in duality is the structure used for the
classification of reductive algebraic groups—such a pair is called a root datum. We
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assume that all permutation and matrix actions are on the right. This is in keep-
ing with the conventions of computational group theory but leads to differences
between our formulas and those found in standard references such as Demazure
(1965), Carter (1993), and Springer (1998).

2.1. Definition. Let X and Y be free Z-modules of rank d with a bilinear pairing
〈◦, ◦〉 : X × Y → Z putting them in duality. Assume we have a basis e1, . . . , ed
for X and a dual basis f1, . . . , fd for Y , so that 〈ei, fj〉 = δij . Let Φ be a finite
subset of X and suppose that for each α in Φ we have a corresponding α? in Y ; set
Φ? = {α? | α ∈ Φ} and define α?? = α. We call the elements of Φ roots and the
elements of Φ? coroots.

Given a root α we define linear maps sα : X → X by xsα = x − 〈x, α?〉α and
s?α : Y → Y by ys?α = y−〈α, y〉α?. These maps are reflections if one of the following
equivalent properties hold: 〈α, α?〉 = 2; s2

α = 1; 〈xsα, ys?α〉 = 〈x, y〉 for all x ∈ X
and y ∈ Y ; αsα = −α.

We say that R = (X,Φ, Y,Φ?) is a root datum if the following are satisfied for
every root α in Φ: sα and s?α are reflections; Φ is closed under the action of sα; and
Φ? is closed under the action of s?α. Furthermore, we require that all our root data
be reduced, ie. if α and β are roots with β a multiple of α, then β = ±α. The Weyl
group W is the group generated by the reflections sα.

2.2. Simple roots and positive roots. The roots α1, . . . , αn are simple roots for
R if they are a basis of QΦ ≤ Q ⊗X and Φ = Φ+∪Φ−, where Φ+ is the set of roots
that are linear combinations of the simple roots with nonnegative coefficients and
Φ− = −Φ+. The elements of Φ+ are called positive roots and the elements of Φ−

are called negative roots. The coroots corresponding to the simple (resp. positive,
negative) roots are called simple (resp. positive, negative) coroots.

We call n the rank and d the dimension of R; if n = d then R is semisimple.
The Cartan matrix of R is C = [〈αi, α?j 〉]ni,j=1. Given a root α =

∑n
i=1 aiαi, we

define its height by h(α) =
∑n
i=1 ai. The fundamental weights ω1, . . . , ωn are the

elements of QΦ such that 〈ωi, α?j 〉 = δij . An element λ of Q ⊗ X is dominant if
〈λ, α?i 〉 ≥ 0 for all i.

Given an element w in the Weyl group W , define

Φw = {α ∈ Φ+ | αw−1 ∈ Φ−} = Φ+ ∩ Φ−w.

The length l(w) is the cardinality of Φw; W contains a unique longest element,
which we denote w0.
Lemma 2.1.

(1) Given a reduced expression w = sβ1 · · · sβl we have

Φw = { βl, βl−1sβl , βl−2sβl−1sβl , . . . , β1sβ2 · · · sβl }.
(2) Φvw is the disjoint union of Φw and Φvw whenever l(vw) = l(v) + l(w);
(3) Φw−1 = −Φww−1;
(4) Φ+ is the disjoint union of Φw and Φw0w, where w0 is the longest element

of W .

Proof. Parts (1) and (2) are proved in Bourbaki (1981). Part (3) follows from the
definition as follows:

−Φww−1 = −(Φ−w ∩ Φ+)w−1 = Φ+ ∩ Φ−w−1 = Φw−1 .
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Finally, Φ is the disjoint union of Φ−w and Φ+w, so Φ+ is the disjoint union of
Φ+ ∩ Φ−w = Φw and Φ+ ∩ Φ+w = Φ+ ∩ Φ−w0w = Φw0w, and so we have (4). �

2.3. Computation. We now give a construction of root data suitable for compu-
tation. Take X and Y to be Zd with e1, . . . , ed and f1, . . . , fd both the standard
basis. A root datum is determined by a pair of n×d integer matrices A and B such
that the rows of A are the simple roots and the rows of B are the corresponding
coroots; ie. Aij = 〈αi, fj〉 and Bij = 〈ej , α?i 〉. The Cartan matrix is C = ABt.

Given a root β and a simple root αi, knowledge of the Cartan matrix is sufficient
to determine whether or not β+αi is a root. Thus Φ+ can be constructed recursively
from the simple roots. The positive roots are constructed and stored in an order
compatible with height, ie. h(α) < h(β) implies that α < β. We extend this to a
linear ordering on Φ− ∪ {0} ∪ Φ+ in the obvious way. The coroots are computed
similarly.

3. Structure constants

We now briefly discuss the constants used to define semisimple Lie algebras and
groups of Lie type, and efficient methods for computing them. See Carter (1965)
or Riebeek (1998) for more details.

Fix a root datum R = (X,Φ, Y,Φ?). For every pair of linearly independent roots
α and β, we define pαβ to be the largest integer such that −pαβα+ β is a root and
qαβ to be the largest integer such that qαβα+ β is a root. The vectors

−pαβα+ β, . . . ,−α+ β, β, α+ β, . . . , qαβα+ β

are all roots; they form the chain through β in the direction of α. Furthermore
〈β, α?〉 = pαβ − qαβ .

The semisimple Lie algebra with root system Φ has basis elements eα, for α a
root, and hα, for α a simple root, satisfying the relations

[hα, hβ ] = 0, [eα, hβ ] = 〈α, β?〉 eα,

[e−α, eα] =
n∑
i=1

〈ωi, α?〉hαi , [eα, eβ ] =

{
Nαβ eα+β if α+ β ∈ Φ,
0 otherwise.

Chevalley (1955) showed that the constants Nαβ may be chosen to have the form
εαβ(pαβ + 1) where εαβ = ±1. This ensures that all the constants that appear in
these relations are integral, so we can define a Lie algebra over an arbitrary field.

In order to multiply elements in the Steinberg presentation efficiently, we must
compute the root chains and constants εαβ , pαβ , qαβ and Nαβ very rapidly. It
would be wasteful to store them for all pairs of roots, so we precompute them
only for pairs (α, β) with 0 < α < β and α + β ∈ Φ. There are O(n3) such
pairs, as can be shown by a case-by-case analysis for each of the classical types
An, Bn, Cn, Dn. The εαβ for such pairs can be computed by the cochain formula,
which was developed for simply laced types by Frenkel and Kac (1980/81) and has
been extended to all types by Rylands (2001); or alternatively by the method of
extraspecial pairs (Carter, 1965, Section 4.2). A modification of the cochain formula
has been implemented in both GAP (1999) and Magma (Bosma and Cannon, 1997)
by Willem de Graaf. The root chains and other constants can be computed directly
from the root system. Having stored the root chains and constants for all such
pairs, we can rapidly compute them for an arbitrary pair of roots. For example, we
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can compute Nαβ using the algorithm of Gilkey and Seitz (1988), which we have
implemented in Magma (Bosma and Cannon, 1997). We make the algorithm more
efficient by avoiding the use of recursion.

The following constants are now easily computed: whenever (i − 1)α + β is a
root define

Mαβi =
(
pαβ + i

i

)
εβα · · · ε(i−1)α+β,α;

whenever iα+ jβ is a root define

Cijαβ =


−Mαβi for j = 1,
Mβαj for i = 1,
− 2

3Mα+β,α,2 for i = 3, j = 2,
− 1

3Mα+β,β,2 for i = 2, j = 3;

and for p = pαβ and q = qαβ define

ηαβ = (−1)p
εβ−pα,α · · · εβ−α,α

εβ−pα,α · · · εβ+(q−p−1)α,α
.

Note that these constants are also integral, thus allowing the presentations given
in the next section to be defined for an arbitrary field.

4. The Steinberg presentation

In this section we describe a presentation for the group of Lie type with root
datumR = (X,Φ, Y,Φ?) over an arbitrary field F. More details on this presentation
can be found in, for example, Springer (1998).

4.1. The presentation. The Steinberg presentation for the group of Lie type
GR(F) has generators xα(a), for α a root and a ∈ F, and y ⊗ t, for y ∈ Y and
t ∈ F×. We also define auxiliary generators nα = xα(1)x−α(−1)xα(1). The rela-
tions are

(y ⊗ t)(y ⊗ u) = y ⊗ (tu),(1)

(y ⊗ t)(z ⊗ t) = (y + z)⊗ t,(2)

α? ⊗ t = xα(−1)x−α(1)xα(−1) · xα(t)x−α(−t−1)xα(t)(3)

(y ⊗ t)nβ = ys?β ⊗ t(4)

xα(a)xα(b) = xα(a+ b),(5)

xα(a)xβ(b) = xα(a)
∏
i,j>0

xiα+jβ(Cijαβaibj),(6)

xα(a)x−α(t) = x−α(−t2a)xα(t−1)(7)

where α and β are linearly independent roots, y, z ∈ Y , a, b ∈ F and t, u ∈ F×.
The product on the right hand side of (6) runs over roots of the form iα+ jβ (for
i and j positive integers) in the order described in Subsection 2.3. Relation (7) is
redundant except when the rank is one.
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4.2. Structure. The group GR(F) is linear algebraic, even though we have de-
scribed it abstractly. We have not used the presentations described in Carter (1993)
or Steinberg (1968) because they define groups which are not necessarily algebraic
when F is not algebraically closed.

The following result follows from Section 11.1 of Carter (1965).
Theorem 4.1. If R is irreducible, then GR(F)′/Z(GR(F)) is a simple group, unless
R has type A1 with |F | ≤ 3, or type B2 or G2 with |F | = 2.

More generally, suppose G = GR(F) where R does not contain a summand of
type A1 with |F | ≤ 3, or of type B2 or G2 with |F | = 2. Then G′/Z(G) is a direct
sum of simple groups. At the top we have G/G′ = (Y ⊗ F?)/(ZΦ? ⊗ F?), which is
isomorphic to a subgroup of Y/ZΦ?. At the bottom we have

Z(G) =

{
n∏
i=1

fi ⊗ hi
∣∣∣∣ n∏
i=1

h
〈x,fi〉
i = 1 for all x in ZΦ

}
,

which is isomorphic to a subgroup of X/ZΦ (Carter, 1972, page 198). In particular,
if F is algebraically closed, then G/G′ ∼= (F×)d−n and Z(G) ∼= X/ZΦ.

We define the following important subgroups of GR(F).
• The maximal torus H is the subgroup generated by the elements y ⊗ t. It

is isomorphic to the tensor product of the abelian groups Y and F×.
• N is the subgroup generated by the maximal torus and the Weyl terms nα;

it is the normaliser of H, except in certain cases where the field is small.
For w in the Weyl group W , take a reduced expression w = sβ1 · · · sβl and
set ẇ = nβ1 · · ·nβl ; this is well defined by Proposition 9.3.2 of Springer
(1998). There is an isomorphism between N/H and W given by Hẇ ↔ w.

• The unipotent subgroup U is generated by the elements xα(a) for α a
positive root. Note that U is a nilpotent group and if F has characteristic
p it is a p-group. For w in W , define Uw to be the subgroup of U generated
by the elements xα(a) for α in Φw.
• The Borel subgroup B = HU . Its double cosets correspond to the elements

of the Weyl group by BẇB ↔ w.

4.3. Example: Type An. Suppose R is a semisimple root datum of type An.
Then the quotient X/ZΦ is a subgroup of the cyclic group of order n+ 1; suppose
it is the subgroup of size d for some d dividing n + 1. The group of Lie type
GR(F) ∼= SLn+1,d(F) /Zd, where

SLn+1,d(F) = {X ∈ GLn+1(F) | det(X)d = 1} and

Zd = {tIn+1 | td = 1}.
In particular, for d = 1 we get SLn+1(F) and for d = n+1 we get PGLn+1(F). Note
that some properties of these groups are dependent on the field. For example, if F is
algebraically closed, then PGLn+1(F) = PSLn+1(F) which is simple as an abstract
group. In general PGLn+1(F) /PSLn+1(F) ∼= F

×/(F×)n+1, and PSLn+1(F) may
not be algebraic.

5. Arithmetic and data structures

We now describe algorithms for element arithmetic in the group of Lie type
G = GR(F). A normal form for elements is a very useful tool for doing computations
in a group. In the case of permutation groups, for example, we get a normal form
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from a base and strong generating set. In our case, we use the Bruhat decomposition
(Carter, 1965, Corollary 8.4.4): each g ∈ G, can be expressed uniquely in the form

g = uhẇu′,

where u ∈ U , h ∈ H, w ∈W , and u′ ∈ Uw.

5.1. Actions. The generators of G are of three types: unipotent terms xα(t), Weyl
terms nα, and torus terms y ⊗ t. The following equations describe how these
generators act on each other, thus allowing us to exchange unipotent, Weyl and
torus terms in a word. We also give equations for unipotent terms with negative
roots. It is convenient to introduce the notation hα(t) = α? ⊗ t.

• The action of the Weyl term on the maximal torus:

(y ⊗ t)nα = ys?α ⊗ t(8)
nα(y ⊗ t) = ys?α ⊗ t(9)

• The action of the Weyl term on the unipotent subgroup:

xβ(a)nα = xβsα(ηα,βa)(10)
nαxβ(a) = xβsα(ηα,β(−1)〈α,β

?〉a)(11)

• The action of the maximal torus on the unipotent subgroup:

xβ(a)y⊗t = xβ(t〈β,y〉a)(12)
y⊗txβ(a) = xβ(t−〈β,y〉a)(13)

• Negative roots:

x−α(t) = xα(t−1)nαhα(−t−1)xα(t−1)(14)

xα(t)nα = x−α(t−1)hα(−t−1)xα(−t−1)(15)

We now discuss computation with torus elements, Weyl group representatives
and unipotent elements in turn; before putting it all together in Subsection 5.5.

5.2. Torus elements. The torus is H = Y ⊗ F×. Recall that Y has a basis
f1, . . . , fd, so every element of Y ⊗F× can be written uniquely in the form

∏d
i=1 fi⊗

hi where hi ∈ F×. This element can be represented on the computer by the vector
(h1, . . . , hd). Multiplication and inversion are just coordinatewise operations.

Given an automorphism of Y whose matrix with respect to f1, . . . , fd is M , we
get an induced automorphism of Y ⊗ F×

d∏
i=1

fi ⊗ hi 7→
d∏
i=1

 d∑
j=1

Mijfj

⊗ hi =
d∏
j=1

fj ⊗

(
d∏
i=1

h
Mij

i

)
.

Using equation (8), we can compute the action of nα on a torus element by taking
M to be the matrix of s?α.

A torus element is in the centre of G if it is of the form
∏n
i=1 fi ⊗ hi with∏n

i=1 h
〈x,fi〉
i = 1 for all x ∈ ZΦ. This is equivalent to

1 =
d∏
i=1

h
〈αj ,fi〉
i =

d∏
i=1

h
Aji
i

for j = 1, . . . , n.
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5.3. Weyl group representatives. Recall that the Weyl group W is a Coxeter
group and ẇ = nβ1 · · ·nβl where w has reduced expression sβ1 · · · sβl . The following
equations are useful for computation:

nβ
nα = nβsαhβsα(ηα,β),(16)

nα
−1 = n−α = hα(−1)nα = nαhα(−1),(17)

nα
2 = hα(−1).(18)

We compute products by repeated use of the formula

ẇnα =

{
(wsα). if α /∈ Φw, α simple,
hαw−1(−1) (wsα). if α ∈ Φw, α simple.

The inverse of ẇ is computed as follows, using Lemma 2.1(1):

ẇ−1 = ṡ−1
βl
· · · ṡ−1

β2
ṡ−1
β1

= nβlhβl(−1) · · ·nβ2hβ2(−1) · nβ1hβ1(−1)

= (nβl · · ·nβ1)hβlsβl−1 ···sβ1
(−1) · · ·hβ2sβ1

(−1)hβ1(−1)

= (w−1).
∏

α∈Φw−1

hα(−1).

Note that when α is a nonsimple root, nα = hṡα where the torus element h can be
computed using (16) and the fact that sα is conjugate to a simple reflection of W .

5.4. The unipotent subgroup. The unipotent subgroup U is generated by the
elements xα(a) for α a positive root and a ∈ F. It is shown in Carter (1972)
that every element of U can be written uniquely in the form

∏
α∈Φ+ xα(aα) where

the product is in the order described in Subsection 2.3. This proof is constructive
and proceeds by collection using the commutator formulas (5). Computationally
we use collection from the left to put a unipotent element into this normal form.
This is generally the most efficient known collection algorithm (Leedham-Green and
Soicher, 1990) and our testing indicates that it is most efficient in this case as well.
We invert a unipotent element by reversing the order of the terms and replacing
the field elements by their negatives, then doing collection to put the terms back
in the right order.

Given an Weyl group element w, Carter (1972) also proves that we can collect
any unipotent element into the form

(19)
∏

α∈Φ+\Φw

xα(aα) ·
∏
α∈Φw

xα(aα).

Note that
∏
α∈Φw

xα(aα) is a general element of the subgroup Uw. This is used to
normalise an element of the form uhẇu′ with u′ in U but not necessarily in Uw:
put u′ in the form (19), then exchange the first part with hẇ using (10) and (12)
and multiply u by the result.

Finally note that we can easily collect all terms corresponding to a fixed root α,
so every unipotent element can be put in the form

(20) xα(a) · u′ where no term of the form xα(a′) appears in u′.
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write u′ in the form xα(t) · u′ of (20) uhẇxα(t)u′nα
exchange nα and u′ by (10) uhẇxα(t)nαu′

if t 6= 0 and α ∈ Φw (ie. gnα ∈ BẇB) then
apply (15) to xα(t)nα uhẇx−α(t−1)hα(−t−1)xα(−t−1)u′

replace u′ by xα(−t−1)u′ uhẇx−α(t−1)hα(−t−1)u′

exchange x−α(−t−1) with hẇ by (11) and (13)
and multiply u by the result uhẇhα(−t−1)u′

exchange hα(−t−1) with ẇ by (9)
and multiply h by the result uhẇu′

else (gnα ∈ BẇnαB)
if t 6= 0 then

exchange xα(t) with hẇ by (11) and (13)
and multiply u by the result uhẇnαu

′

end if
multiply w by sα
if α ∈ Φw then

multiply h by hαw−1(−1)
end if uhẇu′

end if

Algorithm 1. Multiplication by a Weyl term

5.5. Normalisation and arithmetic. Recall that we can exchange unipotent,
Weyl and torus terms in a word using the equations in Subsection 5.1. Our goal
is to efficiently use these equations to put a word into Bruhat normal form. It
suffices to give an algorithm for normalising the product of a normalised element
by a unipotent element, torus element or Weyl term. Note that we assume that
all the terms xα(t) which appear in our word have α positive—any negative roots
that appear in the original word can be eliminated with equation (14). Much of
the difficulty in this algorithm is ensuring that the roots remain positive when we
exchange unipotent terms with Weyl terms.

Suppose g = uhẇu′ is in normal form. To multiply g by a torus element,
exchange the torus element with ẇu′ using (12) and (9), then multiply h by the
result. To multiply g by a unipotent element, multiply u′ by the unipotent element
and normalise uhẇu′ as in the previous subsection.

Finally consider the more complicated case of multiplication by a Weyl term nα.
Recall that

gnα = uhẇu′nα ∈ BẇBnα ⊆ BẇnαB ∪BẇB,
where the union is disjoint. This gives us the two main cases of Algorithm 1. In
order to clarify the pseudocode we write the word we are working on to the right,
but note that the values of the symbols u, h, w and u′ change from line to line.

It is now easy to normalise the product of two normalised words. We invert a
normalised word by inverting each term and reversing their order, then swapping
h and ẇ and normalising the unipotent parts as in Subsection 5.4. We can do con-
jugation more efficiently using the formulas of Subsection 5.1 directly rather than
computing the product y−1xy, but the result still needs to be normalised. Com-
mutators are computed with one inversion, one conjugation and one multiplication:
[x, y] = x−1 · xy.
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Note that the most time consuming part of these arithmetic operations is collec-
tion of unipotent elements. Collection is also the only part of this algorithm which
is not known to run in polynomial time. In Subsection 7.7, we show that there is a
provably polynomial time alternative to collection, which nevertheless seems to be
slower in practice.

6. Computing linear representations

Computing an irreducible highest weight representation for a group of Lie type
is fairly straightforward since the representations for semisimple Lie algebras can
already be computed by the algorithm of de Graaf (2001). Let G be a group of
Lie type, so the derived group G′ is a semisimple group. Let L be the integral
Lie algebra corresponding to G′ and let ρ : L → gl(V ) be the integral irreducible
highest weight representation with highest weight λ in X. We define xα(T ) as
exp(Tρ(eα)) ∈ EndZ[T ](V ), where T is an indeterminate. The matrix for xα(t) for
t ∈ F is simply gotten by substitution; this acts on the F-vector space V ⊗Z F. We
also need matrices for the elements of the torus Y ⊗F× which are not contained in
ZΦ? ⊗ F×—this requires a linear algebra calculation the details of which we omit.

This algorithm runs in polynomial time in the coefficients of λ for a fixed group
G. It is not possible for the algorithm to be polynomial in the rank of G and the
coefficients of λ, since the dimension of the irreducible highest weight module is not
polynomial in these parameters.

The practical efficiency of this computation can be improved by noticing that the
matrices corresponding to terms in the Steinberg presentation are sparse. So rather
than multiplying on the left or right by the matrices, we use the corresponding row
or column operations. This observation motivates the algorithm of the next section.

7. Generalised row and column reduction

We now consider the converse problem of converting from a representation to
the Steinberg presentation. Together with the previous section, this allows us to
transfer between representations and the Steinberg presentation, so we can use
whichever is most appropriate for the computation at hand.

Our algorithm is a generalisation of row and column reduction or, more specifi-
cally, the LUP algorithm. It works for any nontrivial quotient of a highest weight
representation. In many cases it can be extended to an arbitrary representation.
First note that we can reduce to the case of an irreducible representation by work-
ing our way down a composition series of the module. If F is algebraically closed
or finite, then every irreducible module is a quotient of a highest weight module.

We assume that G is a group of Lie type GR(F) and that ρ : G → GL(V ) is a
nontrivial quotient of a highest weight representation. We consider V to be a G-
module by vg := vρ(g). Let A be a matrix in GL(V ); to simplify our exposition we
assume that A ∈ ρ(G) (in fact, our algorithm is easily converted into a membership
test for ρ(G)). Our aim is to find g ∈ G so that A = ρ(g), where g is given as a
word in Bruhat normal form.

7.1. The case of SL2(α). Given a root α, define SL2(α) to be the subgroup of
G generated by the elements xα(a) and x−α(a) for all a ∈ F. This subgroup is
isomorphic to a quotient of SL2(F). We define an action of SL2(α) on the polynomial
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if vA � vnα 6= 0 then
let w = sα
let c = (−1)m(vA � v)(vA � vnα)−1

take b to be the mth root of c for which vnαAxα(b)−1 � vnα = 0
let A = Aρ(nαxα(b))−1

else
set w = 1, b = 0

end if
let c = (−1)m(vnαA � v)(vA � v)−1

take a to be the mth root of c for which vnαxα(a)−1A � v = 0
take t to be the mth root of vg � v for which A = ρ(hα(t))
return g = xα(a)hα(t)ẇxα(b)

Algorithm 2. The SL2(α) algorithm

algebra F[x, y] by

xα(a) : x 7→ x, y 7→ ax+ y;
x−α(a) : x 7→ x+ ay, y 7→ y;

nα : x 7→ −y, y 7→ x;
hα(t) : x 7→ tx, y 7→ t−1y.

The highest weight module for SL2(α) of weight m is just the submodule of F[x, y]
consisting of homogeneous polynomials of degree m; we denote this module by
V (m). Note that, since SL2(α) is a quotient of SL2(F), this may be a projective
representation—for our purposes however this is not a problem. If F has charac-
teristic 0, V (m) is irreducible. If F has characteristic p, then we get an irreducible
module by quotienting out the submodule spanned by the terms xiym−i for which
p divides

(
m
i

)
.

Every irreducible SL2(α)-module M is isomorphic to a nontrivial quotient of
V (m) for some m. First we need to compute the value of m. Let v be a nonzero
fixed vector of xα(1). Then v is the image of xm and we can compute m with the
formula vhα(t) = tmv. If F is finite of size q, then we can assume that m < q by
the Steinberg tensor product theorem (Steinberg, 1963) and so m is the smallest
positive integer satisfying this formula for t a primitive element of F. We also know
that (−1)mvnα is the image of ym and the images of the subspaces Fxiym−i are
found by taking eigenspaces of hα(t). Hence we can compute an inner product �
on V so that these one-dimensional subspaces are orthogonal, and xm and ym have
norm one.

Given a matrix A ∈ GL(V ), we want to find a, b ∈ F, t ∈ F× and w ∈ W =
{1, sα} such that A = ρ(xα(a)hα(t)ẇxα(b)). By an easy computation, we get

xmg � ym = (−t)m, xmg � xm = (−bt)m;

xmh � ym = 0, xmh � xm = tm, ymh � xm = (at)m;

where g = xα(a)hα(t)nαxα(b) and h = xα(a)hα(t). Hence we have Algorithm 2,
using the fact that v is the image of xm and (−1)mvnα is the image of ym.

7.2. Computing weights and weight spaces. Given µ ∈ X, we define

Vµ = {v ∈ V | v(y ⊗ t) = t〈µ,y〉v for all y ∈ Y , t ∈ F×}.
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Then V =
⊕

µ Vµ and we call µ a weight of V if Vµ is nontrivial. The dominance
order for weights is defined by µ � ν if µ − ν =

∑n
i=1miαi where every mi ≥ 0;

we write µ ≺ ν when µ � ν and µ 6= ν. Since V is a nontrivial quotient of a
highest weight representation, it has a dominance-highest weight λ and Vλ is one
dimensional. In many applications, λ and Vλ are assumed to be known. However
they can be computed if necessary: Vλ is the intersection of the fixed spaces of the
matrices ρ(xα(1)) for α a simple root. The highest weight can be computed using
the formula λ =

∑n
i=1〈λ, α?i 〉ωi, and the fact that the SL2(αi)-submodule generated

by Vλ is a nontrivial quotient of V (m) with m = 〈λ, α?i 〉.
Fix a nonzero vector vλ in Vλ. Write Ω for the orbit of λ under the action of

W ; for each µ ∈ Ω, choose some w ∈ W so that µ = λw and fix vµ = vλẇ. Note
that Vµ = Fvµ and vµ is well defined up to a sign. We can compute Vµ for a weight
µ /∈ Ω by taking eigenspaces of torus elements. This allows us to compute an inner
product � on V under which the decomposition V =

⊕
µ Vµ is orthogonal and each

vµ for µ ∈ Ω has norm one.
We use the following basic facts about the action of G:

Vµxα(t) ⊆
⊕
ν�µ

Vν for α ∈ Φ+(21)

Vµẇ = Vµw(22)

VµH = Vµ(23)

7.3. The inductive step. In this section we show how to reduce from G to a
reductive subgroup of smaller semisimple rank.

First we define a dual action of G on V . By Theorem 29 of Steinberg (1968),
there is an automorphism of the semisimple group G′ given by xα(t) 7→ x−α(εαt)
for some constants εα. We define an antiautomorphism δ on G by

xα(t)δ = x−α(εαt)−1 = x−α(−εαt), and

(y ⊗ t)δ = y ⊗ t.

It is easily shown that Hẇδ = Hẇ−1. We get a left action of G on V by gv = vgδ.
We also choose our constants so that δ2 = 1. Note that if the longest word w0 acts
as −1 on X, then V is selfdual and δ can be taken to be gδ = (gẇ0)−1.

Since λ is a dominant weight, its stabiliser Wλ is actually the standard parabolic
subgroup WJ with J = {s | 〈λ, α?s〉 = 0}. Within G we have opposite parabolic
subgroups PJ = BẆJB and P δJ = BδẆJB

δ. The Levi complement LJ = PJ ∩ P δJ
is reductive with root datum (X,Φλ, Y,Φ?λ), where

Φλ = {α ∈ Φ | 〈λ, α?〉 = 0} = ΦJ

and Φ?λ = {α? | α ∈ Φλ}. In particular, the semisimple rank of LJ is strictly smaller
than the semisimple rank of G and the Weyl group of LJ is WJ = Wλ.
Proposition 7.1. Let g be an element of G. Then g ∈ LJ if, and only if, Vλg = Vλ
and gVλ = Vλ.

Proof. First we show that g ∈ PJ if, and only if, Vλg = Vλ. Since λ is the highest
weight, VλB = Vλ and so VλBẇB = VλwB =

∑
µ�λw Vµ by (21) and (23). Clearly

this is equal to Vλ exactly when λw = λ, i.e. w ∈WJ .
On the other hand, gVλ = Vλ means Vλ = Vλg

δ which is equivalent to gδ ∈ PJ ,
i.e. g ∈ P δJ . Hence we are done. �
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Any element w of W can be decomposed in the form wJw
J where wJ ∈WJ and

wJ is the unique WJ -reduced element of W such that λwJ = λw. We write W J for
the set of all WJ -reduced elements of W . By Lemma 2.1(2), Φw is a disjoint union
of ΦwJw

J and ΦwJ , and so we get a unique decomposition Uw = (UwJ )ẇ
J

UwJ . We
are particularly interested in the factorisation w0 = w0Jw

J
0 of the longest word in

W . It is easily seen that w0J is the longest word of WJ . Since w0J = w0(wJ0 )−1,
Lemma 2.1(4) implies that Φ+ is the disjoint union of Φ(wJ0 )−1 and Φw0J so we
get a unique decomposition Uw = U(wJ0 )−1Uw0J . We can now modify the Bruhat
decomposition as follows:

G =
⋃
w∈W

UHẇUw

=
⋃

wJ∈WJ ,wJ∈WJ

U(wJ0 )−1Uw0JHẇJ ẇ
JU ẇ

J

wJ UwJ

=
⋃

wJ∈WJ

U(wJ0 )−1

( ⋃
wJ∈WJ

Uw0JHẇJUwJ

)
ẇJUwJ

=
⋃

wJ∈WJ

U(wJ0 )−1LJ ẇ
JUwJ .

Recall that we are given an element A ∈ ρ(G) and we wish to find a preimage g ∈
G so that ρ(g) = A. The first step is to find the value of wJ in this decomposition
of g; then we can find u ∈ U(wJ0 )−1 and u′ ∈ UwJ so that A ∈ ρ(uLJ ẇJu′). The
problem is then reduced to finding a word for ρ(u)−1Aρ(ẇJu′)−1 in the reductive
subgroup LJ .

Since wJ is the unique WJ -reduced element of W with λwJ = λw, it can be
found using the following lemma.
Lemma 7.2. Let g be an element of the double coset BẇB of G. If µ is the minimal
element of Ω such that vλg � vµ 6= 0, then λw = µ.

Proof. This follows from the facts that VλBẇB ⊆
∑
µ�λw Vµ and vλg �vλw 6= 0. �

We now know that A = ρ(g) with g ∈ U(wJ0 )−1LJ ẇ
JUwJ for fixed wJ . Write

g = uhẇJu′ where u ∈ U(wJ0 )−1 , h ∈ LJ , and u′ =
∏
α∈ΦwJ

xα(aα) ∈ UwJ . Let γ
be a dominance minimal root in ΦwJ with aγ 6= 0. Using (20) we can rewrite u′ in
the form xγ(aγ)

∏
α∈ΦwJ ,α6�γ

xα(aα), with different values aα but aγ still nonzero.
As in Subsection 7.1, the SL2(γ)-module generated by vλ can be identified with
a quotient of V (m) with m = 〈µ, γ?〉, the vector vλ with the image of xm, and
(−1)mvλnµ with the image of ym. Now

vλA = vλg = vλuhẇ
Ju′ = vλhẇ

Ju′ ∈ F×vµu′

= F
×vµxγ(aγ)

∏
α∈ΦwJ ,α 6�γ

xα(aα)

= F
×(x+ aγy)m

∏
α∈ΦwJ ,α 6�γ

xα(aα)

⊆ F×(vµ + aγx
m−1y + · · ·+ amγ (−1)mvµnγ) +

∑
ν 6�µsγ

Vν
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The final line follows from the fact that the only weights that can appear are of
the form ν = µ− iγ + ξ where i = 0, . . . ,m and ξ is a nonzero linear combination
of roots α ∈ ΦwJ , α 6� γ with nonnegative coefficients. It is easily seen that such
weights satisfy ν 6� µ−mγ = µsγ . We can now compute aγ as follows: take

c = (−1)m(vλA � vµnγ)(vλA � vµ)−1,

then aγ is the mth root of c with the property that vλAxγ(aγ)−1 � vµnγ = 0. By
repeating this process for all the roots in ΦwJ in an order compatible with the
dominance order, we can compute the value of u′. It is easily seen that the order
< of Subsection 2.3 has the required property.

We now have g = uhẇJ and we wish to find u ∈ U(wJ0 )−1 . This is similar to the

preceding case: write u =
(∏

β∈Φ(wJ0 )−1 ,β 6�γ xβ(bβ)
)
xγ(bγ) and then

Avµ = gvµ = uhẇJvµ ∈ F×uvλ = F
×vλu

δ

= F
×vλxγ(−εγbγ)

∏
β∈ΦwJ ,α 6�γ

xβ(−εβbβ)

⊆ F×(vλ + · · ·+ (εγbγ)mvλnγ) +
∑
ν 6�µsγ

Vν

where m = 〈µ, γ?〉. Hence we compute bγ by taking

c = (−εγ)m(vλnγ �Avµ)(vλA � vµ)−1,

and computing the m root bγ of c such that vλnγ � xγ(bγ)−1Avµ = 0.
We now have all the ingredients required for our algorithm, which we describe

in detail in the next two subsections.

7.4. A base for the Weyl group. By iterating the procedure of the previous
section, we get a sequence of reductive subgroups

G = LJ1 ≥ LJ2 ≥ · · · ≥ LJk+1 = H

where
{1, . . . , n} = J1 ⊇ J2 ⊇ · · · ⊇ Jk+1 = ∅.

Note that this chain of subgroups depends only on G, not on the particular
matrix A. Hence the subsets Ji and the highest weight for each LJi can be computed
beforehand. This is achieved using the following theorem.
Theorem 7.3. Let G be a reductive group with highest weight representation V .
Consider the Weyl group as a permutation group on the weights of V . Then W has
a base λ1, . . . , λk with the following properties:

(1) Wλ1,...,λi−1 = WJi for some Ji ⊆ {1, . . . , n}; and
(2) λi is a highest weight for LJi = BẆJiB acting on V .

Proof. We proceed by induction on i. Suppose that λ1, . . . , λi−1 satisfy properties
(1) and (2) with Ji 6= ∅. We prove the existence of λi and Ji+1 strictly contained
in Ji satisfying the same properties. Choose some j < i and some r ∈ Ji so that
{s ∈ Ji | 〈λjsαr , α?s〉 = 0} is properly contained in Ji. Let λi = λjsαr . By adding
sufficiently large scalar multiples of λ1, . . . , λi−1 to λi we get a dominant weight

λ′i =
∑
l<i

alλl + λi =
∑
l<i

alλl + λj − 〈λj , α?r〉αr
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let λ1 = λ, J1 = {1, . . . , n}, J2 = {s ∈ J1 | 〈λ1, α
?
s〉 = 0}

let i = 2, j = 1.
repeat

if ∃r ∈ Jj − Ji such that {s ∈ Ji | 〈λjsr, α?s〉 = 0} ( Ji then
set λi = λjsr, Ji+1 = {s ∈ Ji | 〈αr, α?s〉 = 0}
increment i by 1; set j to i− 1

else
decrement j by 1.

end if.
until Ji is empty.
return the λi and Ji.

Algorithm 3. Computing a base of weights

Note that for w ∈ WJi = Wλ1,...,λi−1 , we have λ′iw = λ′i iff λiw = λi iff αrw = αr.
Hence for s ∈ Ji, we have 〈λ′i, α?s〉 = 0 iff 〈αr, α?s〉 = 0. Since λ′i is a dominant
weight Wλ′i

= W{s|〈λ′i,α?s〉=0}, so

Wλ1,...,λi = Wλ1,...,λi−1 ∩Wλ′i

= WJi ∩W{s|〈λ′i,α?s〉=0}

= W{s∈Ji|〈αr,α?s〉=0}.

We now take Ji+1 = {s ∈ Ji | 〈αr, α?s〉 = 0} and we have property (1).
Recall that the highest weight of a highest weight module is the unique nonzero

dominant weight for that module. Hence, if λi is a weight for the G-module V , then
it is a highest weight for the LJi-module V iff 〈λi, α?s〉 ≥ 0 for all s ∈ Ji. Suppose
s ∈ Ji. Then

〈λi, α?s〉 = 〈λjsαr , α?s〉 = 〈λj , α?s〉 − 〈λj , α?r〉〈αr, α?s〉

Now 〈λj , α?s〉 = 0 since s ∈ Ji ⊆ Jj+1; 〈λj , α?r〉 ≥ 0 by induction; and 〈αr, α?s〉 ≤ 0.
Hence 〈λi, α?s〉 ≥ 0 and property (2) is satisfied.

Finally note that since the subsets Ji are finite and each is strictly contained in
the last, we eventually get Jk+1 = ∅. Hence Wλ1,...,λk = WJk+1 = 1 and so the
weights λ1, . . . , λk are a base for W . �

The weights λi and sets Ji can be constructed using Algorithm 3. Suppose
that w is an element of the Weyl group W . Then we have a unique factorisation
w = wk · · ·w2w1 where wi is the unique WJi+1-reduced element of WJi such that
λiwi = λiww

−1
1 · · ·w

−1
i−1. The element w0i is fixed for a particular group G, and is

the unique WJi+1-reduced element of WJi such that λiw−1
0i = λiw0Ji . Iterating the

result in the previous subsection, we can now refine the Bruhat decomposition to⋃
w1,...,wk

Uw01 Uw02 · · ·Uw0kHẇk · · · ẇ2ẇ1(Uwk)ẇk−1···ẇ1 · · · (Uw2)ẇ1 Uw1 .

where wj ranges over the W (j+1)-reduced elements of W (j).

7.5. Row and column reduction. Putting together the ideas of the previous
sections, we get Algorithm 4 (see Subsection 7.7 for the significance of the asterisks).
We assume that λi, Ji and w0i have already been computed using the techniques
of Subsection 7.4. Note that the loop has an invariant ρ(u)Aρ(u′), which is always
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let u, h, u′ = 1.
for i from 1 to k do

[Compute wi]
find the largest µ ∈ Ω so that viA � vµ 6= 0.
find the WJi+1-reduced element wi ∈WJi with λiwi = µw−1

1 · · ·w
−1
i−1 (*)

[Compute the component in (Uwi)
ẇi−1···ẇ1 ]

for β in Φwiwi−1 · · ·w1 in additive order do
let m = 〈µ, β?〉, c = (−1)m(vλiA � vµnβ)(vλiA � vµ)−1

let b be the mth root of c so that vλiAxβ(b)−1 � vµnβ = 0 (*)
let u′ = xβ(b)u′, A = Aρ(xβ(b))−1

end for.
[Compute the component in Uw0i ]
for α in Φẇ0i in additive order do

let m = 〈λi, α?〉, c = (εα)m(vλinα �Avµ)(vλi �Avµ)−1

let a be the mth root of c so that vλinαxα(a)−1 �Avµ = 0 (*)
let u = uxα(a), A = ρ(xα(a))−1A

end for
end for
let w = wk · · ·w1, A = Aρ(ẇ)−1

Algorithm 4. Generalised row and column reduction

equal to the original value of A. At the end of this algorithm, A is the image of a
torus element.

7.6. Torus elements. We now suppose we have an element A ∈ ρ(H) where H is
the torus of our group of Lie type G, and we wish to find h ∈ H so that ρ(h) = A.
Note that ρ need not be faithful on H, so h may not be uniquely determined. Let
Γ be the lattice generated by the weights of V and choose a basis γ1, . . . , γt for Γ.
Then the preimage of A in Γ ⊗ F× is computed as

∏t
i=1 γi ⊗ ti where vA = tiv

for v ∈ Vγi . This can be converted to the form
∏t
i=1 fi ⊗ hi using the method of

Subsection 5.2.

7.7. Application to matrix group recognition. One of the more difficult prob-
lems in matrix group recognition is finding a membership test for a known almost
simple group. Our algorithm provides such a test for natural characteristic repre-
sentations of finite groups of Lie type. We obtain a membership test for ρ(G) by
running our algorithm for an arbitrary A ∈ GL(V ): A is not a member of ρ(G)
if the algorithm fails or the value of A at the end is not the identity matrix. Al-
gorithm 4 can fail in three places, which are marked by (*). The torus element
algorithm of Subsection 7.6 can also fail.

In this and other applications, it is of interest to determine whether our algorithm
runs in polynomial time. When F is a finite field of order q, it is straightforward
to show that most of the algorithm runs in polynomial time in log(q) and the
coefficients of λ. For example, the length k of our base is bounded by the reductive
rank of G and radicals over finite fields can be computed in polynomial time by
Flajolet et al. (2001). The main sticking point is the computation of discrete
logarithms in Subsection 7.1. This can be avoided, however, since the powers
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involved are bounded by m, and by Subsection 7.3 the values of m which appear
are polynomial in the coefficients of λ. We now have the following result.
Theorem 7.4. Let G = GR(Fq) be a finite group of Lie type and let ρ : G →
GL(V ) be a quotient of a highest weight representation with known highest weight
λ. Suppose A ∈ GL(V ). We can decide whether A is in ρ(G) and, if it is, find a
preimage in polynomial time in log(q) and the coefficients of λ.
Note that the condition that the highest weight be known is required, since comput-
ing the highest weight requires discrete logarithms. In fact, if G is a one-dimensional
torus with representation V , then computing the weight of V is equivalent to the
discrete logarithm problem.

Note that this immediately gives a polynomial time algorithm for multiplying el-
ements in G: simply convert them to matrices in the smallest degree highest weight
representation, multiply the matrices, then convert back. In practice, however, this
seems to be much slower than the algorithm given in Section 5.

7.8. Example: GLn+1(F). We now describe how this algorithm works in the case
of the standard representation of the general linear group. Take X = Z

n+1 with
standard basis vectors ei and Y = Z

n+1 with standard basis vectors fi. The roots
and coroots are of the form αij = ei− ej and α?ij = fi− fj for 1 ≤ i, j ≤ n+ 1 with
i 6= j. A (co)root is positive when i > j and simple when i = j + 1.

The standard representation ρ : G → GLn+1(F) takes xαij (a) to the matrix
equal to the identity except for the (i, j)-entry which is equal to a, and fi⊗ t to the
matrix equal to the identity except for the (i, i)-entry which is equal to t. The Weyl
group of G is the symmetric group on n + 1 letters with reflections sαij = (i, j).
We choose δ so that ρ(gδ) = ρ(g)t.

Algorithm 3 gives λi = ei and Ji = {i, i + 1, . . . , n + 1}. Since we can take
vλi = bi, these weights correspond to the rows and columns of the input matrix A.
We can compute

w0i = sn . . . si+1si = (i, i+ 1, . . . , n+ 1) and

Φw0i = {αi+1,i, . . . , αn+1,i}.
In order to compute wi we need to know the image

λiwi = µw−1
1 · · ·w

−1
i−1

where µ = ej with j is the largest nonzero entry in the ith row of A. Now

wi = sisi+1 . . . siwi−1 = (iwi, . . . , i+ 1, i) and

Φwi = {αiwi,i, αiwi,i+1, . . . , αiwi,iwi−1}
and so

Φwiwi−1 · · ·w1 = {αiw,j | j = lwi−1 · · ·w1 for l = i, i+ 1, . . . iwi − 1}(24)

Furthermore the constants m that appear in Algorithm 4 are all equal to 1. It
is now easily seen that computing the component in Uw0i is just clearing the
(iwi−1 · · · ẇ1)th column of the matrix with row operations, and computing the
component in (Uwi)

ẇi−1···ẇ1 is just clearing the ith row of the matrix with column
operations (the values of j that appear in (24) give exactly the entries in the row
that have not been cleared by a previous column operation).

In order to relate this algorithm to the well-known LUP algorithm, we note that
ρ can be chosen so that ρ(B) consists of lower triangular matrices. Suppose that
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g ∈ G decomposes as uhẇu′ for u ∈ U , h ∈ H, w ∈ W and u′ ∈ Uw. Then
L = ρ(uh) is lower triangular, U = ρ(ẇu′ẇ−1) is upper triangular, and P = ρ(ẇ)
is a permutation matrix (up to signs), giving the usual LUP decomposition.
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