BMW algebras
of simply laced type

Arjah M. Cohen
joint work with Dié Gijsbers & David Wales
and some help from Vincent Florens

June 7, 2005
BMW algebra of type A_n

- BMW = Birman & Wenzl, Murakami
- Definition for type A_n carries over to any graph M
BMW algebra of type M over $\mathbb{Q}(l, m)$

generators
\[\{ g_i \mid i \in M \} \]

relations
- (braid1) \[g_i g_j = g_j g_i \]
 when \(i \not\sim j \),
- (braid2) \[g_i g_j g_i = g_j g_i g_j \]
 when \(i \sim j \),
- (skein) \[me_i = l(g_i^2 + mg_i - 1) \]
 for all \(i \),
- (self-intersection1) \[g_i e_i = l^{-1}e_i \]
 for all \(i \),
- (self-intersection2) \[e_i g_j e_i = le_i \]
 when \(i \sim j \).
Properties

- J coclique in M of size p

 $$e_J := x^{-p} \prod_{j \in J} e_i$$

 idempotent, where $x = 1 - (l - l^{-1})/m$ in $\mathbb{Q}(l, m)$

- $I_p :=$ ideal generated by all e_J for $|J| = p$

- Quotient by I_1 gives Hecke algebra of type C,

 where C is type of $C_{W(M)}(\alpha_1)$

- The left module spanned by e_1 modulo I_2 is the Lawrence-Krammer representation

 with coefficients in Hecke algebra of type C
Theorem*

$BMW(M)$ is finite-dimensional

\iff

connected components of M in $\{A_n, D_n, E_6, E_7, E_8 \mid n \in \mathbb{N}\}$.

\[
\begin{align*}
\dim BMW(A_n) &= (n + 1)!! \\
\dim BMW(D_n) &= (2^n + 1)n!! - (2^{n-1} + 1)n! \\
\dim BMW(E_6) &= 1,440,585 \\
\dim BMW(E_7) &= 439,670,025 \\
\dim BMW(E_8) &= 53,328,069,225 \\
\end{align*}
\]

$n!! = \text{the number of matchings of } 2n \text{ points } = 1 \cdot 3 \cdots (2n - 1)$
Contents

• A
• B
• D
• E
Part A

- braid group A
- Kauffman algebra
- braid group representations
Braid group $A(A_{n-1})$ on n strands

The generators g_1 and g_2.

The noncommuting braid relation

\[g_1 g_2 g_1 = g_2 g_1 g_2 \]
The braid group algebra

- An infinite-dimensional algebra
- Finite-dimensional quotients?
- The symmetric group algebra
 by ignoring crossing details
- Finite-dimensional quotients containing
 the braid group?
Extending the braid group algebra with idempotents

The generators e_1 and e_2.
The idempotent and the circle

\[x^{-1}e_i \text{ is an idempotent.} \]
The self-intersection

\[l - 1 \]

Straightening at a cost of \(l^{-1} \).
Relation ensued

\[e_1 g_2 e_1 = le_1 \]
The left A-module generated by

$$e_1e_3e_5\cdots e_{2t-1}$$

- each tangle has $\geq t$ bottom strands
- more bottom strands may arise
- quotient out tangles with more than t bottom strands
- modules are infinite-dimensional
The skein relation

\[g_i + m = g_i^{-1} + me_i \]
The skein relation

\[g_i + m = g_i^{-1} + m e_i \]
equivalently:

\[e_i = l m^{-1}(g_i^2 + m g_i - 1) \]
Mod out the skein relation

- \(x = 1 - (l - l^{-1})/m \) in \(\mathbb{Q}(l, m) \)
- gives: \textbf{Kauffman algebra} on \(n \) strands
- dimension(Kauffman algebra) at least \(n!! \)
- the \textbf{Brauer algebra} is obtained by putting \(l = 1 \), so \(m = 0 \)

\[n!! = \text{the number of matchings of } 2n \text{ points} = 1 \cdot 3 \cdot \ldots (2n - 1) \]
Summary of Kauffman algebra over $\mathbb{Q}(l, m)$

generators g_1, \ldots, g_n and e_1, \ldots, e_n

relations found

(braid1) $g_i g_j = g_j g_i$ when $i \not\sim j$,

(braid2) $g_i g_j g_i = g_j g_i g_j$ when $i \sim j$,

(skein) $m e_i = l(g_i^2 + mg_i - 1)$ for all i,

(self-intersection1) $g_i e_i = l^{-1} e_i$ for all i,

(self-intersection2) $e_i g_j e_i = l e_i$ when $i \sim j$.
Theorem \((M = A_{n-1})\)

- Morphism \(BMW \rightarrow\) Kauffman algebra is an isomorphism.
- \(I_{p}/I_{p+1}\) is a matrix algebra of size over \(\text{Hecke}(A_{n-1-2p})\).
- \(BMW\) is a sum of matrix algebras and has dimension

\[
\sum_{p=0}^{\lfloor n/2 \rfloor} \left(\frac{n!}{2^p p!(n-2p)!} \right)^2 \cdot (n-2p)! = n!!
\]

\(n!! =\) the number of matchings of \(2n\) points \(= 1 \cdot 3 \cdot \cdots (2n - 1)\)
BMW structure in terms of roots

- I_p/I_{p+1} has a basis consisting of triples B, w, B' with
 - B, B' sets of p orthogonal positive roots
 - $w \in W(C)$ with $C = A_{n-1-2p}$
- top/bottom strand $\{i, j\} \leftrightarrow \text{root } \epsilon_i - \epsilon_j$
- for given p, all B are in a single $W(A_{n-1})$ orbit \mathcal{B}
- triples \leftrightarrow pictures in Brauer algebra
BMW structure for other M

| M | $|B|$ | $|B|$ | Y | C | $N_W(B)$ |
|---------|-----------------|-------------------------------|-----------|----------|---------------------------------------|
| A_n | t | $(n+1)!$ | A_{n-2t}| A_{n-2t}| $2^t \text{ Sym}_t \text{ Sym}_{n+1-2t}$|
| D_n | t | $t!(n-2t)!$ | $A_1^t D_{n-2t}$ | $A_1 D_{n-2t}$ | $2^{2t} \text{ Sym}_t W(D_{n-2t})$ |
| D_n | $2t$ | $n!$ | D_{n-2t} | A_{n-2t-1} | $2^{2t} W(B_t) W(D_{n-2t})$ |
| E_6 | 1 | 36 | \emptyset | \emptyset | 2 Sym_6 |
| E_6 | 2 | 270 | A_3 | A_2 | 2^{2+1} Sym_4 |
| E_6 | 4 | 135 | \emptyset | \emptyset | 2^4 Sym_4 |
| E_7 | 1 | 63 | A_5 | A_5 | $2W(D_6)$ |
| E_7 | 2 | 945 | A_3 | A_2 | $2^{2+1+1} W(D_4)$ |
| E_7 | 3 | 315 | D_4 | A_2 | $2^3 \text{ Sym}_3 W(D_4)$ |
| E_7 | 4 | 945 | A_1^3 | A_1 | 2^{4+3} Sym_4 |
| E_7 | 7 | 135 | \emptyset | \emptyset | $2^7 L(3,2)$ |
| E_8 | 1 | 120 | E_7 | E_7 | $2W(E_7)$ |
| E_8 | 2 | 3780 | D_6 | A_5 | $2^{2+1} W(D_6)$ |
| E_8 | 4 | 9450 | D_4 | A_2 | $2^4 \text{ Sym}_3 W(D_4)$ |
| E_8 | 8 | 2025 | \emptyset | \emptyset | $2^8+3 L(3,2)$ |

Y is root system orthogonal to B; C maximal subsystem of Y on nodes of M
Approach to proof

- Upper bound on dimension from root system analysis
- Lower bound for D_n from orbifold tangles
- For E_6, E_7, E_8 from better understanding triples
Part B

Affine BMW and type $M = B_n$

- Replace knot space by solid torus
- Allcock: strands in presence of a pole
- Analog of Morton-Wassermann by Goodman & Hauschild
Extra generator crossing the pole
Part D

- Replace solid torus by orbifold
- Allcock: strands in presence of a pole of order 2
- Analog of Morton-Wassermann?
Orbifold motivation

\[(g_4^{-1}g_3g_4)g_2(g_4^{-1}g_3g_4) = g_2(g_4^{-1}g_3g_4)g_2\]
\[(g_4g_3g_4)g_3 = g_3(g_4g_3g_4)\]

works iff \(g_4^2 = 1\)
The half twist for a pole of order 2
Once more the pole of order 2
Pole of order 2, cont’d

No Reidemeister rules for the pole. For $D_2 = A_1A_1$ Goodman & Hauschild have two more relations.
Generators for $M = D_2 = A_1A_1$
Braid relation with pole

\[\text{\includegraphics{braid_relation_with_pole.png}} \]
Self-intersections around the pole

\[\begin{align*}
\text{\large{\includegraphics[width=0.3\textwidth]{image1}}} & = \text{\large{\includegraphics[width=0.3\textwidth]{image2}}} \\
\text{\large{\includegraphics[width=0.3\textwidth]{image3}}} & = \text{\large{\includegraphics[width=0.3\textwidth]{image4}}} \\
\text{\large{\includegraphics[width=0.3\textwidth]{image5}}} & = \text{\large{\includegraphics[width=0.3\textwidth]{image6}}}
\end{align*} \]
Self-intersections around the pole, cont’d
Corresponding idempotents for $M = D_2 = A_1A_1$
$e_1 e_2 = e_2 e_1$
Double closed loop relations

\[
\begin{align*}
\quad & = \quad x
\end{align*}
\]
Double closed loop relations, cont’d

\[\text{Diagram} \]

\[= x \]
Theorem \((M = D_n)\)

- Invariant bottom patterns of triples (pictures) are \(t\) horizontal strands, and the presence of a pole crossing.

- For fixed \(t\) the dimension of the representation
 - with a pole crossing is \(\frac{n!}{2^t!(n-2t)!}\) over Hecke\((A_{n-2t-1})\)
 (if \(n = 2t\) there are 2)
 - without a pole crossing is \(\frac{(n+1)!}{2^t!(n-2t+1)!}\) over Hecke\((A_1 D_{n-2t})\)

- root correspondence:
 - bottom strand from \(i\) to \(j\) without pole crossing \(\leftrightarrow \epsilon_i - \epsilon_j\)
 - bottom strand from \(i\) to \(j\) with pole crossing \(\leftrightarrow \epsilon_i + \epsilon_j\)
Part E

Transition to roots

- Representation bases: $W(M)$-orbits of sets of mutually orthogonal positive roots
- Only admissible orbits occur:
 no reflection moves exactly 3 roots of any set in the orbit
Theorem* (M simply laced)

1. If B is admissible, then there is a subdiagram C_B of M and an irreducible representation of BMW over $\text{Hecke}(C_B)$ with basis B

2. $\dim(BMW) = \sum_{B \text{ admissible}} |B|^2 |W(C_B)|$
Admissible W-orbits

| M | $|B|$ | $|B|$ | Y | C | $N_W(B)$ |
|------|-------|-------|---------|---------|------------------------|
| A_n | t | $\frac{(n+1)!}{2^t t! (n-2t+1)!}$ | A_{n-2t} | A_{n-2t} | $2^t \text{Sym}_t \text{Sym}_{n+1-2t}$ |
| D_n | t | $\frac{n!}{t! (n-2t)!}$ | $A_1^t D_{n-2t}$ | $A_1 D_{n-2t}$ | $2^{2t} \text{Sym}_t W(D_{n-2t})$ |
| | $2t$ | $\frac{n!}{2^t t! (n-2t)!}$ | D_{n-2t} | A_{n-2t-1} | $2^{2t} W(B_t) W(D_{n-2t})$ |
| E_6 | 1 | 36 | A_5 | A_5 | 2Sym_6 |
| | 2 | 270 | A_3 | A_2 | 2^{2+1}Sym_4 |
| | 4 | 135 | \emptyset | \emptyset | 2^4Sym_4 |
| E_7 | 1 | 63 | D_6 | D_6 | $2 W(D_6)$ |
| | 2 | 945 | $A_1 D_4$ | $A_1 D_4$ | $2^{2+1+1} W(D_4)$ |
| | 3 | 315 | D_4 | A_2 | $2^3 \text{Sym}_3 W(D_4)$ |
| | 4 | 945 | A_1^3 | A_1 | 2^4+3Sym_4 |
| | 7 | 135 | \emptyset | \emptyset | $2^7 L(3, 2)$ |
| E_8 | 1 | 120 | E_7 | E_7 | $2 W(E_7)$ |
| | 2 | 3780 | D_6 | A_5 | $2^{2+1} W(D_6)$ |
| | 4 | 9450 | D_4 | A_2 | $2^4 \text{Sym}_3 W(D_4)$ |
| | 8 | 2025 | \emptyset | \emptyset | $2^8+3 L(3, 2)$ |
Theorem*

\(BMW(M)\) is finite-dimensional \iff connected components of \(M\) in \(\{A_n, D_n, E_6, E_7, E_8 \mid n \in \mathbb{N}\}\).

\[
\begin{align*}
\dim BMW(A_n) &= (n + 1)!! \\
\dim BMW(D_n) &= (2^n + 1)n!! - (2^{n-1} + 1)n! \\
\dim BMW(E_6) &= 1,440,585 \\
\dim BMW(E_7) &= 439,670,025 \\
\dim BMW(E_8) &= 53,328,069,225
\end{align*}
\]

\(n!! = \text{the number of matchings of } 2n \text{ points} = 1 \cdot 3 \cdots (2n-1)\)
Thanks
Correspondence roots and horizontal strands

For A_{n-1}

- bottom strand $e_i \leftrightarrow \epsilon_i - \epsilon_{i+1}$
- bottom strand from i to $j \leftrightarrow \epsilon_i - \epsilon_j$

For D_n

- bottom strand from i to j without pole crossing $\leftrightarrow \epsilon_i - \epsilon_j$
- bottom strand from i to j with pole crossing $\leftrightarrow \epsilon_i + \epsilon_j$