21S55 Software Evolution -

What can we learn
from version
control systems?

Alexander Serebrenik

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Assignment

Assignment 1:
« Grades: 331422
- Too big, too boring, report writing is a waste of time
Assignment 2:

e Grades: 3122

— reverse engineering is fun, Rascal as a really working DSL,
Incremental approach

— Rascal documentation, OFG documentation, translation from the
OFG theory to code

Assignment 3:
« Deadline: Monday, March 17

 Main challenges
— replication precision
— scalability: at least 50 versions

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 1 University of Technology

sources

Tom Mens
Serge Demeyer (Eds.)

N

| |‘.H ‘H“}: ‘w“[I
T s IR Effective Mining
of

I SOftwa e Software Repositories

Evoluti
University of Lugano University of Chile
Switzerland Chile
|

@ Springer

Marco D'’Ambros Romain Robbes
REVEAL group PLEIAD @ DCC

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 2 University of Technology

Recap: Version control systems

Centralized vs. distributed
File versioning (CVS) vs. product versioning

Record at least
* File name, file/product version, time stamp, committer
« Commit message

What can we learn from this?
« Humans

* Files

 Bugs

TODAY !

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 3 Un sty of Technology

What can we learn about files?

« Change coupling - two artifacts change together [Ball
et al. 1997]

« Based on common commits
 Subversion — easy, CVS —time window
— What about longer transactions?
— Looks like EROSE (do you still remember?)

Techni h Un
. _ E dh
/ Mathematics and Computer Science 9-3-2014 PAGE 4 sty of Technology

What can we learn about files?

« Change coupling - two artifacts change together [Ball
et al. 1997]

« Based on common commits
 Subversion — easy, CVS —time window
— What about longer transactions?
— Looks like EROSE (do you still remember?)

 Why change coupling? [D’Ambros, Lanza, Robbes 2009]

* Number of coupled classes (having at least n common
commits) correlates with the number of bugs

— Eclipse, 3<n <£20, Spearman p =~ 0.8
— Mylyn and ArgoUML: Spearman p > 0.5

« Correlates more with the number of bugs than popular
metrics, but less than the number of changes (churn)

Techni h Un
. _ e Ei dh
/ Mathematics and Computer Science 9-3-2014 PAGES Un sty of Technology

Weapon of choice: Evolution Radar

* Focuses on one module (component)

* Dependencies between the module and
other modules (groups of files)

 radius d: inverse of change coupling
with the closest file of the module in focus

- angle 0: certain ordering (alphabetical)
» color and size — arbitrary metrics

Technische Universiteit
}) e Eindhoven
/ Mathematics and Computer Science 9-3-2014 PAGE 6 University of Technology

Evolution Radar

* Moving through Time
« Taking entire history into account can be misleading

Current version

Year 1 Year 2 Year 3 4

file1 ® *—00 ® ® ®
file2 ® ¢ @ ® ® -

CC (entire history): 9/17 —s= Strong CC

CC: 717 , CC: 0/4
Very Strong CC CC: 2/6 No CC!

 Radar is time-dependent: entire history vs. time window

Time

» Tracking
« Keep track of a file when Moving through Time

Technische Universiteit
.) e Eindhoven
/ Mathematics and Computer Science 9-3-2014 PAGE 7 University of Technology

Experiment: ArgoUML

* Three main components. According to the documentation
 Explorer and Diagram depend on Model
 Explorer and Diagram do not depend on each other

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 8 Un sty of Technology

Experiment: ArgoUML

* Three main components. According to the documentation
 Explorer and Diagram depend on Model
 Explorer and Diagram do not depend\on each other

« Color: change
coupling
« Size: Total number of

lines modified during
the period

* Focus on Explorer

® g FigAssaciation. java ' ‘
L) g

Diagram

Model

/ SET / W&l 9-3-2014 PAGE 9 J une — Decem ber 2005 nology

Experiment: ArgoUML

* Three main components. According to the documentation
 Explorer and Diagram depend on Model
 Explorer and Diagram do not depend\on each other

« Color: change
coupling
« Size: Total number of

lines modified during
the period

* Focus on Explorer

® g FigAssaciation. java ' ‘
L) g

Diagram

Conclusion: Explorer
strongly depends on

Di agram Model : rsitei
I SET I W&l 9-3-2014 PAGE 10 J u n e — Decem ber 2005 nology

ArgoUML

* Fig*.Java moved closer to the center: CC increased!
- Generator.java is an outlier

o @ w

FigiasociationEnd java

]
Fighasoclatlen, java

L
e .

'. \.

FlgAssaaiationE nd. java ‘
FighctionState java o ® @ FigAssaciation java

‘ﬂﬁ — W Moduleloader
.]
Gpnaratorlava, java CodoeSanarator

Internatiznalization

fhationState java

\NSUMLMNaIFm&da.lwa
L

&

Dlagram

Application

Model

January — June 2005 June — December 2005
/ Mathematics and Computer Science

9-3-2014 PAGE 11

Technische Universiteit
Eindhoven

University of Technology

Evolution Radar: example (cnt’d)

- Why did the CC of File*.java o e “-:

Increase? / .""-.‘
- Make a new “module in focus” £ o .
from these three files and check o ST
which file of Explorer is closest ‘v\ o 7

Techni h Un
. _ e Ei dh
/ Mathematics and Computer Science 9-3-2014 PAGE 12 Un sty of Technology

Evolution Radar: example (cnt’d)

- Why did the CC of File*java P "‘: .
Increase? / Y

- Make a new “module in focus” £ o .
from these three files and check o
which file of Explorer is closest ‘v\ o 7

 Problematic file
was Copied and Jun-Dec 2004 Jan-Jun 2004 Jun-Dec 2005
removed S

NSUMLModelFaca)

/ Mathematics and Compu

Alternative visualization: EvoLens

i

actual focal poit Jiigion \

- Focus: gray rectangle

StartDate 04-2003 {} { = EndDate 092004

sliding time window f_j:::
Theeshold 15 r:.(?—

« 2 hierarchy levels: classes |l les [e || smocuron || v
are “flattened” to

submodules = G,

- Edges: strength of ©"
change coupling e ®
= frad
B

* Colours: growth speed

- [Ratzinger, Fischer, Gall, 2005]

StandAloneDisplay

[SET /I W&l 9-3-2014 PAGE 14 . E
(| »

Dependencies + changes [Beyer Hassan 2006]

- “Dependency graph in time” '!|."

* Distance between the spots — "}.'- X 5, i N L N
o & > @ '?’m:ff .-

change coupling o 2

* Colours — subsystems

« Gray and Arrow: previous version
of...

* Size — #nodes the node depends
upon

* Red ring = “new size” — “old size”
 O,iftheresult<O

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 15 University of Technology

Storyboard: POSTGRESQL

2001-07-01 to 2001-10-01 2002-10-01 to 2003-01-01 2003-10-01 to 2004-01-01 2005-04-01 to 2005-07-01

 What can we learn from this storyboard?

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 16 University of Technology

Storyboard: POSTGRESQL

2001-07-01 to 2001-10-01 2002-10-01 to 2003-01-01 2003-10-01 to 2004-01-01 2005-04-01 to 2005-07-01

 What can we learn from this storyboard?
 Red (Executor) and Blue (Optimizer) are moving closer
— Likely to become more dependent on each other
* Yellow (Query Evaluation Engine) moves a lot

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 17 University of Technology

Learning about files: summary

« Change coupling - two artifacts change together
« Correlates with the number of bugs

« Used to analyse relations between the files
— Evolution Radar, EvolLens

 Can be used in combination with dependencies
— Evolution Storyboards

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 18 Un sty of Technology

Learning about bugs...

 How is the bug repository used?
 When are the bugs introduced?
- Can we predict bugs?

* Who should fix the bugs?

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 19 Un sty of Technology

How is Bugzilla used?

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state (UNCONFIRMED
Bug is reopened,
Bug confirmed or was never confirmed
receives enough votes

Developer takes

NEW

Doy s “Theory”:

v . .
Bugzilla Guide
ASSIGNED
Development is
finished with bug
A 4
RESOLVED
QA not satisfied QA verifies
i solution worked

Technische Universiteit
/ Department of Mathematics and Computer e Eindhoven
Science 9-3-2014 PAGE 20 University of Technology

Practice (GCC)

Poncin, Serebrenik, vd Brand 2011

Ticket-created

COMPLETED
1,000
Ticket-new Ticket-waiting
COMPLETED COMPLETED
0,287 0,171
Ticket-assigned
COMPLETED

Ticket-closed
COMPLETED
0,228 0,439

Ticket-resolvad(worksformea) -
COMPLETED
0,260

Ticket-resolved (fixed)
COMPLETED
0,618

+

[Ticket-resolved(later)

Ticket-verified
COMPLETED
0,310

COMPLETED
0,602

Ticket-reopened
COMPLETED
0,050

Ticket-suspended
COMPLETED
0,125

[
—

Ticket- resﬂlved(wrﬂflx)
COMPLETED
0,351

Ticket-resolved(invalid)
COMPLETED
0,303

Ticket-unconfirmed

COMPLETED

COMPLETE

[D Process model mined
T from GCC Bugzilla

/ Department of Mathematics and Computer

Science 9-3-2014 PAGE 21 (42373 bu 0 S) T U / @ Eindnoven ="

University of Technology

Practice (GCC)

Poncin, Serebrenik, vd Brand 2011

Ticket-created
COMPLETED
1,000

Ticket-new
COMPLETED
0,287

Ticket-waiting
COMPLETED
0,171

Ticket-closed
COMPLETED
0.439

Ticketassigned
COMPLETED
0.z2z28

Ticket-resolved(worksforme)
COMPLETED
0,260

ST-Tes Ol wed (Txe:
COMPLETED

Ticket-verified Ticket-resolved (later)
COMPLETED COMPLETED
0,310 o =

Ticket-reopened
COMPLETED
0,050

Ticket-suspended Ticket-resolved(invalid)
COMPLETED COMPLETED
0,125

Ticket-resolved (wontfix)
COMPLETED
O

-

Ticket-unconfirmed
COMPLETED
0,087

e Process model mined
— from GCC Bugzilla
/ Department of Mathematics and Computer 932014 PAGE 22 (42373 b u g S) T U / e ﬁh'rf'.f,:i":?f 0;;;;::;;

Science

Practice (GCC)

Poncin, Serebrenik, vd Brand 2011

Ticket-created
COMPLETED
1,000

Ticket-new
COMPLETED
0,287

Ticketassigned
COMPLETED
0.z2z28

Ticket-closed
COMPLETED
0.439

Ticket-resolved(worksforme)

COMPLETED
0,260

ST-Tes Ol wed (Txe:
COMPLETED

Ticket-verified Ticket-resolved (later)
COMPLETED COMPLETED
0,310 o =

Ticket-reopened
COMPLETED
0,050

Ticket-suspended Ticket-resolved(invalid)
COMPLETED COMPLETED
0,125

Ticket-resolved (wontfix)
COMPLETED
O

-

Ticket-unconfirmed
COMPLETED
0,087

e] Process model mined
e from GCC Bugzilla
/ Department of Mathematics and Computer 092014 PAGE 23 (42373 b u g S) T U /e Eindhoven

A University of Technolo
Science y gy

Practice (GCC)

Poncin, Serebrenik, vd Brand 2011

icket-created
OMPLETED
1,000

Ticket-new
COMPLETED
0,287

Ticketassigned
COMPLETED
0.z2z28

Ticket-closed
COMPLETED
0.439

Ticket-resolved(worksforme)
COMPLETED
0,260

ST-Tes Ol wed (Txe:
COMPLETED

Ticket-verified Ticket-resolved (later)
COMPLETED COMPLETED
0,310 o =

Ticket-reopened
COMPLETED
0,050

Ticket-suspended Ticket-resolved(invalid)
COMPLETED COMPLETED
0,125

Ticket-resolved (wontfix)
COMPLETED
O

-

Ticket-unconfirmed
COMPLETED
0,087

e] Process model mined
e from GCC Bugzilla
/ Department of Mathematics and Computer 092014 PAGE 24 (42373 b u g S) T U /e Eindhoven

A University of Technolo
Science y gy

Bugs and Source code

Bug 22554 - [4.1 Regression] pb_assoc header build and install overflows exec

Status: RESOLVED FIXED Rep 0] rted Reported: 2005-07-19 04:19 UTC by David Edelsohn

e s aan e e ————
Product: gcc
g_ CC List: 2 users (show)
Component: libstdc++

Version: 4.1.0

See Also:
Importance: P2 normal Host: powerpc-ibm-aix
Target Milestone: 4.1.0 Target: powerpc-ibm-aix
Assigned To: Benjamin Kosnik Build: powerpc-ibm-aix

URL: Known to work:

Keywords: build Known to fail:

Last reconfirmed: 2005-07-19 04:23:46
Depends on:
Blocks: 23734

Show dependency tree / graph

Attachments

Makefile workaround (8.44 KB, patch) Details | Diff
2005 07-10 04020 UTC David Edelsghn

fix (8.95 K8, patch) Details | Diff R | d
2005-09-12 22:48 UTC, Benjamin Kosnik eS O Ve

Add an attachment (proposed patch, testcase, etc.) View All

-

But when was the bug introduced?

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 25 University of Technology

Which files did one change when fixing the bug?

projects / gcc.git / commit

[pﬂtﬂh] ﬁx summary | shortlog | log | commit | commitdiff | tree
p.20050912-2 (text/plain), 8.95 KB, created by Benjamin Ko: (parent: Gecab81b) | patch

- - R . 2005-09-12 David Edelsohn <dje@gcc.gnu.orgs
2005-09-12 Benjamin Kosnik <bkoz@:

David Edel=sochn <dje@gcc.
author bkoz <bkozfl38bc754-0404-0410-9615-82eeT72b05454>

PR libstdc44/22554 Tue, 13 Sep 2005 19:22:52 +0000 (13:22 +0000)

PR libstdcoc++/23734 committer bkoz <bkoz@l3gbcT5d-0d404-0410-9615-82eeT72b054ad>

= include/Makefile.am (assoc Tue, 13 Sep 2005 19:22:52 +0000 (13:22 +0000)

{install-headers): Use them COTMIt 1fb41eT061£25032590494407cT4al 26040255949

(stamp—assoc) : Same. tree £548d4d3737£17a69909461a772LT6a25219459c3 tree | snapshot

* include/Makefile.in: Reger parent fcabilbd360425£959c01ed88basic29iTaddes5139 commit | diff
Index: include/Makefile.am 2005-09-12 David Edelschn <djefgcc.gnu.orgs

RC5 file: fovs/gocc/gocc/libstdo++—w3, FR libstde++/22554
retrieving revision 1.105 ER_lli’S;ﬂ?;*'i‘%f? stall each sub

- - lakel . t - : t
diff —¢ -p -r1.105 Makefile.am __1nc. ude/Makefile.am (stamp-asscc) nsta ea subgroup

. _ _ of headers separately.

*** include/Makefile.am 17 Aug 2005 . include/Makefile.in: Regenerate.
——— dinclude/Makefile.am 12 Sep 2005
fffffffffffffffffffffff e git-svn-id: svn+ssh://gec.gnu.org/svn/goe/trunk@104238 138bc754-0404-0410-961F-832eeT72b054a4

* Heuristic: If a bug is fixed, it will be documented in the
commit (#22554)

« Time stamps, author names, words like “fix” or “bug”
« Commercial solutions provide better linking

Technische Universiteit
e Eindhoven
[SET /I W&l 9-3-2014 PAGE 26 University of Technology

When was the bug introduced?

3-Apr-03
Bug 42233 was reported.

Fixed Bug

42233
23-May-03 10-Jun-03 Changed:
a() b() ()

12-Feb-03

With gratitude to Marco D’Ambros and Romain Robbes

* Revisions 1.14 and 1.16 could not have introduced the
bug!

* Ilgnore commits that
« Affect only comments and whitespaces
« Affect numerous files at once (license changes, merges)

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 27 University of Technology

Surprising result...

When Do Changes Induce Fixes?

{On Fridays.)
Jacek Sliwerski Thomas Zimmermann Andreas Zeller
International Max Planck Research School Department of Computer Science
Max Planck Institute for Computer Science Saarland University
Saarbricken, Germany Saarbriucken, Germany
sliwers @mpi-sb.mpg.de {1z, Zzellery@acm.org

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 28 University of Technology

Back to the future

* Once we know which files have introduced bugs in

the past, we try to predict which files will introduce
bugs in the future

e Metrics — more in the lectures to come
* History —today!

* Very important research domain: defect prediction

&« C @ nttps;//code.google.com/p/promisedata/
[} Admission Internati... E] Een miljoen dollara.. [?;src-img |) Free IBAN BIC Calcu... Tuie Technische Universi... Twe Technische Universi... WWWIS Information... (2 peach® 1ue SET Meetings | taal 1
asel

¢\ promisedata

Ma® Data for reusable SE experiments

J Project Home | Wiki |ssues Source

Summary Pecple

Project Information

What is PROMISE? A

g +1| +2 Recommend this on Google B

PROIMISE= PRedictOr Models In Software Engineering.

Starred by 2 users

Project feeds Mantra= Software management decisions should be based on well-understood and well-supported predictive models. ' .
Code_ license Collecting data from real world software engineering projects is problematic. Since the data is difficult to attain, we need

MIT License to make better use of the whatever data is available. Hence, this site.

Predicting defects with BugCGache

» Online prediction approach based on 5 principles:
|. Spatial locality: bug-prone artifacts are changed together

2. Temporal locality: artifacts which exhibit bugs in the past
are likely to exhibit them also In the future

3. Bugs are found in new artifacts
4. Bugs are found in frequently modified artifacts

J. Bugs are found In large artifacts

Kim et al., Predicting faults from cached history, ICSE 2007

With gratitude to Marco D’Ambros and Romain Robbes

Predicting defects with BugCGache

Files

With gratitude to Marco D’Ambros and Romain Robbes

_Cache >

acC

Predicting defects with BugCGache

System
o ©O
® (C/

_Cache >

pre-fill based "

on LOC a@

Cache size: 2

Predicting defects with BugCGache

Predicting defects with BugGache

System
o _Cache >
o (A)
o © ©
G e Cache size: 2
o (H,
ri r2 r3
- T ime
¥ © ©

Predicting defects with BugCGache

Predicting defects with BugGache

Replacement policy

» Least recently used: the files that have the least
recently found defects (C)

» Least frequently changed (A)

» Least frequent defects (C)

Time

Updating the cache

» At every iteration, the cache is updated based on:
» misses: files which exhibit bugs are added to the cache
» pre-fetching:
» adding changed files

» adding new files

» removing deleted files

With gratitude to Marco D’Ambros and Romain Robbes

Evaluation

» BugCache evaluated on / open source projects

» Cache size: 0% of the system files
» This 0% files account for 73% - 95% of all defects

» Previous work, with [0% of files, covered up to /8%

With gratitude to Marco D’Ambros and Romain Robbes

However...

Technische Universiteit
e Eindhoven
| SET / W&l 9-3-2014 PAGE 40 University of Technology

Defects are not all the same

Different defects have different cost

v

v

It the goal of defect prediction is to optimize QA
resources, the cost of QA activity per defect should
be taken into account

v

The QA cost should be part of the prediction model

v

Effort-aware defect prediction

With gratitude to Marco D’Ambros and Romain Robbes

Comparison with effort-unaware measures

» Evaluation on |3 datasets from NASA

» Prediction models performing well when evaluated
without the effort, have bad effort-aware

performance

» All models are far from an optimal effort-aware

prediction

With gratitude to Marco D’Ambros and Romain Robbes

From introduction back to resolution

 Who should resolve the bugs?

« Someone who had similar bugs in the past! [Anvik et
al. 2006]

 Preprocess existing bug reports: remove the stop-words,
calculate frequencies of the terms...

 ldentify the developer that fixed the bug: “assigned-to”
might be empty or incorrect

* Ignore bug reports fixed by developers that left the project
« Train a machine learning algorithm to classify bug reports

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 43 Un sty of Technology

Triaging results

» Approach evaluated on bug reports from Firefox and Eclipse

» Precision: ~50% with maximum 64% on Firefox

» Recall: ~10% with maximum |6% on Eclipse

» Approach tested on GCC

» Precision only 6%... why!

» Unbalanced data: one developer dominates the bug resolution
activity

» The heuristics to detected the “assigned-to” are not accurate

enough
With gratitude to Marco D’Ambros and Romain Robbes

Improving Bug Triage with Bug Tossing Graphs

» Tossing: reassignment of a bug

» Work motivated by empirical observations on 445,000

bug reports from Mozilla and Eclipse

» Assigning bugs takes long

144,102 bugs 3 88,706 bugs :
Repoited First FII’S’[A” E |' b
P Action Assignment C Ipse UgS
16.7 days 23.6 days
N 18,498 bugs First 15,045 bugs First Ecl lpse ve rlﬂed
epo Action Assignment
5.2 days 19.3 days bu gs

» 3/% (Mozilla) - 44% (Eclipse) of bugs are tossed

With gratitude to Marco D’Ambros and Romain Robbes

Modeling tossing graph with Markov chain

» Assumption: it does not matter for tossing decisions
whether someone received a bug from Alice or Bob

A— B — D A—- B(l)B— C (1),
» = DA — C(1),
€= = =D =3 ,C — E (1),

E—>A(),A—>F(l),

Jossing path Tl

With gratitude to Marco D’Ambros and Romain Robbes

Modeling tossing graph with Markov chain

» Assumption: it does not matter for tossing decisions
whether someone received a bug from Alice or Bob

A B —>D A—- B(l),B— C(]),

ASCo DS E » € > D(2) A6

C E—>A—>F—D D—-E(l),C— E(l),

Tossing path J= =L
F— D(l)

road Romain Roﬂs

With gratitude to Marco D’Amb

Modeling tossing graph with Markov chain

» Assumption: it does not matter for tossing decisions
whether someone received a bug from Alice or Bob

A—->B(l),B— C(l),

» <C—>D(2)?A—>C?1;,

e C — E(])
E—-A()A— ,
F— D(l)

O —0 J

With gratitude to Marco D°’Ambro d Romain Robbes

A—-B—->C—->D
A->C—-D->E
C->E—->A—>F—->D

Tossing path

Minimum support and transaction probability

A—-B(l),B—->C(l),
C—->D(2),A—-C(]),
D—E(l),C —E(]),
E—-A((),A— F(l),

F— D(1)
oy |
00—
0.67

0.33 |

With gratitude to Marco D’Ambros and Romain Robbes

Minimum support and transaction probability

A—-B(l),B—C(l),

C—->D@R),A—-C(]),

D— E(1),C— E(]), Minimum probability: 0.5
E—>A(l),A— F(l),

F— D(1)

0
0.67

With gratitude to Marco D’Ambros and Romain Robbes

Minimum support and transaction probability

A—-B(l),B—C(),
C—->DR2)YA - C(]),
D—-E(1),C—E(]),
E—-A(1),A— F(l),
F — D (1)

Minimum support: 2

O

With gratitude to Marco D’Ambros and Romain Robbes

>
v o

Improving bug triaging with tossing information

Suggested developers

" | robert.elves
% : Bug tr!aglng > 2 mikkersten
algorithm 3 wuamy
4 susan_franklin
S nitind
Strong relationships 1
r In the tossing graph
| | robert.elves
robert.elves steffen.pingel 2 steffen.pingel
—> 3 mikkersten

mik.kersten <«e—> relves 4 relves

S wuamy

With gratitude to Marco D’Ambros and Romain Robbes

Triaging improvement

Program | ML algorithm Selection Accuracy (%) Improvement
ML only | ML + tossing graph
first 2 43.70 44,71 1.01
Naive B first 3 49.87 53.15 327
ek first 4 56.42 59.95 3.53
Edli first 5 60.71 63.48 .77
g first 2 57.01 58.29 0.38
B 0 Network first 3 66.71 68.47 1.76
qYERAR D OO || firse4 69.47 71.48 2.01
first 5 75.88 77.14 1.26 |
first 2 33.41 56.39 22.98
Naive Bayes first 3 45.39 A3 RD
first 4 52
| ams | 5 lmprovement up to 237
Mozilla firsi 2 a0 7] 7
oo e | s Accuracyupto /1%
ayesian Networ Rt 55 :
first 5 59.53 i 70.82 ’ 11.29 ‘

Not all bugs are equally interesting...

EINDHOVEN UNIVERSITY OF TECHNOLOGY

e Effo rt / p r I O r I ty DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MASTER’S THESIS

* Duplicate bugs
Related Defect Report Detection using an
Information Retrieval Approach

- Related bugs

* E.g., the same solution Ortober 1 201
for different bugs

Author: ing. Y.M. Schroot
¥ hroot@student .tue.nl teit

«M.8C 1
/ SET / W&I 9-3-2014 PAGE 54 l u I C University of Technology

Conclusions

- Looking at the version control systems’ logs we can
learn about files and bugs

* We can even predict the future!
* To a certain extent...

Technische Universiteit
e Eindhoven
| SET / W&l 9-3-2014 PAGE 55 University of Technology

21S55 Software Evolution

Software metrics

Alexander Serebrenik

Technische Universiteit
Eindhoven

University of Technology

Where innovation starts

Today: Version control system is not just a

log...

r1108668 | tokoe | 2010-03-29 16:54:02 +0200 (ma, 29 mrt 2010)
Changed paths:
M /trunk/KDE/kdepim/kmail/lkmsearchpatternedit.cpp

Revision Revision
1108667 1108668

- Measure each revision
« Get insights in the evolution

Techni h Un
I U E dh
/| SET / W&I 9-3-2014 PAGE 57 sty of Technology

Why do we want to measure revisions?

* Recall the “goals-questions-<views>-metrics” approach we
used for architecture reconstruction?

« Goals: What problem does the measurement try to solve?
— EX.: Modifying code is experienced as difficult
— Goal: Assess and improve maintainability of the code

* Questions: What do we need to know to achieve the goal?

- Is the code large? Complex? Appropriately modularized?
Buggy? Documented?

« <Views>: Which views are need to answer the questions?
- Individual components, dependency structure

* Metrics: How can we quantify the answers?
— Main topic of the lecture

Techni h Un
I U E dh
/| SET / W&I 9-3-2014 PAGE 58 stv of Technology

Measure each revision...

 Metric:

« “A quantitative measure of the degree to which a system,
component, or process possesses a given variable. ” ---
IEEE Standard 610.12-1990

« “A software metric is any type of measurement which
relates to a software system, process or related
documentation.” --- lan Sommerville, Software Eng. 2006

« Short: mapping of software artefacts to a well-known
domain

Techni h Un
I U E dh
/| SET / W&I 9-3-2014 PAGE 59 stv of Technology

Domains and scales

[

U

oming

=,#
1-1 trans.

Imple-
mentation
language

~

| SET / W&l

9-3-2014 PAGE 60

TU/e

Techni hU
Edh
Un sty of Technology

Domains and scales

f

&

))
i di
>
o >-pres.
1-1 trans. || trans.
Imple- Priorities
mentation |[(high >
language middle >
low)
J J

| SET / W&l

9-3-2014 PAGE 61

TU/e

Techni hU
Edh
Un sty of Technology

Domains and scales

-

~N N\)
i d' [
- > Distance
=, % >-pres. function
1-1 trans. || trans. Affine
Imple- Priorities || Tempe-
mentation | (high > ratur%
language | middle > (°C, °F)
low) |
g y U\ /

| SET / W&l

9-3-2014 PAGE 62

TU/

Techni h Un
E dh
ty of Technology

Domains and scales

\/
]
[may e
) > Distance || Zero, unit
— >-pres. function Linear
1-1 trans. || trans. Affine m < ft
Imple- Priorities Tem
. . pe- 0

moaes | O | | o

middie > o o j

ow) (°C, °F) by Alice
\ VAN

J

| SET / W&l

9-3-2014 PAGE 63

TU/

Techni h Un
E dh
ty of Technology

Domains and scales

X
LA}
— - Distance Zero, unit || Values
- >-pres. function Linear are
1-1trans. || trans. Affine s fi absolute
Imple- Priorities | Tem dentity
0 . pe_ 0

anguage middle > | 1ature commits | #devel'
anguage | middle > o o | _

low) (°C, °F) by Alice P(failure)

~ J\ 1S

J

| SET / W&l

9-3-2014 PAGE 64

Techni hU
Edh

TU/

tyfTh ology

Metrics and scales

« What metrics have we seen so far?

« Size: LOC, SLOC
- Code duplication: POP ,
 Requirements: Flesch-Kincaid grade level

To what
scale does
It belong?

4 ' \/ ' \/ ' 4)
oming g LGN il bSOlU[
Imple- Priorities Tempe-
J]nepnteation (high > rature (°C, || m < ft || #developers
language [middle > i op
low)
_ VAN VAN _ J

| SET / W&l

9-3-2014 PAGE 65

Th hU

TU/e i
tyfTh ology

Classification of metrics [a la Fenton, Pfleeger 1996]

Size Length (S)LOC

Number of
files, classes

Y

Amount of
functionality

Metrics

Control flow

Structure Data flow

Modularity
Tec :h sche Un
/ SET /[W&l 9-3-2014 PAGE 66 - TU E tv of Technology

Program length (LOC)

* Variants:
« Total
 Non-blank
« SLOC (source LOC): Ignore comments and blank lines
« LLOC (logical LOC): Number of program statements

1 for (1=0; Total LOC: 7

2 I < 100; Non-blank LOC: 6

3 1= SLOC: 5

4 printf("hello”); LLOC: 2 (for and printf)
5 }

6

/7 [* An important loop */

Techni h Un
I U E dh
/| SET / W&I 9-3-2014 PAGE 67 tv of Technology

Advantages of (S)LOC

* Related to Lehman’s law of “continuous growth” (Law 6)

- Easy to calculate
« LLOC is more difficult to determine (parser needed)
 What happens with nested statements? for(i=0;i1<10;i++)?

* Correlation with the #bugs
 Moderate (0.4-0.5) [Rosenberg 1997, Zhang 2009]
« Larger modules usually have more bugs
- “Ranking ability of LOC” [Fenton and Ohlsson 2000 , Zhang 2009]
 There are better (but more complex) ways to predict #bugs
 Can be used to predict the development effort!

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 68 Un sty of Technology

Disadvantages of (S)LOC

* Ignores structure of the program
 Program code is more than just text!

 Difficult to compare modules in different languages
or written by different developers

« Some languages are more verbose due to
- Presence/absence of “built-in” functionality
— Structural verbosity (e.g., .h in C)
« Some developers are paid per LOC!
 Hand-written vs. generated code

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 69 Un sty of Technology

(S)LOC distribution

Robles et al. 2006

..“_,
-‘Ilwr‘-"lnmll“-"l

- Rad BFF OO (=0 (N =R T)
in = E II'III'III'IEEII'III'III'I:II'III'III'I
[t

......... [—=- ‘9 — T 1 1 1 EEl =/
| | r 1 I I 1
o 200000 400000 00000 00000 {05 1.3e+08 1.d=+0E o 00000 {ueE {1 EnslE e+l ol] ime[S

 Distribution of SLOC in Debian 2.0 (left) and 3.0 (right)

« Controversy: log-normal or double Pareto?

* Importance: knowing distribution one can estimate the
probability to obtain files of a given size

 Hence, to estimate size of the entire system
 And the effort required (size = effort)

Techni h Un
I U E dh
/| SET / W&I 9-3-2014 PAGE 70 stv of Technology

What do we know about evolution of SLOC?

 Related to Lehman’s 6:

* The functional capability <...> must be continually
enhanced to maintain user satisfaction over system
lifetime.

 Earlier versions: “size”.

* Also related to Lehman’s 5:

* In general, the incremental growth (growth rate trend)
of E-type systems is constrained by the need to
maintain familiarity.

 Lehman interpreted this as linear growth

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 71 Un sty of Technology

What do we know about evolution of SLOC?

1,200,000
Exponential?
1,000,000 f .
/Polynomial?
Q800,000 ii[':: ® ’
- —includ 4
JE -+ net
@
E 600,000 iarnm ;—r';
g —&— mm ;.-,
: . r
2 400,000 - =
—— [nit 'fl/_
i
’
r |
200,000 - g - @‘f .
:
e T nEEER | inear

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

« Godfrey and Tu: superlinear growth is typical for OS
« Koch 2007: Quadratic growth is better for larger
OS projects (study of 8621 OS projects on
SourceForge)

Technische Universiteit
e Eindhoven
/ SET / W&I 9-3-2014 PAGE 72 University of Technology

LOC In Linux kernel

54108 - LOC - All Directories .

4 52+006 | i b
4e+(06 4 gt
3 et 006 1 -
394006 | _.f
25er+006 1 ~
2er+00 - ;
1.5+ 006 1
1+ 1 L~ it

500000 1 g
gtz

0

84 9 G 9 o8 %@ 0 0O 02 03 0 05 06 07 08

Superlinear up to 2.5,
linear for 2.6

/| SET / W&I 9-3-2014 PAGE 73

Scacchi — mix of
superlinear and
sublinear

Israeli, Feitelson:
 Linux kernel

« Multiple versions and
variants

— Production (blue
dashed)

— Development (red)
— Current 2.6 (green)

Technische Universiteit
e Eindhoven
University of Technology

(S)LOC: Summary

Different variants: LOC, SLOC, LLOC

Advantages:
 Easy to compute, moderately correlates with #bugs

 Can be used to estimate the development effort (more
details on May 15)

Disadvantages

« Different programming languages and developers
 Hand-written vs. generated code

Distribution “exponential-like”

Evolution:

e Linear

e Linux (other OS?). Superlinear
o Mix

Techni h Un
TU/e i
[SET /I W&l 9-3-2014 PAGE 74 Un sty of Technology

Length: #components

- Number of files, classes, packages
* Intuitive: “number of volumes in an encyclopaedia”

- Variants:
« All files, classes, packages
 No empty/library/third-party files, classes, packages
 No nested/inner classes
 No or only some auxiliary files (makefiles, header files)

« Correlation with the #post-release defects [Nagappan,
Ball, Zeller 2006]

 significant for modules A, B, C (strength:0.5-0.7),
Insignificant for modules D, E

« for each module correlation with some other metricg!

Technische Universiteit
Eindhoven
[SET /I W&l 9-3-2014 PAGE 75 University of Technology

