
2IS55 Software Evolution

Implementing

evolution:

Database migration

Alexander Serebrenik

Sources

/ SET / W&I PAGE 1 24-3-2014

Databases

• Central for information systems

• Contain major company assets: data

• Often developed using outdated technology

• COBOL might not be hot but is still very much alive

− 220 bln LOC are being reported

• Migration should

• Preserve the data

• Improve the technology used

− Flexibility

− Availability of skills

/ SET / W&I PAGE 2 24-3-2014

Database migration

• S – DB

schema

• D – DB data

• P – data

manipulation

programs

/ SET / W&I PAGE 3 24-3-2014

Physical

conversion /

Conceptual

conversion

Wrap / Statement

rewriting /

Logical rewriting

Schema conversion: Physical vs Conceptual

/ SET / W&I PAGE 4 24-3-2014

Physical

Conceptual

Schema conversion: Physical

/ SET / W&I PAGE 5 24-3-2014

DATA DIVISION.

FILE SECTION.

FD PERSON-FILE

 DATA RECORD IS PERSON-ITEM.

01 PERSON-ITEM.

 02 PERSON-KEY.

 03 PERSON-ID PICTURE X(4).

 02 PERSON-NAME PICTURE X(20).

 02 PERSON-ADDRESS PICTURE X(20).

 02 PERSON-CITY PICTURE X(18).

COBOL CREATE TABLE PERSON-ITEM

(PERSON-ID varchar(4) PRIMARY KEY,

 PERSON-NAME varchar(20),

 PERSON-ADDRESS varchar(20),

 PERSON-CITY varchar(18))

SQL

Advantages and

disadvantages of

physical conversion?

Schema conversion: Physical

/ SET / W&I PAGE 6 24-3-2014

• Easy to automate

• Existing work: COBOL relational, hierarchical relational,

relational OO

• “Migration as translation” vs “migration as improvement”

• Semantics is ignored

• Limitations of COBOL Design decisions in the legacy

system Automatic conversion the same design

decisions in the new system

− Risk: compromised flexibility

Schema conversion: Physical vs Conceptual

/ SET / W&I PAGE 7 24-3-2014

Conceptual

• Refinement: Data and code may contain implicit

constraints on the schema

• Conceptualization: Remove implementation details

Implicit constraints [Cleve, Hainaut 2008]

/ SET / W&I PAGE 8 24-3-2014

• DB schema as defined

 by DDL commands

• Query

• What are the implicit constraints implied?

select substring(Address from 61 for 30) into :CITY

from CUSTOMER C, ORDERS O

where C.Num = O.Sender and O.Num = :ORDID

Field

refinement

Foreign key

elicitation

Field refinement

• Explicit

• select substring(Address from 61 for 30) into :CITY

• Implicit: 4 code fragments

• CUS-DESCR and DESCRIPTION refer to the same data

• They should have the same structure

/ SET / W&I PAGE 9 24-3-2014

a) Local variable (“working storage”)
01 DESCRIPTION

 02 NAME PIC X(20).

 02 ADDRESS PIC X(40).

 02 FUNCTION PIC X(10).

 02 REC-DATE PIC X(10).

d) MOVE CUS-DESCR TO DESCRIPTION.

b) DB table (“file section”)
FD CUSTOMER.

01 CUS.

 02 CUS-CODE PIC X(12).

 02 CUS-DESCR PIC X(80).

 02 CUS-HIST PIC X(1000).
c) MOVE DESCRIPTION TO CUS-DESCR.

How can we elicit foreign keys?

• Statically and dynamically

• Do you remember the difference?

• Statically:

• Parsing (easy for COBOL, difficult for Java)

• M.Sc. thesis of Martin van der Vlist:

“Quality Assessment of Embedded Language Modules”

• Dynamically:

• Instrument the code

• Capture traces

• “Guess constraints”

/ SET / W&I PAGE 10 24-3-2014

Cardinality constraints: As defined

• Local variable

• Array of 20 elements

• DB attribute

• represent the same info

• Hence, ORD can be associated to not more than 20

details (and not less than 0 details – trivial)

• As defined

• What about the use?

/ SET / W&I PAGE 11 24-3-2014 Hainaut, Hick, Henrard, Roland, Englebert

01 LIST-DETAIL.

 02 DETAILS OCCURS 20 TIMES

 INDEXED BY IND-DET

 03 REF-DET-STK PIC 9(5)

 03 ORD-QTY PIC 9(5)

FD ORDER.

01 ORD.

 02 ORD-CODE PIC 9(10)

 02 ORD-CUSTOMER PIC X(12).

 02 ORD-DETAIL PIC X(200).

MOVE LIST-DETAIL TO ORD-DETAIL.

Cardinality constraints: As used

• Look for list traversals: e.g., reading data

• Here: cardinality as used = cardinality as defined

• Not always the case

/ SET / W&I PAGE 12 24-3-2014

SET IND-DET TO 1.

MOVE 1 TO END-FILE.

PERFORM READ-DETAIL

 UNTIL END-FILE = 0 OR IND-DET = 21.

MOVE LIST-DETAIL TO ORD-DETAIL.

Schema conceptualization

• So far we only added complexity to the schema

• Conceptualization: Remove implementation details

/ SET / W&I PAGE 13 24-3-2014

Conceptual

Conceptualization

• Preparation: “clean up” to understand

• e.g., rename attributes, drop one-element compounds

• Untranslation: separate logic from limitations of

technology

• De-optimization: separate logic from performance

• Conceptual normalization:

• Entities vs. relations and attributes

• Explicit IS-A relations

/ SET / W&I PAGE 14 24-3-2014

Untranslation: Foreign keys

• COBOL allows “direct

access” via foreign keys

• ER requires a relationship

set to connect two entities

• What would be the

appropriate cardinality?

• One customer can place

multiple orders

• Every order can be placed

only by one customer

/ SET / W&I PAGE 15 24-3-2014

De-optimization

• Recall:

• ORD-DETAIL is a complex multi-valued attribute

• Highly efficient COBOL trick

• ORD-DETAIL cannot exist without an order

• How would you model this in ER?

• Weak entity set

• One-to-many relationship

/ SET / W&I PAGE 16 24-3-2014

Conceptual normalization

• What would you like to

improve in this schema?

• Are the cardinality

constraints meaningful?

• Which entities are, in fact,

relations?

• Are there unneeded

structures?

/ SET / W&I PAGE 17 24-3-2014

Conceptual normalization

/ SET / W&I PAGE 18 24-3-2014

• Logical design: schema concepts DB tables

• Physical design: e.g., naming conventions

/ SET / W&I PAGE 19 24-3-2014

Conceptual

Hainaut 2009: Before and After

/ SET / W&I PAGE 20 24-3-2014

Another case study (Ch. 6)

• Refined schema: decomposed attributes

• Address = Street, Number, City, ZIP, State

• Schema refinement:

• 89 foreign keys, 37 computed foreign keys, 60

redundancies

• Relational DB2

• entities: decomposition of arrays

/ SET / W&I PAGE 21 24-3-2014

Recall…

• So far we

have

considered

DB schemas

only

• Next step:

data

migration

/ SET / W&I PAGE 22 24-3-2014

Physical

conversion /

Conceptual

conversion

Data migration

• Strategy depends on the schema migration strategy

• Physical conversion: straightforward

• Data format conversion

• Conceptual conversion

• Data may violate implicit constraints

• Hence, data cleaning is required as preprocessing

• Once the data has been cleaned up: akin to physical

conversion

/ SET / W&I PAGE 23 24-3-2014

What should be cleaned? 1 source [Rahm, Do]

• Schema-level

• Can be solved with appropriate integrity constraints

• Instance-level

/ SET / W&I PAGE 24 24-3-2014

What should be cleaned? Multiple sources

• Which DB tuples refer to the same real-world entity?

/ SET / W&I PAGE 25 24-3-2014

• Scheme: name and structure conflicts

• Instance: data representation, duplication, identifiers

How to clean up data?

/ SET / W&I PAGE 26 24-3-2014

• Analyse:

• Define inconsistencies and detect them

• Define individual transformations and the workflow

• Verify correctness and effectiveness

• Sample/copy of the data

• Transform

• Backflow if needed

• If the “old” data still will be used, it can benefit from the

improvements.

Data cleaning: Analysis

• Data profiling

• Instance analysis of individual attributes

• Min, max, distribution, cardinality, uniqueness, null values

− max(age) > 150? count(gender) > 2?

• Data mining

• Instance analysis of relations between the attributes

• E.g., detect association rules

− Confidence(A B) = 99%

− 1% of the cases might require cleaning

/ SET / W&I PAGE 27 24-3-2014

Data cleaning: Analysis (continued)

• Record matching problem:

• Smith Kris L., Smith Kristen L., Smith Christian, …

• Matching based on

• Simplest case: unique identifiers (primary keys)

• Approximate matching

− Different weights for different attributes

− Strings:

− Edit distance

− Keyboard distance

− Phonetic similarity

− Very expensive for large data sets

/ SET / W&I PAGE 28 24-3-2014

Define data transformations

• Use transformation languages

• Proprietary (e.g., DataTransformationService of Microsoft)

• SQL extended with user-defined functions (UDF):

CREATE VIEW Customer2(LName, FName, Street, CID) AS

SELECT LastNameExtract(Name),

 FirstNameExtract(Name),

 Street, CID)

FROM Customer

CREATE FUNCTION LastNameExtract(Name VARCHAR(255))

 RETURNS VARCHAR(255)

 RETURN SUBSTRING(Name FROM 28 FOR 15)

/ SET / W&I PAGE 29 24-3-2014

UDF: advantages and disadvantages

• Advantages

• Does not require learning a separate language

• Disadvantages

• Suited only for information already in a DB

− What about COBOL files?

• Ease of programming depends on availability of

specific functions in the chosen SQL dialect

− Splitting/merging are supported but have to be

reimplemented for every separate field

− Folding/unfolding of complex attributes not

supported at all.

/ SET / W&I PAGE 30 24-3-2014

Inconsistency resolution

• If inconsistency has been detected, the offending

instances

• Are removed

• Are modified so the offending data becomes NULL

• Are modified by following user-defined preferences

− One table might be more reliable than the other

− One attribute may be more reliable than the other

• Are modified to reduce the (total) number of

modifications required to restore consistency

/ SET / W&I PAGE 31 24-3-2014

From data to programs

• So far: schemas

and data

• Next : programs

• Wrapping

• Statement

rewriting

• Program rewriting

/ SET / W&I PAGE 32 24-3-2014

Wrap / Statement

rewriting /

Logical rewriting

Wrappers

/ SET / W&I PAGE 33 24-3-2014

Legacy code

Legacy data

representation

Legacy code

New data

representation

Wrapper

?

Wrappers

• Replace “standard” OPEN, CLOSE, READ, WRITE

with wrapped operations

/ SET / W&I PAGE 34 24-3-2014

Start

wrapping

action

“READ”

Actual

implementation

of “READ”

Wrappers

• [Thiran, Hainaut]: wrapper code can be reused

/ SET / W&I PAGE 35 24-3-2014

Upper

wrapper

Manually

written

Model

wrapper

Instance

wrapper

Automatically

generated

Common to all DMS

in the family:

cursor, transaction

Specific to the given

DB: query translation,

access optimization

Cannot be

expressed in the DB

itself

Wrapping: Pro and Contra

• Wrapping

• Preserves logic of the legacy system

• Can be (partially) automated

• Physical + wrapper:

• Almost automatic (cheap and fast)

• Quality is poor, unless the legacy DB is well-structured

• Conceptual + wrapper:

• More complex/expensive

• Quality is reasonable: “First schema, then – code”

• Possible performance penalty due to complexity of

wrappers

− Mismatch: “DB-like” schema and “COBOL like” code

/ SET / W&I PAGE 36 24-3-2014

Wrapping in practice

• Wrappers

• 159 wrappers

• 450 KLOC

/ SET / W&I PAGE 37 24-3-2014

Statement rewriting

/ SET / W&I PAGE 38 24-3-2014

Legacy code

Legacy data

representation

Legacy code

New data

representation

?
Using

cursors

Cursor?..

• Control structure for the successive traversal of

records in a query result

/ SET / W&I PAGE 39 24-3-2014

• Cursor

declaration

• What will this cursor return?

CUS_CODE CODE

J11 12

J12 11

J13 14

K01 15

O_CUST = J12

Why would you like to use

such a cursor?

COBOL READ: Sequential

reading starting from the

first tuple with the given key

Cursor?..

• Control structure for the successive traversal of

records in a query result

/ SET / W&I PAGE 40 24-3-2014

• Cursor

declaration

• Opening a

cursor

• Retrieving

data

• Closing cursor

Statement rewriting

• Replace “standard” OPEN, CLOSE, READ, WRITE

with explicit SQL operations

/ SET / W&I PAGE 41 24-3-2014

Statement rewriting

• Replace “standard” OPEN, CLOSE, READ, WRITE

with explicit SQL operations

/ SET / W&I PAGE 42 24-3-2014

O-CUST does not

appear in ORDERS

Statement rewriting

• Replace “standard” OPEN, CLOSE, READ, WRITE

with explicit SQL operations

/ SET / W&I PAGE 43 24-3-2014

• Files can have multiple

keys and multiple READ

commands

• We need to remember

which key/READ is used!

Statement rewriting

• Replace “standard” OPEN, CLOSE, READ, WRITE

with explicit SQL operations

/ SET / W&I PAGE 44 24-3-2014

• Prepare the cursor

for READing

• READ the data

Statement rewriting

• Replace “standard” OPEN, CLOSE, READ, WRITE

with explicit SQL operations

/ SET / W&I PAGE 45 24-3-2014

• We need additional cursor

and procedure to read the

order details:

Legacy DB New DB

Statement rewriting: Pro and Contra

• Statement rewriting

• Preserves logic of the legacy system

• Intertwines legacy code with new access techniques

• Detrimental for maintainability

• Physical + statement

• Inexpensive and popular

• Blows up the program: from 390 to ~1000 LOC

• Worst strategy possible

• Conceptual + statement

• Good quality DB, unreadable code: “First schema, then

– code”

• Meaningful if the application will be rewritten on the

short term

 / SET / W&I PAGE 46 24-3-2014

Alternative 3: Logic Rewriting

• Akin to conceptual conversion

• e.g., COBOL loop SQL join

• And meaningful only in combination with it

− Otherwise: high effort with poor results

/ SET / W&I PAGE 47 24-3-2014

Legacy DB

New DB

Alternative 3: Logic Rewriting

• Manual transformation with automatic support

• Identify file access statements

• Identify and understand data and statements that

depend on these statements

• Rewrite these statements and redefine the objects

/ SET / W&I PAGE 48 24-3-2014

Logic rewriting: Pro and Contra

• Logic rewriting + physical

• Low quality DB

• High costs due to logic rewriting

• Unfeasible

• Logic rewriting + conceptual

• High quality

• Highest costs

/ SET / W&I PAGE 49 24-3-2014

Putting it all together

/ SET / W&I PAGE 50 24-3-2014

Physical,

Wrapping

Conceptual,

Wrapping

Physical,

Statement

Conceptual,

Statement

Physical,

Logic

Conceptual,

Logic

Scheme

Code

• All combinations are possible

• Not all are desirable

Conc.

Phys.

Statement Wrapping Logic

Putting it all together

/ SET / W&I PAGE 51 24-3-2014

Zero time

Better DB,

performance

penalty

Popular, $, Bad

Better DB, the

application is

rewritten later

Very bad, $$

Best but also

$$$

Scheme

Code

• All combinations are possible

• Not all are desirable

Conc.

Phys.

Statement Wrapping Logic

Tools

• DB-MAIN CASE tool (University of Namur, ReVeR)

• DDL extraction

• Schema storage, analysis and manipulation

• Implicit constraint validation

• Schema mapping management

• Data analysis & migration

• Wrapper generation (COBOL-to-SQL, CODASYL-to-

SQL)

• Transformations

• Eclipse Modelling Framework: ATL

• ASF+SDF Meta-Environment (CWI, Amsterdam)

/ SET / W&I PAGE 52 24-3-2014

Conclusions

• 3 levels of DB migration: schema, data, code

• Schema: physical/conceptual

• Data: determined by schema

• Code: wrapper/statement rewriting/logical rewriting

• Popular but bad: physical + statement

• Expensive but good: conceptual + logic

• Alternatives to consider:

• conceptual + wrapping/statement

• physical + wrapping (zero time)

/ SET / W&I PAGE 53 24-3-2014

