
2IS55 Software Evolution

Code duplication

Alexander Serebrenik

Assignments

• Assignment 2: February 28, 2014, 23:59.

• Assignment 3 already open.

• Code duplication

• Individual

• Deadline: March 17, 2013, 23:59.

/ SET / W&I PAGE 1 18-2-2014

Sources

/ SET / W&I PAGE 2 18-2-2014

“Clone detection” slides

Rainer Koschke (in German)

http://www.informatik.uni-

bremen.de/st/lehre/re09/software

klone.pdf

http://www.informatik.uni-bremen.de/st/lehre/re09/softwareklone.pdf
http://www.informatik.uni-bremen.de/st/lehre/re09/softwareklone.pdf
http://www.informatik.uni-bremen.de/st/lehre/re09/softwareklone.pdf
http://www.informatik.uni-bremen.de/st/lehre/re09/softwareklone.pdf

Where are we now?

• Last time: architecture

• Behaviour

− static/dynamic,

− sequence diagrams/state machines,

− focusing/visualization

• This week: code duplication

• Occurs in the code

• Can reflect suboptimal architecture

/ SET / W&I PAGE 3 18-2-2014

Duplication?

• Beck and Fowler, “Stink Parade of Bad Smells”: 1

• Common?

/ SET / W&I PAGE 4 18-2-2014

Author System Min.

length

(lines)

%

Baker (1995) X Windows 30 19

Baker et alii (1998) Process control ? 29

Ducasse et alii (1999) Payroll 10 59

Duplication?

• Beck and Fowler, “Stink Parade of Bad Smells”: 1

• Common?

/ SET / W&I PAGE 5 18-2-2014

Author System Min.

length

(lines)

%

Baker (1995) X Windows 30 19

Baker et alii (1998) Process control ? 29

Ducasse et alii (1999) Payroll 10 59

• Frequent and problematic!

A rose by any other name

• Popular terms

• Software redundancy

− Not every type of redundancy is harmful

• Code cloning = Code duplication

− Clone is identical to the original form

/ SET / W&I PAGE 6 18-2-2014

A rose by any other name

• Popular terms

• Software redundancy

− Not every type of redundancy is harmful

• Code cloning = Code duplication

− Clone is identical to the original form

• Questions

1. When are two fragments to be considered as clones?

2. When is cloning harmful/useful?

3. How do the clones evolve?

4. What can one do about clones: ignore, prevent,

eliminate?

5. How to detect and present the clones?

/ SET / W&I PAGE 7 18-2-2014

Clones?

/ SET / W&I PAGE 8 18-2-2014

1586 {

1587 if(GlobalConfig.DEBUG_LEVEL & DEBUG_WARNINGS) {

1588 printf(__STR_WARNING__MEM_ALLOC_FAILED,

1589 acModuleName, pMsg->ServerName);

1590 }

1591 if(rcv_id != 0) {

1592 pMsg->type = TYPE_MSGUNKNOWN;

1593 MsgReply (rcv_id, 0, pMsg, MSG_LENGTH_ACK);

1594 }

1595 return(MIRPA_ERROR_MEM_ALLOC_FAILED);

1596 }
1173 {

1174 if(GlobalConfig.DEBUG_LEVEL & DEBUG_WARNINGS) {

1175 printf(__STR_WARNING__MEM_ALLOC_FAILED,

1176 acModuleName, pMsg->ServerName);

1177 }

1178 if(rcv_id != 0) {

1179 pMsg->type = TYPE_MSGUNKNOWN;

1180 MsgReply (rcv_id, 0, pMsg, MSG_LENGTH_ACK);

1181 }

1182 return(MIRPA_ERROR_MEM_ALLOC_FAILED);

1183 }

Clones?

/ SET / W&I PAGE 9 18-2-2014

1586 {

1587 if(GlobalConfig.DEBUG_LEVEL & DEBUG_WARNINGS) {

1588 printf(__STR_WARNING__MEM_ALLOC_FAILED,

1589 acModuleName, pMsg->ServerName);

1590 }

1591 if(rcv_id != 0) {

1592 pMsg->type = TYPE_MSGUNKNOWN;

1593 MsgReply (rcv_id, 0, pMsg, MSG_LENGTH_ACK);

1594 }

1595 return(MIRPA_ERROR_MEM_ALLOC_FAILED);

1596 }
1173 {

1174 if(GlobalConfig.DEBUG_LEVEL & DEBUG_WARNINGS) {

1175 printf(__STR_WARNING__MEM_ALLOC_FAILED,

1176 acModuleName, pMsg->ServerName);

1177 }

1178 if(rcv_id != 0) {

1179 pMsg->type = TYPE_MSGUNKNOWN;

1180 MsgReply (rcv_id, 0, pMsg, MSG_LENGTH_ACK);

1181 }

1182 return(MIRPA_ERROR_MEM_ALLOC_FAILED);

1183 }

Clones?

/ SET / W&I PAGE 10 18-2-2014

4278 case TYPE_SHMEM:

4279 if(GlobalConfig.DEBUG_LEVEL & DEBUG_WARNINGS) {

4280 printf("%s: WARNING : SHMEM msg received after

4281 sending ANSWER \"%s\"\n",

4282 acModuleName,

4283 sMsgList.asTxMsg[uiMsgHandle].name);

4284 }

4285 return(MIRPA_ERROR_RX_UNEXPECTED_TYPE);

4270 case TYPE_MSGOK:

4271 if(GlobalConfig.DEBUG_LEVEL & DEBUG_INFO) {

4272 printf(“%s: INFO : MSG_OK received after

4273 sending ANSWER \"%s\"\n",

4279 acModuleName,

4280 sMsgList.asTxMsg[uiMsgHandle].name);

4281 }

4282 return(MIRPA_OK);

Clones?

/ SET / W&I PAGE 11 18-2-2014

4278 case TYPE_SHMEM:

4279 if(GlobalConfig.DEBUG_LEVEL & DEBUG_WARNINGS) {

4280 printf("%s: WARNING : SHMEM msg received after

4281 sending ANSWER \"%s\"\n",

4282 acModuleName,

4283 sMsgList.asTxMsg[uiMsgHandle].name);

4284 }

4285 return(MIRPA_ERROR_RX_UNEXPECTED_TYPE);

4270 case TYPE_MSGOK:

4271 if(GlobalConfig.DEBUG_LEVEL & DEBUG_INFO) {

4272 printf(“%s: INFO : MSG_OK received after

4273 sending ANSWER \"%s\"\n",

4279 acModuleName,

4280 sMsgList.asTxMsg[uiMsgHandle].name);

4281 }

4282 return(MIRPA_OK);

Clones?

/ SET / W&I PAGE 12 18-2-2014

if (! parse()) {

 print_error(stdout , 0) ;

 return FALSE ;

}

fclose(fp) ;

if (debug_flag) {

 printf(" result of parser ") ;

 if (! print_tree(FALSE)) {

 print_error(stdout , 0) ;

 return FALSE ;

 }

}

if (! type_check()) {

 print_error(stdout , 0) ;

 return FALSE ;

}

if (debug_flag) {

 printf(" result of type check") ;

 if (! print_tree(TRUE)) {

 print_error(stdout , 0) ;

 return FALSE ;

 }

}

Clones?

/ SET / W&I PAGE 13 18-2-2014

if (! parse()) {

 print_error(stdout , 0) ;

 return FALSE ;

}

fclose(fp) ;

if (debug_flag) {

 printf(" result of parser ") ;

 if (! print_tree(FALSE)) {

 print_error(stdout , 0) ;

 return FALSE ;

 }

}

if (! type_check()) {

 print_error(stdout , 0) ;

 return FALSE ;

}

if (debug_flag) {

 printf(" result of type check") ;

 if (! print_tree(TRUE)) {

 print_error(stdout , 0) ;

 return FALSE ;

 }

}

Clones?

/ SET / W&I PAGE 14 18-2-2014

/*

By Bob Jenkins, 1996. hashtab.h Public Domain

…

htab *hcreate(/*_ word logsize _*/);

void hdestroy(/*_ htab *t _*/); */

…

/* Copyright (C) 2002 Christopher Clark

<firstname.lastname@cl.cam.ac.uk> */

…

 struct hashtable

*create_hashtable(unsigned int minsize,

 unsigned int (*hashfunction) (void*),

 int (*key_eq_fn) (void*,void*));

…

void

hashtable_destroy(struct hashtable *h, int free_values);

Types are too rough!

/ SET / W&I PAGE 15 18-2-2014

If we want to eliminate the

duplicates we need to

understand the differences

between them!

Method clones

[Balazinska et al. 1999]

Type 1

Type 2

3-9 – one token only

10-12 – aggregated changes

• Interface: 3-6

• Implementation: 7-9

• Interface and implem.: mix

Type 3

Structural classification [Kapser et alii 2003]

• Alternative based on the locations of the clones.

• Intra-file or inter-file cloning

• Type of location:

• function, declaration, macro, hybrid, other (typedef)

• Type of the code sequence

• initialization, finalization, loop, switch

/ SET / W&I PAGE 16 18-2-2014

Q1: Two fragments are clones if…

• Type 1: They are identical up to whitespace/comments

• Type 2: They are structurally identical (rename

variables, types or method calls)

• Type 3: They are similar but statements/expressions

could have been added, removed or modified

• Type 4: They implement the same concepts

• Alternative classifications have been proposed:

• [Balazinska et al. 1999] based on the differences

• [Kapser et al. 2003] based on the location

/ SET / W&I PAGE 17 18-2-2014

Q2: Is cloning bad? Good reasons for cloning

• Improves reliability

• n-version programming, IEC 61508

• Reduces development time

• “Copy and modify” is faster than “generalize”

• Avoids breaking the existing code

• Re-testing effort might be prohibitive

• Clarifies structure

• E.g., disentangles dependencies (but do not overdo!)

• By lack of choice

• Programming language does not provide appropriate

flexibility mechanisms

/ SET / W&I PAGE 18 18-2-2014

However (bad news)…

• More code

• More effort required to comprehend, test and modify

• Higher resource usage

• Interrelated code

• Bug duplication

• Incomplete or inconsistent updates

• Indicative of

• Poor or decaying architecture

• Lack of appropriate knowledge sharing between the

developers

/ SET / W&I PAGE 19 18-2-2014

Even more: duplication and bugs

• [Monden et al. 2002]

• 2000 modules, 1MLOC Cobol

• Most errors in modules with  200 LOC cloned

• Many errors in modules with  50 LOC cloned

• Least errors in modules with 50-100 LOC clones

• No explanation of this phenomenon

• [Chou et al. 2001]

• Linux and Open BSD kernels

• In presence of clones: one error  many errors

/ SET / W&I PAGE 20 18-2-2014

Q3. How do the clones evolve?

/ SET / W&I PAGE 21 18-2-2014

Li et al.

2006

a) Linux

b) Linux

“drivers”

c) Free BSD

d) Free BSD

“sys”

Q3. How do the clones evolve?

/ SET / W&I PAGE 22 18-2-2014

Li et al.

2006

a) Linux

b) Linux

“drivers”

c) Free BSD

d) Free BSD

“sys”

Increase

followed by

stabilization

Q4. What can we do about clones?

• Ignore: the simplest way

• Correct (eliminate):

• Manual: design patterns

• Automated:

− Type 1 or 2 (variable names): function abstraction

− Type 2 (types) or 3: macros, conditional compilation

− The programming language should support it

− Can make the code more complex

− Develop code generators

− Challenges:

− how to invent meaningful names?

− how to determine the appropriate level of

abstraction?

/ SET / W&I PAGE 23 18-2-2014

Q4. What can we do about clones?

• Prevent:

• Check on-the-fly while the code is being edited

• Check during the check-in

• Manage

• Link the clones (automatically or manually)

• Once one of the clones is being modified the user is

notified that other clones might require modification as

well.

/ SET / W&I PAGE 24 18-2-2014

Questions and answers so far…

1. When are two fragments to be considered as

clones?

• Type 1, 2, 3, 4

• More refined classification possible

2. When is cloning harmful/useful?

• reliability, reduced time, structure?, code preservation

• more interrelated code, more bugs

3. How do the clones evolve?

• Increase followed by stabilization

4. What can one do about clones?

• ignore, eliminate, prevent (check on the fly), manage

(link and notify the user upon change)

/ SET / W&I PAGE 25 18-2-2014

Q5. How to detect clones?

• Granularity

• Classes, functions, statements

• Objects of comparison

• Text, identifiers, tokens, AST, control and data

dependencies

• Related techniques

• textual diff, dot plot, data mining, suffix tree, tree and

graph matching, latent semantic indexing, metric vector

comparison, hashing

/ SET / W&I PAGE 26 18-2-2014

Basic challenges in clone detection

• Pairwise comparison of classes, functions, lines

• Naïve way: O(n2)

• Might become prohibitive for large systems

• Type 2: How to abstract from var. names, types, …?

• Rename all variables to XXX?

• We still want to know whether the same variable

appeared in different statements or not?

• Type 3: Clones can be combined into larger clones

• Clones can have “gaps”

• Identity vs. Similarity – similarity measures?

/ SET / W&I PAGE 27 18-2-2014

Basic challenges in clone detection

• Pairwise comparison of classes, functions, lines

• Naïve way: O(n2)

• Might become prohibitive for large systems

• Type 2: How to abstract from var. names, types, …?

• Rename all variables to XXX?

• We still want to know whether the same variable

appeared in different statements or not?

• Type 3: Clones can be combined into larger clones

• Clones can have “gaps”

• Identity vs. Similarity – similarity measures?

/ SET / W&I PAGE 28 18-2-2014

We are going to see how these

challenges are addressed by

different clone detection

approaches.

Clone detection techniques

• Text-based

• [Ducasse et al. 1999, Marcus and Maletic 2001]

• Metrics-based

• [Mayrand et al. 1996]

• Token-based

• [Baker 1995, Kamiya et al. 2002]

• AST-based

• [Baxter 1996]

• AST+Tokens combined [Koschke et al. 2006]

• Program Dependence Graph

• [Krinke 2001]

/ SET / W&I PAGE 29 18-2-2014

Textual comparison

• Programs are just text!

• “Programming language

independent”

• [Ducasse et al, 1999]

• Remove whitespaces and

comments

/ SET / W&I PAGE 30 18-2-2014

This is the house that Jack built.

This is the rat

That ate the malt

That lay in the house that Jack

built.

This is the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack

built.

Textual comparison

• Programs are just text!

• “Programming language

independent”

• [Ducasse et al, 1999]

• Remove whitespaces and

comments

• Calculate hashes for code lines

/ SET / W&I PAGE 31 18-2-2014

ThisisthehousethatJackbuilt.

Thisistherat

Thatatethemalt

ThatlayinthehousethatJackbuilt.

Thisisthecat,

Thatkilledtherat,

Thatatethemalt

ThatlayinthehousethatJackbuilt.

Textual comparison

• Programs are just text!

• “Programming language

independent”

• [Ducasse et al, 1999]

• Remove whitespaces and

comments

• Calculate hashes for code lines

• Partition lines into classes based

on hashes

/ SET / W&I PAGE 32 18-2-2014

ThisisthehousethatJackbuilt.

Thisistherat

Thatatethemalt

ThatlayinthehousethatJackbuilt.

Thisisthecat,

Thatkilledtherat,

Thatatethemalt

ThatlayinthehousethatJackbuilt.

1

1
f

b

b
6

b

f

Textual comparison

• Programs are just text!

• “Programming language

independent”

• [Ducasse et al, 1999]

• Remove whitespaces and

comments

• Calculate hashes for code lines

• Partition lines into classes based

on hashes

• Compare lines in the same

partition

/ SET / W&I PAGE 33 18-2-2014

ThisisthehousethatJackbuilt.

Thisistherat

Thatkilledtherat,

Thisisthecat,

ThatlayinthehousethatJackbuilt.

ThatlayinthehousethatJackbuilt.

Thatatethemalt

Thatatethemalt

1

f

b

6

Textual comparison

• Programs are just text!

• “Programming language

independent”

• [Ducasse et al, 1999]

• Remove whitespaces and

comments

• Calculate hashes for code lines

• Partition lines into classes based

on hashes

• Compare lines in the same

partition

• Visualize using dot plot

/ SET / W&I PAGE 34 18-2-2014

ThisisthehousethatJackbuilt.

Thisistherat

Thatkilledtherat,

Thisisthecat,

ThatlayinthehousethatJackbuilt.

ThatlayinthehousethatJackbuilt.

Thatatethemalt

Thatatethemalt

Textual comparison

• Programs are just text!

• “Programming language

independent”

• [Ducasse et al, 1999]

• Remove whitespaces and

comments

• Calculate hashes for code

lines

• Partition lines into classes

based on hashes

• Compare lines in the same

partition

• Visualize using dot plot

• Recognize larger clones by

dot plot patterns

/ SET / W&I PAGE 35 18-2-2014

●

●

● ●

● ●

●

●

● ●

● ●

Dot plot patterns

/ SET / W&I PAGE 36 18-2-2014

[Ducasse et al., 1999]

Identical

code

clones,

Type 1

Modified

clones

Type 2-3

Code has

been

inserted

or deleted

Type 3

Recurrent

code (break;

preprocess)

Advantages and disadvantages

• Good news

• Language independent

• Can detect Type 1,2,3 clones

• Bad news

• Granularity: line of code, cannot detect duplication

between parts of lines

• Almost no distinction between “important” and “not

important” code parts

− Variable names

− Syntactic sugar: if (a==0) {b}

/ SET / W&I PAGE 37 18-2-2014

Alternative textual comparison approach

• [Marcus and Maletic 2001]: Clones discuss the same

concepts

• Higher-level clones: Type 4!

• Identifier names should be the same!

− If/while/… can be neglected

• Latent semantic analysis (Information retrieval)

• Mosaic 2.7, C, 269 files

/ SET / W&I PAGE 38 18-2-2014

Linked lists:

list.c, list.h,

listP.h

Two additional

implementations:

hotlist and HTList

Two more!

Extending the text-based approach

• Program structure instead of text

• Metrics instead of hash-functions [Mayrand et al. 1996]

• Name: identical or not

• Layout (5 metrics):

− avg variable name length, num of blank lines…

• Expression (5 metrics):

− num of calls, num of executable statements, …

• Control flow (11 metrics):

− num of loops, num of decisions, …

• Many metrics  lower chance of occasional collisions

/ SET / W&I PAGE 39 18-2-2014

Metrics-based clone detection

• = all metrics are equal

• ~ some metrics not equal but all differences are

within the allowed range (per metrics)

• != outside the range

• X not considered

 / SET / W&I PAGE 40 18-2-2014

Type 1

~Type 2

~Type 3

Metrics-based approaches: Discussion

• Problems:

• Metrics are not independent (num uni calls  num calls)

• “Allowed range” is arbitrarily chosen

• Precision?

− Code1 = Code2  Metrics(Code1) = Metrics(Code2)

− Code1 ~ Code2  Metrics(Code1) ~ Metrics(Code2)

− Metrics(Code1) = Metrics(Code2)  Code1 = Code2 ?

− Metrics(Code1) ~ Metrics(Code2)  Code1 ~ Code2???

• Precision can be improved if metrics are combined with

textual comparison

− Still O(n2)

− But n is small for the “good choice” of metrics

/ SET / W&I PAGE 41 18-2-2014

More fine-grained approaches: Tokens!

• [Baker 1995]

• We want to recognize x=x+y and u=u+v as clones

/ SET / W&I PAGE 42 18-2-2014

• Identify tokens in the code

• Ignore the keywords.

• Split structure and

parameters

j = length(list);

if (j < 3) { x = x + y; }

More fine-grained approaches: Tokens!

• [Baker 1995]

• We want to recognize x=x+y and u=u+v as clones

/ SET / W&I PAGE 43 18-2-2014

• Identify tokens in the code

• Ignore the keywords.

• Split structure and

parameters

• For every structure invent

an identifier

 = ()

if (<) { = + }

j length list

j 3 x x y

α

β

More fine-grained approaches: Tokens!

• [Baker 1995]

• We want to recognize x=x+y and u=u+v as clones

/ SET / W&I PAGE 44 18-2-2014

• Identify tokens in the code

• Ignore the keywords.

• Split structure and

parameters

• For every structure invent

an identifier

• Drop the structures and

merge the identifiers with

the parameters: P-string

• Concatenate the P-strings

 = ()

if (<) { = + }

j length list

j 3 x x y

α

β

More fine-grained approaches: Tokens!

• [Baker 1995]

• We want to recognize x=x+y and u=u+v as clones

/ SET / W&I PAGE 45 18-2-2014

• Representation of the

program so far:

• Encode the parameters:

• First time encountered: 0

• Next time: distance from

the previous occurrence

(structure identifiers

included)

α j length list β j 3 x x y

α 0 0 0 β 4 0 0 1 0

More fine-grained approaches: Tokens!

• [Baker 1995]

/ SET / W&I PAGE 46 18-2-2014

• Clones – repeated fragments

• Construct a suffix tree

• Represents all suffixes

• Can be done in O(n)

• ~ Every branch represents

a clone

α y β y α x α x

α 0 β 2 α 0 α 2 $

y β y α x α x

0 β 2 α 0 α 2 $

β y α x α x

β 0 α 0 α 2 $

0 α 0 α 2 $

α 0 α 2 $

0 α 2 $

α 0 $

0 $

$

More fine-grained approaches: Tokens!

• [Baker 1995]

/ SET / W&I PAGE 47 18-2-2014

α 0 β 2 α 0 α 2 $

0 β 2 α 0 α 2 $

β 0 α 0 α 2 $

0 α 0 α 2 $

α 0 α 2 $

0 α 2 $

α 0 $

0 $

$

$

$

β 0 α 0 α 2 $

α 0
$

β 2 α 0 α 2 $

α 0 α 2 $

0

α

β 2 α 0 α 2 $

0 α 2 $
2 $

Every branch

up to a leaf

represents a

clone

Size: count

the symbols

on the

branches

So far only Type 1 and Type 2 clones

• Type 3 clones – combination of Type 1/2 clones

/ SET / W&I PAGE 48 18-2-2014

A

B

A

B

• Type 3 clones can be recognized if

• d1 = d2

• max(d1, d2)  threshold

d1 d2

Baker’s approach

• Very fast:

• 1.1 MLOC

• minimal clone size: 30 LOC

• 7 minutes on SGI IRIX 4.1, 40MHz, 256 MB

• Close to language independence

• Depends solely on the tokenizer

• Can be improved by code normalization

• See next slide

• Can identify duplication across function borders

• Might require pre/post-processing

/ SET / W&I PAGE 49 18-2-2014

Code normalization (Kamiya et al. 2002)

/ SET / W&I PAGE 50 18-2-2014

x = y + x x = x+ y Sort the operands of

commutative operations

lexicographically

if (a == 1) x=1; if (a == 1) {

 x=1;

}

Add { } and newlines

static global

variables in C

Drop “static”

• Many ways to express the same intention

 / LaQuSo / Mathematics & Computer Science PAGE 51 18-2-2014

Case study: Expert system of an insurance

company [Kamiya – CCFinder/Gemini]

• Diacritics

elimination

• Product line like

variants

AST-based clone detection [Baxter 1996]

• If we have a tokenizer we might also have a parser!

• Applicability: the program should be parseable

/ SET / W&I PAGE 52 18-2-2014

Code AST AST with identified

clones

• Compare every subtree with every other subtree?

• For an AST of n nodes: O(n3)

• Similarly to text: Partitioning with a hash function

• Works for Type 1 clones

AST-based detection

• Type 2

• Either take a bad hash function

ignoring small subtrees, e.g., names

• Or replace identity by similarity

• Type 3

• Sequences of subtrees

• Go from Type 2-cloned subtrees to

their parents

• Rather precise but still slow

/ SET / W&I PAGE 53 18-2-2014

 
 

   2121

21
21

,,*2

,*2
,

TTDifferenceTTSame

TTSame
TTSimilarity




Recapitulation from the last week

• [Baker 1995]

• Token-based

• Very fast:

− 1.1 MLOC, minimal clone size: 30 LOC

− 7 minutes on SGI IRIX 4.1, 40MHz, 256 MB

• [Baxter 1996]

• AST-based

• Precise but slow

• Idea: Combine the two! [Koschke et al. 2006]

• In fact they do not use [Baker 1995] but a different

token-based approach
/ SET / W&I PAGE 54 18-2-2014

AST + Tokens [Koschke et al. 2006]

/ SET / W&I PAGE 55 18-2-2014

Code AST

Serialized AST

_ _ _ _

_ _ _ __

 _ __ _ _

_ __ ___

Token clones

if q then z = k; else bar; end if;

if

id call
=

cond then
else

id id id

lhs rhs target

if id = id id call id

Preorder

Incomplete syntactical unit:

• Undesirable as a clone

• Identification?

Solution

• Record the number of descendants

• Complete unit: node with all its

descendants

6 0 0 0 0 2 1

Result: AST + Tokens is

reasonably fast

(faster than pure AST)

Next step

• AST is a tree is a graph

• There are also other graph representations

• Object Flow Graph (weeks 3 and 4)

• UML class/package/… diagrams

• Program Dependence Graph

• These representations do not depend on textual order

• { x = 5; y = 7; } vs. { y = 7; x = 5; }

/ SET / W&I PAGE 56 18-2-2014

[Krinke 2001] PDG based

• Vertices:

• entry points, in- and

output parameters

• assignments, control

statements, function calls

• variables, operators

• Edges:

• immediate dependencies

− target has to be

evaluated before the

source

/ SET / W&I PAGE 57 18-2-2014

y = b + c;

x = y + z;

assign

ref.

b

ref.

c

operator

+

ref.

y

assign

ref.

x

compound

ref.

y

ref.

z

operator

+

[Krinke 2001] PDG based

• Vertices:

• entry points, in- and output

parameters

• assignments, control

statements, function calls

• variables, operators

• Edges:

• immediate dependencies

• value dependencies

• reference dependencies

• data dependencies

• control dependencies

− Not in this example

 / SET / W&I PAGE 58 18-2-2014

y = b + c;

x = y + z;

assign

ref.

b

ref.

c

operator

+

ref.

y

assign

ref.

x

compound

ref.

y

ref.

z

operator

+

Identification of similar subgraphs – Theory

/ SET / W&I PAGE 59 18-2-2014

• Start with 1 and 10

• Partition the incident

edges based on their

labels

• Select classes present

in both graphs

• Add the target vertices

to the set of reached

vertices

• Repeat the process

• “Maximal similar

subgraphs”

Identification of similar subgraphs – Practice

• Sorts of edges are labels

• We also need to compare

labels of vertices

• We should stop after k

iterations

• Higher k  higher recall

• Higher k  higher

execution time

• Experiment: k = 20

/ SET / W&I PAGE 60 18-2-2014

assign

ref.

b

ref.

c

operator

+

ref.

y

assign

ref.

x

compound

ref.

y

ref.

z

operator

+

Choosing your tools: Precision / Recall

/ SET / W&I PAGE 61 18-2-2014

• Quality depends on scenario [Type 1, Type 2, Type 3]

• [Roy et al. 2009]: 6 is maximal grade, 0 – minimal

Tool Technique Category S1 S2 S3

Duploc Ducasse Text 4 0 2.8

Marcus and Maletic 2.6 1.8 1.6

Dup Baker Token 4 2.8 0

CCFinder Kamiya 5 3.8 0.8

CloneDr Baxter AST 6 4.3 3.8

cpdetector Koschke 6 3.8 0

Mayrand Metrics 3.3 4.8 3.4

Duplix Krinke Graph 5 4.8 4

More tools: ConQAT, DECKARD, Dude, Simian

Which technique/tool is the best one?

• Quality

• Precision

• Recall

• Usage

• Availability

• Dependence on a

platform

• Dependence on an

external component

(lexer, tokenizer, …)

• Input/output format

/ SET / W&I PAGE 62 18-2-2014

• Programming language

• Clones

• Granularity

• Types

• Pairs vs. groups

• Technique

• Normalization

• Storage

• Worst-case complexity

• Pre-/postprocessing

• Validation

• Extra: metrics

Clone detection techniques: Summary

• Many different techniques

• Text, metrics, tokens, AST, program dependence graph,

combinations

• Techniques are often supported by tools

• Precision depends on what kind of clones we need:

• Type 1, Type 2, Type 3, Type 4

• Extra conditions

• Programming language, presence of external tools,

platforms, extra’s (metrics), normalization, ...

/ SET / W&I PAGE 63 18-2-2014

Assignment 3

• Individual

• Deadline: March 17

• NB: replication study!

/ SET / W&I PAGE 64 18-2-2014

