2IS55 Software Evolution

Repository Mining: Social Aspects

Alexander Serebrenik

Assignment

- Assignment 2:
- Deadline: Saturday
- Assignment 3:
- Published on Peach
- Deadline: March 17

Sources

Software Evolution

$$
\begin{aligned}
& \mathrm{Ch} . \\
& 3,4
\end{aligned}
$$

Recap: Version control systems

- Centralized vs. distributed
- File versioning (CVS) vs. product versioning
- Record at least
- File name, file/product version, time stamp, committer
- Commit message
- What can we learn from this?
- Humans

TODAY!

- Files
- Bugs

Users in mail archives, version control systems, etc.

- Multiple aliases
- a.serebrenik@tue.nl
- aserebre@win.tue.nl
- aserebrenik@yahoo.com
- aserebrenik@gmail.com
- alex@alum.cs.huji.ac.il

"On the Internet, nobody knows you're a dog."
- A.E.Serebrenik@cwi.nl
- Can be worse:
- Ken Coar a.k.a. "Rodent of unusual size"
- Aaron Brown a.k.a. Mrhappypants
- KoffieTisch

What we want and what we need

- We would like to
- Evaluate expertise
- Evaluate contribution / involvement
- Understand communication patterns
- Study structure of the community (gender, country, education level...)
- We need to merge the aliases

Identity merging

- Input:
- List of name, email address pairs
- Algorithms:
- Simple: identical names, e-mail prefixes or user names
- Bird: normalize names and cluster based on the Levenshtein distance [Bird,Gourley,Devanbu,Gertz, Swaminathan 2006]
- LSA: combine the Levenshtein distance with latentsemantic indexing [Kouters, Vasilescu, Serebrenik, van den Brand 2012]

Bird's algorithm (1)

- Normalize names:
- Remove punctuation and suffixes ("jr."), reduce spaces and drop generic terms ("admin", "support")
- Separate first name and last name

S	a	t	u	r	d	a	y
S	a	t	u	n	d	a	y
	S	a	u	n	d	a	y
		S	u	n	d	a	y

3 similarity measures

- Similarity of names
- Levenshtein distance
- Number of characters added, removed or modified
- Names are similar if
- either the full names are similar
- or both the first and last names are similar

Bird's algorithm (2)

- Similarity of names and mails
- The prefix (before @)
- Contains the first and the last names
- Robles: Contains the first or the last name and the first letter of the other one
- Similarity of mails
- Levenshtein distance on prefixes
- Cumulative similarity maximal of the three
- Clustering based on the cumulative similarity
- Large clusters
- Human inspection and post-processing
- It is easier for humans to split large clusters than to combine small ones

Still an heuristics!

- Words X (n characters), Y (m characters)
- Data structure C[0..n,0..m]
- Init: C[i,0]=i, C[0,j]=j for any i and j

Similar to the

\mathbf{C}		\mathbf{S}	\mathbf{a}	\mathbf{t}	\mathbf{u}	\mathbf{r}	\mathbf{d}	\mathbf{a}	\mathbf{y}
	0	1	2	3	4	5	6	7	8
\mathbf{S}	1								
\mathbf{u}	2								
\mathbf{n}	3								
\mathbf{d}	4								
\mathbf{a}	5								
\mathbf{y}	6								

How to calculate the Levenshtein distance?

- For every i and every j
- If X[i]=Y[j] then C[i,j]=C[i-1,j-1]
- Else $C[i, j]=m i n(C[i-1, j]+1, ~ / / ~ d e l e t i o n ~$
$C[i, j-1]+1, \quad / /$ insertion
$\mathrm{C}[\mathrm{i}-1, \mathrm{j}-1]+1$) // modification

\mathbf{C}		\mathbf{S}	\mathbf{a}	\mathbf{t}	\mathbf{u}	\mathbf{r}	\mathbf{d}	\mathbf{a}	\mathbf{y}
	0	1	2	3	4	5	6	7	8
\mathbf{S}	1	0	1	2	3	4	5	6	7
\mathbf{u}	2	1	1	2	2	3	4	5	6
\mathbf{n}	3	2	2	2	3	3	4	5	6
\mathbf{d}	4	3	3	3	3	4	3	4	5
\mathbf{a}	5	4	3	4	4	4	4	3	4
\mathbf{y}	6	5	4	4	5	5	5	4	3

The
Levenshtein distance!

Algorithm of Kouters et al.

Algorithm of Kouters et al.

<John Doe,
<John Joseph Doe,

johnd@domainA> johnd@domainA>
johnd@domainA: \{john, johnd, joseph, doe\}

Document-term matrix

john
johnd
joseph
jdoe
doe

1
1
1
3/4	
1

max similarity(jdoe,
\{john, johnd, joseph, doe\})
$=$ similarity (jdoe, doe)
= 1 - Levenshtein(jdoe, doe) /
max(length(jdoe), length(doe))
$=1-1 / 4=3 / 4$

Latent Semantic Analysis

<John Smith, john@domainA>
<John Brown, john@domainB>

Inverse document frequency

Singular value decomposition

Rank (noise) reduction

Cosine between documents

Merge similar documents

Empirical evaluation: GNOME

Identity merging: Summary

- Contributors use different aliases
- In the same repository of across repositories
- Merging is needed for
- Contributions, expertise, effort, social structure
- Different merging algorithms
- Simple, Bird's, LSA

More research is needed...

- Different platforms \Rightarrow different kinds of noise \Rightarrow different techniques might be needed
- DBLP-like idea: people tend to work with the same partners on similar topics
- BUT... what about privacy?

What can we learn about the humans?

- Count commits per committer
- Look at how the counts evolve in time
Wr Statistics - G:VLibraries\TortoiseSVNITortoiseSVN-trunk
File
Graph type:
Authors case sensitive
Sort by commit counts by author
\# authors shown individually:
- One major committer?

More refined way of counting: Per File

- What developer worked on a file
- Count pc(Alice): the \% of commits on F made by Alice
- Visualization (Fractal Figure)
- pc is a relative area of a rectangle

(a) One developer

(b) Few balanced
developers

(c) One major developer

(d) Many balanced developers
- Measure of "difference"

$$
1-\sum_{c \in \mathrm{committers}} p c^{2}(c)
$$

- How does this measure behave for (a), (b), (c) and (d)?

Fractal Figures

- pc is a relative area
- Blue vs. red, green, ...
- Many options for absolute size
- Number of changes
- Size of an artefact (file, directory)
- Number of bugs
 many bugs!
One major developer and

[D'Ambros, Lanza, Gall 2005]
- Easy to determine if the code is available
- Can be estimated if only the log is available [Girba Kuhn Seeberger Ducasse 05]

Working file: insert-msg.tcl

≥ 8 lines before
≥ 30 lines after

revision 1.2
date: 1999/03/05 07:23:11; author: philg; state: Exp; lines: +30-8 changed the bboard to do generic file uploading (and fixed Ben's broken image uploading stuff)

$$
\begin{gathered}
s_{f_{0}}^{\prime}:=0 \\
s_{f_{n}}^{\prime}:=s_{f_{n-1}}^{\prime}+a_{f_{n-1}}-r_{f_{n}} \\
s_{f_{0}}:=\left|\min \left\{s_{x}^{\prime}\right\}\right| \\
s_{f_{n}}:=s_{f_{n-1}}+a_{f_{n}}-r_{f_{n}}
\end{gathered}
$$

However we still have only a static view...

- How does the picture evolve in time?

- Solutions:
- Graph of fractal values
- Ownership maps

Ownership maps [Gîrba Kuhn Seeberger Ducasse 05]

- Owner of...
- line = last committer of this line
- file = owns the major part of the lines
- requires calculation of the file size
- can be estimated from the log

- Colour = committer
- Circle = commit
- Line = owner
- Timeline
- Size $=$ proportion of change

Development patterns

- Monologue
- Dialogue
- Teamwork (quick succession)

- Silence
- Takeover
- Epilogue (Takeover + Silence)
- Familiarization

Development patterns (continued)

- Expansion
- Cleaning
- Bug fix
- Edit
- Epilogue (Edit + Silence)

Experiment: Outsight

Commercial application, 500 Java classes, 500 JSP 8 three-months periods
 - How many developers are there?

- If you had questions about the system, whom would you ask?

Subproject (Myrmidon) that was intended as a successor for Ant.

Pattern common to Open Source

Subprojects

- Cease
- Split
- Integrate in the main line

How do people work? [Poncin et al. 2011]

Time

Very few developers do most of the work

Legend:

- yellow:
- white:
- red:
- blue:
- green:

Developers

- GNOME
- 1316 projects
- NB: logarithmic scale on the x-axis

AW: number of changes of an author

"Very few developers do most of the work"

- "Pareto principle" 20/80
- Quite common for software metrics
- More precise descriptions of the distribution are possible
- Even for LOC no agreement on the precise distribution

Contribution of 30% most prolific developers in different GNOME projects [Kalliamvakou, Gousios, Spinellis, Pouloudi, 2009]

FRASR: Who does what?

All developers are equal, but some are more equal than others [Bird et al. 2006]

- Mail archive vs. version control
- Without commit rights: "non-developers"
- With commit rights: some commit more often

Mail communication (arrow = at least 150 mails send)

Conclusion 1: Developers are more active than non-developers

Conclusion 2: Correlation between the number of commits and the "centrality" of the developer

More refined developers classification is possible! [Wouter Poncin]

What kind of roles do the developers play?

Onion in aMSN

Nakakoji et al. as a case of

Core developers (examples)

Bug reporter

S.E.
Question

What can we learn about developers?

- Development effort distribution and evolution

- Can be combined with other information to distinguish different kinds of developers

Not only developers

"Since 1997, the GNOME project has grown from a handful of developers to a contributor base of coders, documenters, translators, interface designers, accessibility specialists, artists and testers numbering in the thousands." (Waugh 2007)

Localization and coding

Occasional contributors (AW < med)

Frequent

 contributors (AW >= med)

Coding and localization in GNOME

Blue cross: code. Red square: 110 n . Symbol size: RATW(a,t)

Mythbusters

- Once coder, always coder...
- True for coding and localization
- False for, e.g., database development
- Translation done in the target-language country is better!
- GNOME, French
- In-country:
- more translation mistakes
- lower impact on understanding

Women and StackOverflow

http://meta.stackoverflow.com/questions/30411/

- Ikessler: I know a lot of female programmers, and I know there are a good number of them out there. But I don't recall ever having one of my questions answered by, nor have I ever answered a question by a female programmer here at Stack Overflow.
- Sara Chipps: there is NO appeal for me in answering questions.
- Ether: A huge number of SO users don't use their real names, so you actually have no idea.
- Heather:
- Sexism still exists.
- Women are still perceived as lightweights.

Women, men, StackOverflow and more

- Our questions:
- Did women really participate in SO less than men?
- random sample
- Is this SO specific?
- Compare with Drupal and Wordpress mailing lists
- But first: what is your gender?

What is your gender?

SaraChipps less info

4,168
stats
reputation
$-5 \cdot 35 \cdot 83$

What is your gender?

SaraChipps
 less info

4,168
reputation
$-5 \cdot 35 \cdot 83$

Andrea Ambu less inf

Andrea Smith less

What is your gender?

SaraChipps

less info

4,168
reputation
$-5 \cdot 35 \cdot 83$
stats

Andrea Ambu less info

bio website location age andreaa.com
visits
member for seen
profile views
etate
1,232

Andrea Smith

What is your gender?

SaraChipps

less info

4,168
reputation
$-5 \cdot 35 \cdot 83$

Andrea Ambu less info

bio website location age
visits
member for seen profile views
andreaa.com

1,232

5 years, 1 months
Oct 20 at 11:01

Name + Location = Gender

Heuristics:
title + first h1
<title>Ben Kamens</title>
<h1>We\&\#8217;re willing to be embarrassed about what we haven\&\#8217;t done\&\#8230;</h1>

Ben Kamens

is lead dev at Khan Academy, and has been a proud part of Fog Creek
Ben Kamens We're willing to be embarrassed about what we haven't done...

Stanford Named

Entity Tagger
<PERSON>Ben Kamens</PERSON> We're willing to be embarrassed

Quality of gender resolution: Survey

Self- identification	As inferred			Total
	M	F	$?$	
M	60	3	43	106
F	2	5	4	11

+ avatars,
other social
media sites
(manually)

Self- identification	As inferred			Total
	M	F	$?$	
M	90	3	13	106
F	2	9	0	11

Istack

 overflow
sample

WordPress
3043
282
286

328
135

Istack overflow

sample

WORDPRESS

2296

291
1557
3043
282
286
2879
328
135

Drupal ${ }^{-}$
7-10\% women as opposed to 1-5\% for Open Source and up to 28% for proprietary

2296

291
1557

3043
282
286
2879
328
135

Drupal ${ }^{-}$

sample

WordPress

2296

$3043 \quad 282$
2879
328
286
135

Drupal

It is easy to remain anonymous on SO and participants use this opportunity (37.5\%)

Estack overflow

sample WordPress

No significant differences in

\#questions, \#answers, length of engagement

Affects eng't for "design tech." lists

sample

WordPress

Drupal

Ask more questions No diff in \#answers

Why?

- [Gneezy, Niederle, Rustichini 2003]: women are less effective in mixed-gender competitive environments
- [Niederle, Vesterlund 2007]: women shy away from competition and men embrace it
\Rightarrow To retain women we need different gamification techniques

Sounds interesting? Talk to me! Capita Selecta opportunities

Conclusions

- Software repositories
- Mail archives, version control, StackOverflow...
- Technical challenge: identity merging
- We can discover information about:
- Roles (a la Nakakoji)
- Activities (localization, coding, ...)
- Gender
- Communication patterns
- But also: age, location, culture, psychological type...

