
2IS55 Software Evolution

What can we learn

from version

control systems?

Alexander Serebrenik

Assignment

Assignment 1:

• Grades: 3 3 1 4 2 2

− Too big, too boring, report writing is a waste of time

Assignment 2:

• Grades: 3 1 2 2

− reverse engineering is fun, Rascal as a really working DSL,

incremental approach

− Rascal documentation, OFG documentation, translation from the

OFG theory to code

Assignment 3:

• Deadline: Monday, March 17

• Main challenges

− replication precision

− scalability: at least 50 versions

/ SET / W&I PAGE 1 9-3-2014

Sources

/ SET / W&I PAGE 2 9-3-2014

Recap: Version control systems

• Centralized vs. distributed

• File versioning (CVS) vs. product versioning

• Record at least

• File name, file/product version, time stamp, committer

• Commit message

• What can we learn from this?

• Humans

• Files

• Bugs

/ SET / W&I PAGE 3 9-3-2014

TODAY !

What can we learn about files?

• Change coupling - two artifacts change together [Ball

et al. 1997]

• Based on common commits

• Subversion – easy, CVS – time window

− What about longer transactions?

− Looks like EROSE (do you still remember?)

/ Mathematics and Computer Science PAGE 4 9-3-2014

What can we learn about files?

• Change coupling - two artifacts change together [Ball

et al. 1997]

• Based on common commits

• Subversion – easy, CVS – time window

− What about longer transactions?

− Looks like EROSE (do you still remember?)

• Why change coupling? [D’Ambros, Lanza, Robbes 2009]

• Number of coupled classes (having at least n common

commits) correlates with the number of bugs

− Eclipse, 3 n 20, Spearman 0.8

− Mylyn and ArgoUML: Spearman > 0.5

• Correlates more with the number of bugs than popular

metrics, but less than the number of changes (churn)

/ Mathematics and Computer Science PAGE 5 9-3-2014

Weapon of choice: Evolution Radar

• Focuses on one module (component)

• Dependencies between the module and

other modules (groups of files)

• radius d: inverse of change coupling

with the closest file of the module in focus

• angle θ: certain ordering (alphabetical)

• color and size – arbitrary metrics

/ Mathematics and Computer Science PAGE 6 9-3-2014

Evolution Radar

• Moving through Time

• Taking entire history into account can be misleading

• Radar is time-dependent: entire history vs. time window

• Tracking

• Keep track of a file when Moving through Time

/ Mathematics and Computer Science PAGE 7 9-3-2014

Experiment: ArgoUML

• Three main components. According to the documentation

• Explorer and Diagram depend on Model

• Explorer and Diagram do not depend on each other

/ SET / W&I PAGE 8 9-3-2014

Experiment: ArgoUML

• Three main components. According to the documentation

• Explorer and Diagram depend on Model

• Explorer and Diagram do not depend on each other

/ SET / W&I PAGE 9 9-3-2014 June – December 2005

• Color: change

coupling

• Size: Total number of

lines modified during

the period

• Focus on Explorer

Experiment: ArgoUML

• Three main components. According to the documentation

• Explorer and Diagram depend on Model

• Explorer and Diagram do not depend on each other

/ SET / W&I PAGE 10 9-3-2014 June – December 2005

• Color: change

coupling

• Size: Total number of

lines modified during

the period

• Focus on Explorer

Conclusion: Explorer

strongly depends on

Diagram

ArgoUML

/ Mathematics and Computer Science PAGE 11 9-3-2014

January – June 2005 June – December 2005

• Fig*.java moved closer to the center: CC increased!

• Generator.java is an outlier

Evolution Radar: example (cnt’d)

/ Mathematics and Computer Science PAGE 12 9-3-2014

• Why did the CC of File*.java

increase?

• Make a new “module in focus”

from these three files and check

which file of Explorer is closest

Evolution Radar: example (cnt’d)

/ Mathematics and Computer Science PAGE 13 9-3-2014

• Why did the CC of File*.java

increase?

• Make a new “module in focus”

from these three files and check

which file of Explorer is closest

• Problematic file

was copied and

removed
Jun-Dec 2004 Jan-Jun 2004 Jun-Dec 2005

Alternative visualization: EvoLens

• Focus: gray rectangle

• 2 hierarchy levels: classes

are “flattened” to

submodules

• Colours: growth speed

• Edges: strength of

change coupling

• [Ratzinger, Fischer, Gall, 2005]

/ SET / W&I PAGE 14 9-3-2014

Dependencies + changes [Beyer Hassan 2006]

/ SET / W&I PAGE 15 9-3-2014

• “Dependency graph in time”

• Distance between the spots –

change coupling

• Colours – subsystems

• Gray and Arrow: previous version

of…

• Size – #nodes the node depends

upon

• Red ring = “new size” – “old size”

• 0, if the result < 0

Storyboard: POSTGRESQL

• What can we learn from this storyboard?

/ SET / W&I PAGE 16 9-3-2014

Storyboard: POSTGRESQL

• What can we learn from this storyboard?

• Red (Executor) and Blue (Optimizer) are moving closer

− Likely to become more dependent on each other

• Yellow (Query Evaluation Engine) moves a lot

/ SET / W&I PAGE 17 9-3-2014

Learning about files: summary

• Change coupling - two artifacts change together

• Correlates with the number of bugs

• Used to analyse relations between the files

− Evolution Radar, EvoLens

• Can be used in combination with dependencies

− Evolution Storyboards

/ SET / W&I PAGE 18 9-3-2014

Learning about bugs…

• How is the bug repository used?

• When are the bugs introduced?

• Can we predict bugs?

• Who should fix the bugs?

/ SET / W&I PAGE 19 9-3-2014

How is Bugzilla used?

/ Department of Mathematics and Computer

Science
PAGE 20 9-3-2014

“Theory”:

Bugzilla Guide

Practice (GCC)

/ Department of Mathematics and Computer

Science
PAGE 21 9-3-2014

Process model mined

from GCC Bugzilla

(42373 bugs)

Poncin, Serebrenik, vd Brand 2011

Practice (GCC)

/ Department of Mathematics and Computer

Science
PAGE 22 9-3-2014

Process model mined

from GCC Bugzilla

(42373 bugs)

Poncin, Serebrenik, vd Brand 2011

Practice (GCC)

/ Department of Mathematics and Computer

Science
PAGE 23 9-3-2014

Process model mined

from GCC Bugzilla

(42373 bugs)

Poncin, Serebrenik, vd Brand 2011

Practice (GCC)

/ Department of Mathematics and Computer

Science
PAGE 24 9-3-2014

Process model mined

from GCC Bugzilla

(42373 bugs)

Poncin, Serebrenik, vd Brand 2011

Bugs and Source code

But when was the bug introduced?

/ SET / W&I PAGE 25 9-3-2014

Resolved

Reported

Which files did one change when fixing the bug?

/ SET / W&I PAGE 26 9-3-2014

• Heuristic: If a bug is fixed, it will be documented in the

commit (#22554)

• Time stamps, author names, words like “fix” or “bug”

• Commercial solutions provide better linking

When was the bug introduced?

• Revisions 1.14 and 1.16 could not have introduced the

bug!

• Ignore commits that

• Affect only comments and whitespaces

• Affect numerous files at once (license changes, merges)

/ SET / W&I PAGE 27 9-3-2014

With gratitude to Marco D’Ambros and Romain Robbes

Surprising result…

/ SET / W&I PAGE 28 9-3-2014

Back to the future

• Once we know which files have introduced bugs in

the past, we try to predict which files will introduce

bugs in the future

• Metrics – more in the lectures to come

• History – today!

• Very important research domain: defect prediction

/ SET / W&I PAGE 29 9-3-2014

/ SET / W&I PAGE 30 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 31 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 32 9-3-2014

/ SET / W&I PAGE 33 9-3-2014

/ SET / W&I PAGE 34 9-3-2014

/ SET / W&I PAGE 35 9-3-2014

/ SET / W&I PAGE 36 9-3-2014

/ SET / W&I PAGE 37 9-3-2014

/ SET / W&I PAGE 38 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 39 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 40 9-3-2014

/ SET / W&I PAGE 41 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 42 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

From introduction back to resolution

• Who should resolve the bugs?

• Someone who had similar bugs in the past! [Anvik et

al. 2006]

• Preprocess existing bug reports: remove the stop-words,

calculate frequencies of the terms…

• Identify the developer that fixed the bug: “assigned-to”

might be empty or incorrect

• Ignore bug reports fixed by developers that left the project

• Train a machine learning algorithm to classify bug reports

/ SET / W&I PAGE 43 9-3-2014

/ SET / W&I PAGE 44 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 45 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 46 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 47 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 48 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 49 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 50 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 51 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 52 9-3-2014 With gratitude to Marco D’Ambros and Romain Robbes

/ SET / W&I PAGE 53 9-3-2014

Not all bugs are equally interesting…

• Effort / priority

• Duplicate bugs

• Related bugs

• E.g., the same solution

for different bugs

/ SET / W&I PAGE 54 9-3-2014

Conclusions

• Looking at the version control systems’ logs we can

learn about files and bugs

• We can even predict the future!

• To a certain extent…

/ SET / W&I PAGE 55 9-3-2014

2IS55 Software Evolution

Software metrics

Alexander Serebrenik

Today: Version control system is not just a

log…

• Measure each revision

• Get insights in the evolution

/ SET / W&I PAGE 57 9-3-2014

r1108668 | tokoe | 2010-03-29 16:54:02 +0200 (ma, 29 mrt 2010)

Changed paths:

 M /trunk/KDE/kdepim/kmail/kmsearchpatternedit.cpp

 Revision

1108667

 Revision

1108668

Why do we want to measure revisions?

• Recall the “goals-questions-<views>-metrics” approach we

used for architecture reconstruction?

• Goals: What problem does the measurement try to solve?

− Ex.: Modifying code is experienced as difficult

− Goal: Assess and improve maintainability of the code

• Questions: What do we need to know to achieve the goal?

− Is the code large? Complex? Appropriately modularized?

Buggy? Documented?

• <Views>: Which views are need to answer the questions?

− Individual components, dependency structure

• Metrics: How can we quantify the answers?

− Main topic of the lecture

/ SET / W&I PAGE 58 9-3-2014

Measure each revision…

• Metric:

• “A quantitative measure of the degree to which a system,

component, or process possesses a given variable. ” ---

IEEE Standard 610.12-1990

• “A software metric is any type of measurement which

relates to a software system, process or related

documentation.” --- Ian Sommerville, Software Eng. 2006

• Short: mapping of software artefacts to a well-known

domain

/ SET / W&I PAGE 59 9-3-2014

Domains and scales

/ SET / W&I PAGE 60 9-3-2014

=,

1-1 trans.

Imple-
mentation
language

>

>-pres.
trans.

Priorities
(high >
middle >
low)

Distance
function

Affine

Tempe-
rature
(C, F)

Zero, unit

Linear

m ft

% of
commits
by Alice

Values
are
absolute

Identity

#devel’s

P(failure)

Domains and scales

/ SET / W&I PAGE 61 9-3-2014

=,

1-1 trans.

Imple-
mentation
language

>

>-pres.
trans.

Priorities
(high >
middle >
low)

Distance
function

Affine

Tempe-
rature
(C, F)

Zero, unit

Linear

m ft

% of
commits
by Alice

Values
are
absolute

Identity

#devel’s

P(failure)

Domains and scales

/ SET / W&I PAGE 62 9-3-2014

=,

1-1 trans.

Imple-
mentation
language

>

>-pres.
trans.

Priorities
(high >
middle >
low)

Distance
function

Affine

Tempe-
rature
(C, F)

Zero, unit

Linear

m ft

% of
commits
by Alice

Values
are
absolute

Identity

#devel’s

P(failure)

Domains and scales

/ SET / W&I PAGE 63 9-3-2014

=,

1-1 trans.

Imple-
mentation
language

>

>-pres.
trans.

Priorities
(high >
middle >
low)

Distance
function

Affine

Tempe-
rature
(C, F)

Zero, unit

Linear

m ft

% of
commits
by Alice

Values
are
absolute

Identity

#devel’s

P(failure)

Domains and scales

/ SET / W&I PAGE 64 9-3-2014

=,

1-1 trans.

Imple-
mentation
language

>

>-pres.
trans.

Priorities
(high >
middle >
low)

Distance
function

Affine

Tempe-
rature
(C, F)

Zero, unit

Linear

m ft

% of
commits
by Alice

Values
are
absolute

Identity

#devel’s

P(failure)

Metrics and scales

• What metrics have we seen so far?

• Size: LOC, SLOC

• Code duplication: POP, RNR, …

• Requirements: Flesch-Kincaid grade level

/ SET / W&I PAGE 65 9-3-2014

Imple-
mentation
language

Priorities
(high >
middle >
low)

Tempe-
rature (C,
F)

m ft #developers

To what

scale does

it belong?

Classification of metrics [à la Fenton, Pfleeger 1996]

/ SET / W&I PAGE 66 9-3-2014

Metrics

Size Length (S)LOC

Number of
files, classes

Amount of
functionality

Structure

Control flow

Data flow

Modularity

Program length (LOC)

• Variants:

• Total

• Non-blank

• SLOC (source LOC): Ignore comments and blank lines

• LLOC (logical LOC): Number of program statements

/ SET / W&I PAGE 67 9-3-2014

1 for (i = 0;

2 i < 100;

3 i += 1) {

4 printf("hello");

5 }

6

7 /* An important loop */

Total LOC: 7

Non-blank LOC: 6

SLOC: 5

LLOC: 2 (for and printf)

Advantages of (S)LOC

• Related to Lehman’s law of “continuous growth” (Law 6)

• Easy to calculate

• LLOC is more difficult to determine (parser needed)

• What happens with nested statements? for(i=0;i<10;i++)?

• Correlation with the #bugs

• Moderate (0.4-0.5) [Rosenberg 1997, Zhang 2009]

• Larger modules usually have more bugs

− “Ranking ability of LOC” [Fenton and Ohlsson 2000 , Zhang 2009]

• There are better (but more complex) ways to predict #bugs

• Can be used to predict the development effort!

/ SET / W&I PAGE 68 9-3-2014

Disadvantages of (S)LOC

• Ignores structure of the program

• Program code is more than just text!

• Difficult to compare modules in different languages

or written by different developers

• Some languages are more verbose due to

− Presence/absence of “built-in” functionality

− Structural verbosity (e.g., .h in C)

• Some developers are paid per LOC!

• Hand-written vs. generated code

/ SET / W&I PAGE 69 9-3-2014

(S)LOC distribution

• Distribution of SLOC in Debian 2.0 (left) and 3.0 (right)

• Controversy: log-normal or double Pareto?

• Importance: knowing distribution one can estimate the

probability to obtain files of a given size

• Hence, to estimate size of the entire system

• And the effort required (size effort)

/ SET / W&I PAGE 70 9-3-2014

Robles et al. 2006

What do we know about evolution of SLOC?

• Related to Lehman’s 6:

• The functional capability <…> must be continually

enhanced to maintain user satisfaction over system

lifetime.

• Earlier versions: “size”.

• Also related to Lehman’s 5:

• In general, the incremental growth (growth rate trend)

of E-type systems is constrained by the need to

maintain familiarity.

• Lehman interpreted this as linear growth

/ SET / W&I PAGE 71 9-3-2014

What do we know about evolution of SLOC?

/ SET / W&I PAGE 72 9-3-2014

Linear

Exponential?

Polynomial?

• Godfrey and Tu: superlinear growth is typical for OS

• Koch 2007: Quadratic growth is better for larger

OS projects (study of 8621 OS projects on

SourceForge)

LOC in Linux kernel

/ SET / W&I PAGE 73 9-3-2014

• Scacchi – mix of

superlinear and

sublinear

• Israeli, Feitelson:

• Linux kernel

• Multiple versions and

variants

− Production (blue

dashed)

− Development (red)

− Current 2.6 (green)
Superlinear up to 2.5,

linear for 2.6

(S)LOC: Summary

• Different variants: LOC, SLOC, LLOC

• Advantages:

• Easy to compute, moderately correlates with #bugs

• Can be used to estimate the development effort (more

details on May 15)

• Disadvantages

• Different programming languages and developers

• Hand-written vs. generated code

• Distribution “exponential-like”

• Evolution:

• Linear

• Linux (other OS?): Superlinear

• Mix
/ SET / W&I PAGE 74 9-3-2014

Length: #components

• Number of files, classes, packages

• Intuitive: “number of volumes in an encyclopaedia”

• Variants:

• All files, classes, packages

• No empty/library/third-party files, classes, packages

• No nested/inner classes

• No or only some auxiliary files (makefiles, header files)

• Correlation with the #post-release defects [Nagappan,

Ball, Zeller 2006]

• significant for modules A, B, C (strength:0.5-0.7),

insignificant for modules D, E

• for each module correlation with some other metrics!

 / SET / W&I PAGE 75 9-3-2014

