
2IS55 Software Evolution

Software metrics

Alexander Serebrenik

Aggregation techniques

• Metrics-independent

• Applicable for any metrics to be aggregated

• Are the results also metrics-independent?

• Based on econometrics

Metrics-dependent

• Produces more precise results

• BUT: needs to be redone for any new metrics

• Based on fitting probability distributions

/ SET / W&I PAGE 1 17-3-2014

Metrics-dependent aggregation: Statistical

fitting

1. Collect the metrics values for the lower-level

elements

2. Present a histogram

3. Fit a (theoretical) probability distribution to

describe the sample distribution

a) Select a family of theoretical distributions

b) Fit the parameters of the probability distribution

c) Assess the goodness of fit

4. If a theoretical distribution can be fitted, use the

fitted parameters as the aggregated value

/ SET / W&I PAGE 2 17-3-2014

Alternative solution: KDE

Histogram vs. Kernel density estimate

/ SET / W&I PAGE 3 17-3-2014

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

Kernel density estimate

N = 425 Bandwidth = 0.03203

D
e
n
s
it
y

Histogram

Vuse4004

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Step 2: fitting a distribution

• Family of distributions is chosen based on shape

• If the parameters fitting is not good enough try a

different one!

/ SET / W&I PAGE 4 17-3-2014

Tamai, Nakatani.

Negative binomial

distribution

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

Dn

D
e
n
s
it
y

S, Roubtsov, vd Brand

Exponential distribution

Step 3c. Goodness of fit: Pearson χ2 test

• The test statistic

where

• O – observed frequency of the result i

• E – expected frequency of the result i

• Compare X2 with the theoretical χ2 distribution for

the given number of degrees of freedom: P(χ2 > X2)

• Degrees of freedom = number of observations –

number of fitted parameters

• Comparison is done based on table values

• If the P(χ2 > X2) < threshold – the fit is good

• Common thresholds are 0.1, 0.05 and 0.01

 / SET / W&I PAGE 6 17-3-2014

 






n

i i

ii

E

EO
X

1

2

2

Step 3c. Goodness of fit: Pearson χ2 test

• The test statistic

where

• O – observed frequency of the result i

• E – expected frequency of the result i

• Compare X2 with the theoretical χ2 distribution for

the given number of degrees of freedom: P(χ2 > X2)

• Degrees of freedom = number of observations –

number of fitted parameters

• Comparison is done based on table values

• If the P(χ2 > X2) < threshold – the fit is good

• Common thresholds are 0.1, 0.05 and 0.01

 / SET / W&I PAGE 7 17-3-2014

 






n

i i

ii

E

EO
X

1

2

2

NB: χ2 test is also

applicable to

contingency tables

(Assignment 4)

Recapitulation: Statistical fitting

1. Collect the metrics values for the lower-level

elements

2. Present a histogram

3. Fit a (theoretical) probability distribution to

describe the sample distribution

a) Select a family of theoretical distributions

b) Fit the parameters of the probability distribution

c) Assess the goodness of fit

4. If a theoretical distribution can be fitted, use the

fitted parameters as the aggregated value

/ SET / W&I PAGE 8 17-3-2014

What about the evolution of the aggregated

values?

• Geometry library: Jun,

subsystem “Geometry”

• Tamai, Nakatani: Negative

binomial distribution

• p, k – distribution parameters

• - binomial coefficient

extended to the reals

/ SET / W&I PAGE 9 17-3-2014

kxk pp
k

x
xf 












)1(

1

1
)(














1

1

k

x

• Increase – functionality

enhancement

• Decrease – refactoring

In general, how do we study evolution?

• Visual inspection

• Is this a real “trend” or just

 noise?

/ SET / W&I PAGE 10 17-3-2014

In general, how do we study evolution?

• Time-series analysis

• Simplest form: linear

 regression with time

/ SET / W&I PAGE 11 17-3-2014

Linear trend

Significant

Strong

More advanced

techniques:

2DD23 - Time

series analysis

and forecasting

Summary

• Aggregation:

• Metrics-independent

− Applicable for any metrics to be aggregated

− Traditional: mean, median...

− “By no means”

− Econometric: inequality indices

• Metrics-dependent

− Produce more precise results

− BUT: need to be redone for any new metrics

− Based on fitting probability distributions

 / SET / W&I PAGE 12 17-3-2014

Measuring change: Churn metrics

• Why? Past evolution to predict future evolution

• Code Churn [Lehman, Belady 1985]:

• Amount of code change taking place within a software

unit over time

• Code Churn metrics [Nagappan, Bell 2005]:

/ Mathematics and Computer Science PAGE 13 17-3-2014

Absolute:

Churned LOC, Deleted LOC,

File Count, Weeks of Churn,

Churn Count, Files Churned

Relative:

Case Study: Windows Server 2003

• Analyze Code Churn between WS2003 and WS2003-

SP1 to predict defect density in WS2003-SP1

• 40 million LOC, 2000 binaries

• Use absolute and relative churn measures

• Conclusion 1: Absolute measures are no good

• R2 < 0.05

• Conclusion 2: Relative measures are good!

• An increase in relative code churn measures is

accompanied by an increase in system defect density

• R2  0.8

/ Mathematics and Computer Science PAGE 14 17-3-2014

Case Study: Windows Server 2003

/ Mathematics and Computer Science PAGE 15 17-3-2014

• Construct a statistical

model

• Training set: 2/3 of the

Windows Set binaries

• Check the quality of the

prediction

• Test set: remaining

binaries

• Three models

• Right: all relative churn

metrics are taken into

account

Open issues

• To predict bugs from history, but we need a history

filled with bugs to do so

• Ideally, we don’t have such a history

• We would like to learn from previous projects:

• Can we make predictions without history?

• How can we leverage knowledge between projects?

• Are there universal properties?

• Not just code properties but also properties of the

entire software process

/ Mathematics and Computer Science PAGE 16 17-3-2014

Metrics of software process

• How much will it cost us to build the system?

• How much effort has been spent on building the

system?

Effort estimation techniques

• Size-based

• Complexity-based

• Functionality-based

• More advanced techniques are known but go beyond

the topics of this class

/ SET / W&I PAGE 17 17-3-2014

Size-based effort estimation

• Estimation models:

• In: SLOC (estimated)

• Out: Effort, development time, cost

• Usually use “correction coefficients” dependent on

− Manually determined categories of application domain,

problem complexity, technology used, staff training,

presence of hardware constraints, use of software tools,

reliability requirements…

− Correction coefficients come from tables based on these

categories

− Coefficients were determined by multiple regression

• Popular (industrial) estimation model: COCOMO

/ SET / W&I PAGE 18 17-3-2014

Basic COCOMO

• E – effort (man-

months)

• S – size in KLOC

• T – time (months)

• a, b, c and d –

correctness

coefficients

/ SET / W&I PAGE 19 17-3-2014

baSE 
dcET 

a b c d

Information

system

2.4 1.05 2.5 0.38

Embedded

system

3.6 1.20 2.5 0.32

More advanced COCOMO: even more categories

log T

log S

Advanced COCOMO

/ SET / W&I PAGE 20 17-3-2014

Complexity-based effort estimation

• Do you recall Halstead?

• Effort: E = V * D

• V – volume, D – difficulty

• Potentially problematic: questioned by Fenton and

Pfleger in 1997

• Time to understand/implement (sec): T = E/18

/ SET / W&I PAGE 21 17-3-2014

2

21
2121 *

2
*)ln()(

n

Nn
nnNNE 

Code is not everything

• Lehman 6:

• The functional capability <…> must be continually

enhanced to maintain user satisfaction over system

lifetime.

• How can we measure amount of functionality in the

system?

• [Albrecht 1979] “Function points”

− Anno 2012: Different variants: IFPUG, NESMA, …

• Determined based on system description

• Amount of functionality can be used to assess the

development effort and time before the system is built

• Originally designed for information systems

/ SET / W&I PAGE 22 17-3-2014

Functionality and effort

/ SET / W&I PAGE 23 17-3-2014

No data

No data

What kinds of problems

could have influenced

validity of this data?

< 10% US

comp.

Functionality and effort

• 104 projects at AT&T from 1986 through 1991

/ SET / W&I PAGE 24 17-3-2014

)ln(0024.15144.2

)ln(

FP

Eest





What about the

costs?
Function

points

Cost per fp

1

10

100

$795.36

1000

$1136.36

10000

$2144.12

100000

$3639.74

/ SET / W&I PAGE 25 17-3-2014

How to determine the number of function

points? [IFPUG original version]

• Identify primitive constructs:

• inputs: web-forms, sensor inputs, mouse-based, …

• outputs: data screens, printed reports and invoices, …

• logical files: table in a relational database

• interfaces: a shared (with a different application) database

• inquiries: user inquiry without updating a file, help

messages, and selection messages

/ SET / W&I PAGE 26 17-3-2014

Software is not only functionality!

• Non-functional

requirement necessitate

extra effort

• Every factor on [0;5]

• Sum * 0.01 + 0.65

• Result * Unadjusted FP

• 1994: Windows-based

spreadsheets or word

processors: 1000 – 2000

/ SET / W&I PAGE 27 17-3-2014

Function points, effort and development time

• Function points can be used to determine the

development time, effort and ultimately costs

• Productivity tables for different SE activities,

development technologies, etc.

• Compared to COCOMO

• FP is applicable for systems to be built

− COCOMO is not

• COCOMO is easier to automate

• Popularity:

− FP: information systems, COCOMO: embedded

/ SET / W&I PAGE 28 17-3-2014

But what if the system already exists?

• We need it, e.g., to estimate maintenance or

reengineering costs

• Approaches:

• Derive requirements (“reverse engineering”) and

calculate FP based on the requirements derived

• Jones: Backfiring

− Calculate LLOC (logical LOC, source statements)

− Divide LLOC by a language-dependent coefficient

− What is the major theoretical problem with backfiring?

/ SET / W&I PAGE 29 17-3-2014

Backfiring in practice

• What can you say about

the precision of

backfiring?

• Best:  10% of the

manual counting

• Worst: +100% !

• What can further affect

the counting?

• LOC instead of LLOC

• Generated code, …

• Code and functionality

reuse

/ SET / W&I PAGE 30 17-3-2014

Function points: Further results and open

questions

• Further results

• OO-languages

• Open questions

• Formal study of correlation between backfiring FP and

“true” FP

• AOP

• Evolution of functional size using FP

/ SET / W&I PAGE 31 17-3-2014

How does my system compare to industrial

practice?

• ISBSG (International Software Benchmarking

Standards Group)

• 17 countries

• Release 11: > 5000 projects

• Per project:

− FP count, actual effort, development technologies

− …

/ SET / W&I PAGE 32 17-3-2014

Alternative ways of measuring the amount of

functionality

• FP: input, output, inquiry, external files, internal files

• Amount of functionality = size of the API

• Linux kernel = number of system calls + number of

configuration options that can modify their behaviour

− E.g., open with O_APPEND

/ SET / W&I PAGE 33 17-3-2014

Interface

Amount of functionality in the Linux kernel

• Multiple versions and

variants

• Production (blue dashed)

• Development (red)

• Current 2.6 (green)

• System calls: mostly

added at the development

versions

• Rate is slowing down from

2003 – maturity?

• Configuration options:

superlinear growth

• 2.5.45 – change in option

format/organization

/ SET / W&I PAGE 34 17-3-2014

Israeli, Feitelson

Conclusions

• Effort and functionality estimation metrics

• COCOMO, Function points…

• Size of API

/ SET / W&I PAGE 35 17-3-2014

2IS55 Software Evolution

Tests

Alexander Serebrenik

Assignments

/ SET / W&I PAGE 37 17-3-2014

• Assignment 5 (Tests)

• Available on Peach

• Due to April 12

• Individual

• Calculate coverage metrics (to be discussed today)

• Calculate change (churn) and size metrics

• Study relation between coverage and these metrics

− Statistically

− Using visualization

• Choose your weapons wisely!

Sources

/ SET / W&I PAGE 38 17-3-2014

/ SET / W&I PAGE 39 17-3-2014

Waterfall model [Royce 1970]

We are

here!

Establishing correctness of the program

• Formal verification

• Model checking, theorem proving, program analysis

• Additional artefacts: properties to be established

• Optional artefacts: models

• Testing

• Additional artefacts: test cases/scripts/programs

• Optional artefacts: drivers/stubs

• Co-evolution problem: additional (and optional)

artefacts should co-evolve with the production code

/ SET / W&I PAGE 40 17-3-2014

Different flavours of tests

Testing Kind of software

Management

IS

Systems

software

Outsourced

projects

Unit 10 10 8.5

Integration 5 5 5

System 7 5 5

Acceptance 5 2.5 3

/ SET / W&I PAGE 41 17-3-2014

• Effort percentage (staff months) [Capers Jones 2008]

• Evolution research so far focused on unit testing

• Highest percentage in testing

• Best-suited for automation

Unit testing

• Test code is also code

• Recent: unit testing frameworks become popular

• For JUnit code

• Fixture: common part for multiple tests

− @Before: set-up, resource claim

− @After: resource release

• @Test

• Traditional metrics can be computed

• Compare the evolution of the production code

metrics and test code metrics

/ SET / W&I PAGE 42 17-3-2014

Examples of co-evolution scenarios [Zaidman et

al. 2008]

• p – production code

• t – testing code

• Commands – methods

with @Test annotation

/ SET / W&I PAGE 43 17-3-2014

Co-evolution patterns in Checkstyle

1. Test reinforcement: 

#test classes

2. Test refinement

3. Intensive development –

testing backlog

4. Back to synchronous

testing

/ SET / W&I PAGE 44 17-3-2014

Checkstyle, %of maximum

The diagrams seem to suggest

• Correlation between the size of the test suite size and the

production code size

• Reminder: McCabe’s complexity is related to the expected

testing effort

• We are looking at the actual testing effort…

• JUnit - correspondence between production and test

classes

/ SET / W&I PAGE 46 17-3-2014

• System: Ant

• Dependent variables

• dLOCC – LOC per test class

• dNOTC – number of test cases

• Independent variables

• FOUT – Class-out

• WMC – WMC/McCabe

• LCOM – LCOM/Henderson-Sellers

Bruntink, Van Deursen, 2004

Quantity vs. Quality

• So far: Quantity (tLOC, tClasses, tCommands)

• BUT how good are the tests?

• Coverage: measure of test quality

• % program components “touched” by the tests

• Variants

− Line coverage

− Statement coverage

− Function/method coverage

− Module/class coverage

− Block coverage

− Block: sequence of statements with no jumps or

jumps’ targets

/ SET / W&I PAGE 47 17-3-2014

EMMA, Open-source Java coverage tool

/ SET / W&I PAGE 48 17-3-2014

What happens if a line is covered only

partially?

• EMMA:

/ SET / W&I PAGE 49 17-3-2014

• Which parts of the yellow lines are covered and

which parts are not?

Condition coverage vs. Decision coverage

• Condition coverage

• Every boolean subexpression has been evaluated to

true and to false

• Decision coverage

• In every decision (if/loop) both the true and the false

branch have been tested

• Does condition coverage imply decision coverage?

• Does decision coverage imply condition coverage?

/ SET / W&I PAGE 50 17-3-2014

Condition coverage vs. decision coverage

• { foo(7,-1), foo(4,2) }

covers all conditions

but not all decisions

 (T,F) and (F,T)

• { foo(7,-1), foo(7,1) }

covers all decisions

but not all conditions

 (T,F) and (T,T)

/ SET / W&I PAGE 51 17-3-2014

int foo(int a, int b) {

 int c = b;

 if ((a>5) && (b>0)) {

 c = a;

 }

 return a*c;

}

Path coverage

• Path coverage: all possible paths through the given

program

• Unrealistic: n decisions  up to 2n different paths

• Some paths are infeasible

− Whether a path is infeasible is undecidable

• Coverage implications: path  decision  statement

• Special paths: from definition (i = 1) to use (x += i)

• c-use if the use is a computation (x += i)

• p-use if the use is a predicate (x < i)

/ SET / W&I PAGE 52 17-3-2014

The more you test the better the coverage

• Average over 12

competing versions

of the same

software

• Coverage increases

• 100% is still a

dream even after

more than 20,000

tests!

/ SET / W&I PAGE 53 17-3-2014

Horgan, London, Lyu

What about evolution of test coverage?

• High class coverage

(>80% and >95% for 4.*)

• Exception: 2.2

• 2.*

• : pLOC increases

faster than tLOC

• drop in coverage

values: major

reengineering

• 3.0-4.0: increase for all

forms of coverage

/ SET / W&I PAGE 54 17-3-2014

Checkstyle

Abscisse tLOC/(tLOC+pLOC)

[Zaidman et al. 2008]

Function coverage in bash

• Retrospective analysis:

tests for version i were

rerun for all versions j, j>i

• Function coverage

• BUT #functions increases

and coverage is percentage

• Consider only functions

present in all Bash versions

/ SET / W&I PAGE 55 17-3-2014

Bash

Elbaum, Gable, Rothermel

Closer look at changes

• Remember eROSE? [Zimmermann et al. 2004]

/ SET / W&I PAGE 56 17-3-2014

Association Rule Mining

• eROSE is based on detecting frequent sets and

association rules, i.e., elements that often are

changed together

• Popular technique: Apriori algorithm

• Tests are code, so [Lubsen, M.Sc. thesis]

• Distinguish tests/production classes based on their

names

− Drop files that are neither source nor test (makefiles,

images, etc.)

• Use Apriori to mine association rules

/ SET / W&I PAGE 57 17-3-2014

Rule categorization

• Categorize rules AB (A, B – classes):

• PROD: A and B are production classes

• TEST: A and B are test classes

• P&T pairs:

− P2T, T2P

− mP2T, mT2P: matched pairs {C.java ⇒ CTest.java}

• Are there any other types of rules we’ve missed?

/ SET / W&I PAGE 58 17-3-2014

Empirical evaluation

• Checkstyle:

• Large number of commits with

many production classes

− Classes are together by chance

− Support is very low

• Commits on test classes involve

only few of them / SET / W&I PAGE 59 17-3-2014

Quality of rules: A  B (A, B – sets)

• Support |AB| = P(A,B)

• Confidence |AB| : |A| = P(B|A)

• Strong rule: high confidence and reasonable support

• There are more ways to assess quality of the rules!

/ SET / W&I PAGE 60 17-3-2014

Empirical evaluation

• A.I, A.II, C.I and C.II

(synchronous co-evolution)

• the ratios correspond to the

effort distribution.

• the confidence of typical

rules is not low.

/ SET / W&I PAGE 61 17-3-2014

A.I

B.I

C.II

More than JUnit

• There exist JUnit-like systems for

• Server-side code: Cactus

http://jakarta.apache.org/cactus/

• Web-applications: HttpUnit

http://sourceforge.net/projects/httpunit/

• Popularity?

• No research so far (AFAIK)

/ SET / W&I PAGE 63 17-3-2014

http://jakarta.apache.org/cactus/
http://sourceforge.net/projects/httpunit/

Conclusions

• Verification  Testing  Unit testing

• Dr. Anton Wijs: incremental model checking

• Unit testing – another group of code files

• Traditional metrics are applicable

− Correlation, co-evolution patterns

• Coverage metrics

• Association rules

/ SET / W&I PAGE 64 17-3-2014

