
2IS55 Software Evolution

Implementing

evolution

Alexander Serebrenik

Sources

/ SET / W&I PAGE 1 24-3-2014

So far…

• We assumed that the evolution has already taken

place.

• This week: how to implement evolution

• Reengineering of legacy systems

− Towards OO, aspects, services

• Refactoring and its impact

• Database migration

/ SET / W&I PAGE 2 24-3-2014

Evolution strategies

• Refactor

• Reengineer

• E.g., using models

• Re-implement

Questions

• How can one decide which strategy to follow?

• How can/should one implement the chosen strategy?

/ SET / W&I PAGE 3 24-3-2014

First look at reengineering decision making

• Both technical and business aspects

• Scale is rather vague

/ SET / W&I PAGE 4 24-3-2014

Ransom, Sommerville, Warren

Technical quality

B
u

s
in

e
s
s
 v

a
lu

e
 Reengineering,

modernisation

Replacement

Maintenance

Reduced

maintenance

Value-Based Decision Model [Visaggio 2000]

• Metrics to assess technical quality and business

value

/ SET / W&I PAGE 5 24-3-2014

Examples Business value Technical quality

Objective • Input volume

• %input that can be

automatically processed

• Constants

• OS calls

• DB queries/update

Subjective

(expert

opinion)

• Importance

• Fitness for purpose

• Adaptability

• Comprehensibility

• Correctness

• Efficiency

• Each metrics has a threshold B and a weight w

(importance)

Value-Based Decision Model

• Divide the system in logical subcomponents

• Different subcomponents  different evolution strategies

• Calculate the metrics for each subcomponent

• Aggregate them using thresholds and weights

• Technical quality of component i

 where distinguishes high

 quality components from the low quality components

• Similar formula can be given for business values

/ SET / W&I PAGE 6 24-3-2014


j

j

ij

j

i w
m

B
Sq

 jwTq

Technical quality

B
u

s
in

e
s
s

v
a
lu

e

Tq

Te

Empirical validation of VDM [Tilus et al.]

• Alternative approaches:

/ SET / W&I PAGE 7 24-3-2014

Gray – system A,

white – system B

Relative Simplified

• Agreement:  and  should

be replaced,  should be

maintained

• Disagreement: experts

always preferred VDM

Problem with VDM: To the man with a hammer,

everything looks like a nail

• Different

problems

require different

solutions

• Critique table

[Aversano et al.]

• If a problem

(left) is detected,

consider using

technique (up)

/ SET / W&I PAGE 8 24-3-2014

How can/should one implement the chosen

strategy?

• Correct code can be far from perfect:

• Bad structure

• Code duplication

• Bad coding practices

• We need to change it

• Undisciplined code modification may introduce bugs

• … and does not guarantee that the code will actually be

improved!

• Manual work, not clear how to support it beyond

“copy/paste” and “replace all”

/ SET / W&I PAGE 9 24-3-2014

Refactoring

• Refactoring – a disciplined

technique for restructuring

code, altering its internal

structure without changing

its external behavior.

• External behavior not

changed

• New bugs are not introduced

• Old ones are not resolved!

• Aims at improving

• maintainability, performance

/ SET / W&I PAGE 10 24-3-2014

Examples of refactorings

• Extract method

• If similar series or steps are repeatedly executed, create

a separate method

• Rename method

• If the method’s name no longer corresponds to its

purpose/behaviour, rename the method

• Pull up

• Move the functionality common to all subclasses to

the/a superclass

• Push down

• If the functionality is needed only in some subclasses

move it to the subclass

/ SET / W&I PAGE 11 24-3-2014

Refactoring catalogue [Fowler]: Example

• Name: Inline Temp

• Applicability:

• A temp is assigned to once with a simple expression, and

it is getting in the way of other refactorings.

• Replace all references with the expression

• Motivation: simplifies other refactorings, e.g., Extract

Method

• Steps (Java):

• Declare the temp as final, and compile

• Find references to the temp and replace them

• Compile and test after each change

• Remove the declaration and the assignment of the temp

• Compile and test

/ SET / W&I PAGE 12 24-3-2014

Why would you

declare the

temp as final?

How many refactorings are there?

Author Year Language Number

Fowler

book and website

2000 Java 93

Thompson et al.

website

Haskell 20 * 3

categories

Garrido 2000 C 29

Serebrenik,

Schrijvers, Demoen

2008 Prolog 21

Fields et al. 2009 Ruby >70

/ SET / W&I PAGE 13 24-3-2014

• One has to organize refactorings by categories

• We will discuss some of the refactorings in more

detail!

Categories of refactorings [Fowler]

/ SET / W&I PAGE 14 24-3-2014

• Composing methods (extract method, inline temp)

• Moving features between objects (move field, remove

middle man)

• Organizing data (change value to reference)

• Simplifying conditional expressions

• Making method calls simpler (rename method)

• Dealing with generalization (pull up field)

• Big refactorings (separate domain from presentation)

Closer look: Pull Up Field / Push Down Field

• When would you use each one of the refactorings?

• Pull Up: field is common to all subclasses

• Push Down: field is used only in some subclasses

/ SET / W&I PAGE 15 24-3-2014

Pull

Up

Push

Down

Pull Up: Seems simple…

• Inspect all uses of the candidate fields

• Ensure they are used in the same way.

• If the fields do not have the same name, rename

• The candidate fields should have the name you want to

use for the superclass field.

• Compile and test.

• Create a new field in the superclass.

• If the fields are private, protect the superclass field

• The subclasses should be able to refer to it.

• Delete the subclass fields.

• Compile and test.

• Consider using Self Encapsulate Field on the new

field.
/ SET / W&I PAGE 16 24-3-2014

Another example: Extract method: Without

parameters

/ SET / W&I PAGE 17 24-3-2014

static Order order;

static char name[];

void printOwing () {

Enumeration e = elements (order) ;

double outst = 0.0 ;

// print banner

printf (" ********************** \n") ;

printf (" Customer Owes \n") ;

printf (" ********************** \n") ;

// calculate outstanding

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

// print details

printf ("name %s \n" , name) ;

printf ("amount %s \n" , outst) ;

}

static Order order;

static char name[];

// print banner

void printBanner() {

printf (" ********************** \n") ;

printf (" Customer Owes \n") ;

printf (" ********************** \n") ;

}

void printOwing () {

Enumeration e = elements (order) ;

double outst = 0.0 ;

printBanner();

// calculate outstanding

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

// print details

printf ("name %s \n" , name) ;

printf ("amount %s \n" , outst) ;

}

Extract method: With input parameters

/ SET / W&I PAGE 18 24-3-2014

static Order order;

static char name[];

// print banner

void printBanner() {

printf (" ********************** \n") ;

printf (" Customer Owes \n") ;

printf (" ********************** \n") ;

}

void printOwing () {

Enumeration e = elements (order) ;

double outst = 0.0 ;

printBanner();

// calculate outstanding

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

// print details

printf ("name %s \n" , name) ;

printf ("amount %s \n" , outst) ;

}

static Order order;

static char name[];

// print banner

…

// print details

void printDetails(double outst) {

printf ("name %s \n" , name) ;

printf ("amount %s \n" , outst) ;

}

void printOwing () {

Enumeration e = elements (order) ;

double outst = 0.0 ;

printBanner();

// calculate outstanding

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

printDetails(outst);

}

Extract method: With output parameters

/ SET / W&I PAGE 19 24-3-2014

static Order order;

static char name[];

// print banner

…

// print details

void printDetails(double outst) {

printf ("name %s \n" , name) ;

printf ("amount %s \n" , outst) ;

}

void printOwing () {

Enumeration e = elements (order) ;

double outst = 0.0 ;

printBanner();

// calculate outstanding

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

printDetails(outst);

}

static Order order;

static char name[];

// print banner

…

// print details

…

// calculate outstanding

double getOutst(Enumeration e,

 double outst) {

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

return outst;

}

void printOwing () {

Enumeration e = elements (order) ;

double outst = 0.0 ;

printBanner();

outst = getOutst(e, outst) ;

printDetails(outst);

}

Extract method: Further simplification

/ SET / W&I PAGE 20 24-3-2014

static Order order;

static char name[];

// print banner

…

// print details

…

// calculate outstanding

double getOutst() {

Enumeration e = elements (order) ;

double outst = 0.0 ;

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

return outst;

}

void printOwing () {

printBanner();

printDetails(getOutst());

}

static Order order;

static char name[];

// print banner

…

// print details

…

// calculate outstanding

double getOutst(Enumeration e,

 double outst) {

while (hasMoreElements (e)) {

Order each = nextElement (e) ;

outst += getAmount (each) ;

}

return outst;

}

void printOwing () {

Enumeration e = elements (order) ;

double outst = 0.0 ;

printBanner();

outst = getOutst(e, outst) ;

printDetails(outst);

}

But is the new program really better than the

old one?

• Assume that we want to improve maintainability

/ SET / W&I PAGE 21 24-3-2014

Metrics Old New

LOC 18 26

Comments 3 3

Ave McCabe 2 5/4

Halstead

volume

156 226

Maintainability

index

57 77

Difficult to

maintain

Average

maintainability

The refactoring process

• Select the maintainability metrics

• Recall: Goal – Question – Metrics!

• Refactoring loop

• Calculate maintainability metrics

• Identify a problem: “bad smell”

• Check that the refactoring is applicable

• Refactor

• Compile and test

− Recall: “without changing its external behavior”

• Recalculate the maintainability metrics

/ SET / W&I PAGE 22 24-3-2014

How to identify bad smells?

• Software metrics

• Size: Large class, large method, long parameter list

• Dependencies: feature envy, inappropriate intimacy

• % comments: comments

• Code duplication

• Changes (based on version control)

• Divergent change (one class is changed in different

ways for different reasons)

• Shotgun surgery (many small changes)

− Parallel inheritance hierarchies

/ SET / W&I PAGE 23 24-3-2014

[Tahvildari and Kontogiannis]

• Start with complex and tightly coupled classes

/ SET / W&I PAGE 24 24-3-2014

Feature envy [Simon, Steinbrückner, Lewerentz]

• Fields – boxes, methods – balls

• Green – Class A, blue – Class B

• Distance

• p(X) – properties of X

• Method: the method, methods

called and fields used

• Field: the field and methods that

use it

/ SET / W&I PAGE 25 24-3-2014

)()(

)()(
1

YpXp

YpXp






Feature

envy

How to identify bad smells?

• Structural problems: obsolete parameters,

inappropriate interfaces, …

• Parameter p of C.m is obsolete if

• Neither C.m itself uses p

• Nor any of the classes inheriting from C and

reimplementing m uses p

• Naïve approach: check all parameters of all methods

of all classes

• Not feasible

• Better ideas?

/ SET / W&I PAGE 26 24-3-2014

Querying the structure [Tourwe, Mens]

• Query (a la Datalog):

obsolete(Class,Method,Parameter):-

 classImplements(Class,Method),

 parameterOf(Class,Method,Parameter),

 forall(subclassImplements(Class,Method,Subclass),

 not(methodUsesParameter(Subclass,Method,Parameter)))

• Advantage:

• Once the DB is populated one can look for different smells

/ SET / W&I PAGE 27 24-3-2014

Program DB of

facts
Results

Query

Another example: Inappropriate interface

• AbstractTerm cannot be easily extended

• not clear which subclass should implement terms

• Query

commonSubclInt(Class,Int,Subcs) :-

 classInterface(Class,ClassInt),

allSubclasses(Class,SubcList),

sharedInterface(SubcList,commonInt,Subcs),

difference(commonInt,ClassInt,Int)

/ SET / W&I PAGE 28 24-3-2014

How to chose appropriate refactorings?

Bad smell Refactoring

Comments Extract method

Introduce assertion

Duplicated code Extract method

Extract class

Pull Up method

Form Template method

Feature envy Move method

Extract method

Long method Extract method

Decompose conditional

/ SET / W&I PAGE 29 24-3-2014

Refactoring never comes alone

• Usually one can find many different bad smells

• And for each one many different refactorings…

• Guidelines when refactorings should be applied

• Still even with strict guidelines [DuBois 2004]

• org.apache.tomcat.{core,startup}

• 12 classes, 167 methods and 3797 lines of code

• Potential refactorings

− Extract Method 5

− Move Method 9

− Replace Method with Method Object 1,

− Replace Data Value with Object 3

− Extract Class 3

/ SET / W&I PAGE 30 24-3-2014

Refactoring never comes alone

• Which one is “better”?

• The most beneficial for the maintainability metrics

we want to improve

• We can do this a posteriori but the effort will be lost!

• So we would like to assess this a priori

• Extract method from multiple methods

− decreases LOC

− decreases #dependencies on other classes

/ SET / W&I PAGE 31 24-3-2014

The refactoring process

• Select the quality metrics

• maintainability, performance, …

• Recall: Goal – Question – Metrics!

• Refactoring loop

• Calculate the metrics value

• Identify a problem: “bad smell”

• Check that the refactoring is applicable

• Refactor

Compile and test

− Recall: “without changing its external behavior”

• Recalculate the metrics value

/ SET / W&I PAGE 33 24-3-2014

Inconsistency

• Refactoring can introduce inconsistency

• In tests by breaking the interfaces

• In models by making them out-of-date

• We need to detect such inconsistencies

• A priori: using classification of refactorings

− We know when the things will go wrong

• A posteriori:

− Using a logic formalism

− Inconsistency = unsatisfiability of a logic formula

− Using change logs

− eROSE

/ SET / W&I PAGE 34 24-3-2014

Interface preservation by refactorings

• Refactoring can violate the interface

• Classify refactorings [Moonen et al.]

• Composite: series of small refactorings,

• Compatible: interface is not changed

• Backwards compatible: interface is extended

• Make backwards compatible: interface can be modified to

keep it backwards compatible

• Incompatible: interface is broken, tests should be adapted

/ SET / W&I PAGE 35 24-3-2014

Refactoring and tests

Compatible Inline temp

Extract class

Decompose conditional

Backwards compatible Extract method

Push down/Pull up field

Make backwards

compatible

Add/Remove parameter

Rename/Move method

Incompatible Inline method

Inline class

/ SET / W&I PAGE 36 24-3-2014

• To which group belong

• Replace Exception with Test

• Self Encapsulate Field (create getters and setters)

But tests are also code!

/ SET / W&I PAGE 37 24-3-2014

• Smells [Moonen et al.]

• Mystery guest (dependency on an external resource)

• Resource optimism (availability of resources)

• Test run war (concurrent use of resources)

• General fixture (too many things are set-up)

• Eager test (several methods are tested together)

• Lazy tests (the same method for the same fixture)

• Assertions roulette (several assertions in the same test

with no distinct explanation)

• For testers only (production code used only for tests)

• Sensitive equality (toString instead of equal)

• Test code duplication

Smells are there, what about refactorings?

Refactoring Bad smell

Inline resource Mystery guest

Setup External Resource Resource optimism

Make resource unique Test run war

Reduce data General fixture

Add assertion explanation Assertions roulette

Introduce equality method Sensitive equality

/ SET / W&I PAGE 38 24-3-2014

Alternative: A posteriori inconsistency

• Sometimes we do not know what refactorings took

place

• Van Der Straeten et al.: inconsistencies in UML

models using encoding as logic formulas

• Similar technique can be used for code/model

• Syntax adapted:

inconsistent(ClassDiagram,SeqDiagram,Class,Obj) :-

 class(Class),

 not(inNamespace(Class,ClassDiagram)),

 instanceOf(Class,Obj),

 inNamespace(Obj,SeqDiagram)

/ SET / W&I PAGE 39 24-3-2014

Putting it all together: refactoring browsers

• IntelliJ IDEA – first

popular commercial

refactoring browser

for Java

• Today: additional

languages

• A number of

alternatives

• Eclipse

• MS Visual Studio

• …

/ SET / W&I PAGE 40 24-3-2014

Eclipse Europa 3.3

Refactoring browsers have a lot of potential but

are they used?

• Students [Murphy-Hill and Black]

• 16 used Eclipse, 2 used refactoring

• 42 used Eclipse, 6 used refactoring

• Professionals

• 112 agile programmers, 68% used refactoring

• Traditional programmers are expected to be less

enthusiastic

• Are refactoring browsers fit to what the developers

want to do?

/ SET / W&I PAGE 42 24-3-2014

How do people refactor [Murphy-Hill and

Black]

• Floss refactorings:

frequent, intertwined

with usual development

activities

/ SET / W&I PAGE 43 24-3-2014

• Root canal refactorings:

concentrated refactoring effort,

infrequent, no usual development

activites take place

• Regular flossing prevents root canal treatment

• Programmers prefer to floss [Weißgerber, Diehl]

We need to focus on floss refactorings

1. Choose the desired refactoring quickly,

2. Switch seamlessly between program editing and

refactoring,

3. View and navigate the program code while using

the tool,

4. Avoid providing explicit configuration information,

and

5. Access all the other tools normally available in the

development environment while using the

refactoring tool.

/ SET / W&I PAGE 44 24-3-2014

Eclipse Europa revisited

/ SET / W&I PAGE 45 24-3-2014

Lengthy menus: refactoring

selection is slow (Req. 1)

Eclipse revisited

/ SET / W&I PAGE 46 24-3-2014

Lengthy menus: refactoring

selection is slow (Req. 1)

Configuration dialog (Req. 4)

interrupts the regular development

activities (Req. 2) and does not allow

to view the code (Req. 3).

Eclipse revisited

/ SET / W&I PAGE 47 24-3-2014

Lengthy menus: refactoring

selection is slow (Req. 1)

Configuration dialog (Req. 4)

interrupts the regular development

activities (Req. 2) and does not allow

to view the code (Req. 3).

Preview (good idea) but the basic

functionality is limited: no hover-on

documentation (Req. 5)

Fast access means limited choice

• Which refactorings are

actually used?

• Column – refactoring

• Row – developer

• Colour – times used

• Leaders

• Rename, move

• Extract method, pull up

• ModifyParameters

• ExtractLocalVariable

• ExtractInterface

• ExtractConstant

/ SET / W&I PAGE 48 24-3-2014

 Eclipse Usage Data Collector (2009)

• Formatting changes excluded

• More or less the same leaders:

• Rename, move

• Extract method + getters/setters

• Extract local variable

/ SET / W&I PAGE 49 24-3-2014

Proposed solution: Refactoring Cues

• Short menu (Req. 1)

• Switch is easy (Req. 2)

• Code is visible (Req. 3)

• Dialog is non-modal (Req. 5)

/ SET / W&I PAGE 50 24-3-2014

• Configuration (Req. 4) is

an issue

No explicit configuration: X-Develop

• Up: Original source code

• Down: After the extract

method refactoring

• Default method name: m

• The name is pre-

selected: the rename

method refactoring is

intended

/ SET / W&I PAGE 51 24-3-2014

How does this look in Eclipse Indigo?

• Ctrl+1

• Context-sensitive menu

• Results of refactoring are shown in the yellow box

• Academic research  main-stream IDE

/ SET / W&I PAGE 52 24-3-2014

But there is more

• Direct shortcuts in the yellow box.

/ SET / W&I PAGE 53 24-3-2014

Closer look at

• The same idea works for

• default constructors

• overridden methods from the superclass

/ SET / W&I PAGE 54 24-3-2014

?
Ctrl +

Space

Additional features of Eclipse Indigo

• Ctrl + Shift + O removes unused imports:

• Why would this feature be interesting?

• Ctrl + Shift + F formats the code according to a

predefined style.

• length of the lines in a source code, placement of

brackets, etc.

• Why would this feature be interesting?

/ SET / W&I PAGE 55 24-3-2014

Conclusion

• Refactoring – a disciplined technique for

restructuring code, altering its internal structure

without changing its external behavior.

• Refactoring loop

• Calculate maintainability metrics

• Identify a problem: “bad smell”

• Check that the refactoring is applicable

• Refactor

• Compile and test

• Recalculate the maintainability metrics

• Refactoring browsers should better support flossing

/ SET / W&I PAGE 56 24-3-2014

