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Software metrics 

Alexander Serebrenik 



Assignments 

• Assignment 3: deadline – March 17! 

• Assignment 4: testing  

• Assignment 5: 

• Do software evolution laws hold in practice? 

• Use software metrics to instrument and verify the claim 

• Preprocessed datasets 
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Recall… 

• Metric:  

• “A quantitative measure of the degree to which a system, 

component, or process possesses a given variable. ” --- 

IEEE Standard 610.12-1990 

• “A software metric is any type of measurement which 

relates to a software system, process or related 

documentation.” --- Ian Sommerville, Software Eng. 2006 

 

• Short: mapping of software artefacts to a well-known 

domain  
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Metrics and scales 

• What metrics have we seen so far? 

• Size: LOC, SLOC 

• Code duplication: POP, RNR, … 

• Requirements: Flesch-Kincaid grade level 
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Imple-
mentation 
language 

 

Priorities 
(high > 
middle > 
low) 
 

Tempe-
rature (C, 
F) 

m  ft #developers 

To what 

scale does 

it belong? 



Classification of metrics [à la Fenton, Pfleeger 1996] 
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Metrics 

Size Length (S)LOC 

Number of 
files, classes 

Amount of 
functionality 

Structure 

Control flow 

Data flow 

Modularity 



Program length (LOC) 

• Variants: 

• Total 

• Non-blank 

• SLOC (source LOC): Ignore comments and blank lines 

• LLOC (logical LOC): Number of program statements 
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1 for (i = 0;  

2           i < 100;  

3               i += 1) {  

4        printf("hello");  

5 }  

6   

7 /* An important loop */  

Total LOC: 7 

Non-blank LOC: 6 

SLOC: 5 

LLOC: 2 (for and printf) 



Advantages of (S)LOC 

• Related to Lehman’s law of “continuous growth” (Law 6) 

 

• Easy to calculate 

• LLOC is more difficult to determine (parser needed) 

• What happens with nested statements? for(i=0;i<10;i++)? 

 

• Correlation with the #bugs  

• Moderate (0.4-0.5) [Rosenberg 1997, Zhang 2009] 

• Larger modules usually have more bugs 

− “Ranking ability of LOC” [Fenton and Ohlsson 2000 , Zhang 2009] 

• There are better (but more complex) ways to predict #bugs 

• Can be used to predict the development effort!  
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Disadvantages of (S)LOC 

• Ignores structure of the program 

• Program code is more than just text! 

 

• Difficult to compare modules in different languages 

or written by different developers 

• Some languages are more verbose due to 

− Presence/absence of “built-in” functionality 

− Structural verbosity (e.g., .h in C) 

• Some developers are paid per LOC! 

• Hand-written vs. generated code 
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(S)LOC distribution 

• Distribution of SLOC in Debian 2.0 (left) and 3.0 (right) 

• Controversy: log-normal or double Pareto? 

• Importance: knowing distribution one can estimate the 

probability to obtain files of a given size 

• Hence, to estimate size of the entire system 

• And the effort required (size  effort) 
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Robles et al. 2006 



What do we know about evolution of SLOC? 

• Related to Lehman’s 6: 

• The functional capability <…> must be continually 

enhanced to maintain user satisfaction over system 

lifetime. 

• Earlier versions: “size”. 

 

• Also related to Lehman’s 5: 

• In general, the incremental growth (growth rate trend) 

of E-type systems is constrained by the need to 

maintain familiarity. 

• Lehman interpreted this as linear growth 
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What do we know about evolution of SLOC? 
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Linear 

Exponential? 

Polynomial? 

• Godfrey and Tu: superlinear growth is typical for OS 

• Koch 2007: Quadratic growth is better for larger 

OS projects (study of 8621 OS projects on 

SourceForge) 



LOC in Linux kernel 
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• Scacchi – mix of 

superlinear and 

sublinear 

• Israeli, Feitelson:  

• Linux kernel 

• Multiple versions and 

variants 

− Production (blue 

dashed) 

− Development (red) 

− Current 2.6 (green) 
Superlinear up to 2.5, 

linear for 2.6 



(S)LOC: Summary 

• Different variants: LOC, SLOC, LLOC 

• Advantages:  

• Easy to compute, moderately correlates with #bugs 

• Can be used to estimate the development effort (more 

details on May 15) 

• Disadvantages 

• Different programming languages and developers 

• Hand-written vs. generated code 

• Distribution “exponential-like” 

• Evolution:  

• Linear 

• Linux (other OS?): Superlinear 

• Mix  
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Length: #components 

• Number of files, classes, packages 

• Intuitive: “number of volumes in an encyclopaedia” 

 

• Variants: 

• All files, classes, packages 

• No empty/library/third-party files, classes, packages 

• No nested/inner classes 

• No or only some auxiliary files (makefiles, header files) 

 

• Correlation with the #post-release defects [Nagappan, 

Ball, Zeller 2006]  

• significant for modules A, B, C (strength:0.5-0.7), 

insignificant for modules D, E 

• for each module correlation with some other metrics! 
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So far 

• x 
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Metrics 

Size Length (S)LOC 

Number of 
files, classes 

Amount of 
functionality 

Structure 

Control flow 

Data flow 

Modularity 



Complexity metrics: Halstead (1977) 

• Sometimes is classified as size rather than  complexity 

• Unit of measurement 
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Line: LOC, 

SLOC, LLOC 

Units, files, 

classes 

Parts of a 

statement: 

operators 

and operands 

Packages, 

directories 

• Operators: 

• traditional (+,++, >), keywords (return, if, continue) 

• Operands 

• identifiers, constants 



Halstead metrics 
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• Length: N = N1 + N2 

• Vocabulary: n = n1 + n2 

• Volume: V = N log2n 

• Insensitive to lay-out 

• VerifySoft: 

− 20  Volume(function)  1000 

− 100  Volume(file)  8000 

 

Total Unique 

Operators N1 n1 

Operands N2 n2 

• Four basic metrics of Halstead 



Halstead metrics: Example 

void sort ( int *a, int n ) { 

int i, j, t; 

 

 if ( n < 2 ) return; 

 for ( i=0 ; i < n-1; i++ )  { 

  for ( j=i+1 ; j < n ; j++ ) {  

   if ( a[i] > a[j] ) { 

    t = a[i]; 

    a[i] = a[j]; 

    a[j] = t; 

   } 

  } 

 } 

} 
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• Ignore the function definition 

• Count operators and operands 

Total Unique 

Operators N1 = 50 n1 = 17 

Operands N2 = 30 n2 = 7 

V = 80 log2(24)  392 

Inside the boundaries [20;1000] 



Further Halstead metrics 

• Volume: V = N log2n 

• Difficulty: D = ( n1 / 2 ) * ( N2 / n2 ) 

• Sources of difficulty: new operators and repeated 

operands  

• Example: 17/2 * 30/7  36  

• Effort: E = V * D  

• Time to understand/implement (sec): T = E/18 

• Running example: 793 sec  13 min 

• Does this correspond to your experience? 

• Bugs delivered: E2/3/3000 

• For C/C++: known to underapproximate 

• Running example: 0.19 
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Total Unique 

Operators N1 n1 

Operands N2 n2 



Halstead metrics are sensitive to… 

• What would be your answer? 

 

 

• Syntactic sugar: 

 

 

 

 

 

• Solution: normalization (see the code duplication 

slides)  
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i = i+1 Total Unique 

Operators N1 = 2 n1 = 2 

Operands N2 = 3 n2 = 2 

i++ Total Unique 

Operators N1 = 1 n1 = 1 

Operands N2 = 1 n2 = 1 



Structural complexity 

• Structural complexity: 

• Control flow 

• Data flow 

 

• Modularity 
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Commonly 

represented 

as graphs 

Graph-

based 

metrics 

• Number of vertices 

• Number of edges 

• Maximal length 

(depth) 



McCabe’s complexity (1976) 

In general 

• v(G) = #edges - #vertices + 2 

 

For control flow graphs 

• v(G) = #binaryDecisions + 1, or  

• v(G) = #IFs + #LOOPs + 1 

 

Number of paths in the control flow graph. 

A.k.a. “cyclomatic complexity” 

 

Each path should be tested! 

v(G) – a testability metrics 
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Boundaries 

• v(function)  15 

• v(file)  100 



McCabe’s complexity: Example 

void sort ( int *a, int n ) { 

int i, j, t; 

 

 if ( n < 2 ) return; 

 for ( i=0 ; i < n-1; i++ )  { 

  for ( j=i+1 ; j < n ; j++ ) {  

   if ( a[i] > a[j] ) { 

    t = a[i]; 

    a[i] = a[j]; 

    a[j] = t; 

   } 

  } 

 } 

} 
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• Count IFs and LOOPs 

 

• IF: 2, LOOP: 2 

 

• v(G) = 5 

 

• Structural complexity 



Question to you 

• Is it possible that the McCabe’s complexity is higher 

than the number of possible execution paths in the 

program? 

 

• Lower than this number? 
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McCabe’s complexity in Linux kernel 
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A. Israeli, D.G. Feitelson 2010 

• Linux kernel 

• Multiple 

versions and 

variants 

• Production 

(blue dashed) 

• Development 

(red) 

• Current 2.6 

(green) 



McCabe’s complexity in Mozilla [Røsdal 2005] 

• Most of the modules have low cyclomatic complexity 

• Complexity of the system seems to stabilize 
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Summarizing: Maintainability index (MI) 
[Coleman, Oman 1994] 

• MI2 can be used only if comments 

are meaningful 

• If more than one module is 

considered – use average values 

for each one of the parameters 

• Parameters were estimated by 

fitting to expert evaluation 

• BUT: few middle-sized systems! 
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)ln(2.16)(23.0)ln(2.51711 LOCgVVMI 
Halstead McCabe LOC 

perCMMIMI 46.2sin5012 

% comments 

85 

65 

0 



McCabe complexity: Example 

void sort ( int *a, int n ) { 

int i, j, t; 

 

 if ( n < 2 ) return; 

 for ( i=0 ; i < n-1; i++ )  { 

  for ( j=i+1 ; j < n ; j++ ) {  

   if ( a[i] > a[j] ) { 

    t = a[i]; 

    a[i] = a[j]; 

    a[j] = t; 

   } 

  } 

 } 

} 
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• Halstead’s V  392  

 

• McCabe’s v(G) = 5 

 

• LOC = 14 

 

• MI1  96 

 

• Easy to maintain! 



Comments? 

Peaks:  

• 25% (OK), 

• 1% and 

81% - ???  
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[Liso 2001] 

Better:  

• 0.12  K  0.2 

perCM46.2sin50



Another alternative: 

• Percentage as a fraction 

[0;1] – [Thomas 2008, Ph.D. thesis] 

 

• The more comments – the 

better? 
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Evolution of the maintainability index in Linux 

• Size, Halstead 

volume and 

McCabe 

complexity 

decrease 

• % comments 

decreases as well 

• BUT they use the 

[0;1] definition, so 

the impact is 

limited 
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A. Israeli, D.G. Feitelson 2010 



What about modularity? 

• Squares are modules, lines are calls, 

ends of the lines are functions. 

• Which design is better? 
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Design A                       Design B                                    • Cohesion: calls 

inside the 

module 

• Coupling: calls 

between the 

modules 

A B 

Cohesion Lo Hi 

Coupling Hi Lo 



Do you remember? 

• Many intra-package dependencies: high cohesion 

 

 

• Few inter-package dependencies: low coupling  

 

 

• Joint measure 
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Modularity metrics: Fan-in and Fan-out 

• Fan-in of M: number of 

modules calling functions 

in M 

• Fan-out of M: number of 

modules called by M 

 

• Modules with fan-in = 0 

• What are these modules? 

• Dead-code 

• Outside of the system 

boundaries 

• Approximation of the “call” 

relation is imprecise 
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Henry and Kafura’s information flow 

complexity [HK 1981] 

• Fan-in and fan-out can be defined for procedures 

• HK: take global data structures into account: 

− read for fan-in,  

− write for fan-out 

 

• Henry and Kafura: procedure as HW component 

connecting inputs to outputs 

 

 

• Shepperd  
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2)*(* fanoutfaninslochk 

2)*( fanoutfanins 



Information flow complexity of Unix 

procedures 

• Solid – #procedures within 

the complexity range 

• Dashed - #changed 

procedures within the 

complexity range 

 

• Highly complex procedures 

are difficult to change but 

they are changed often! 

• Complexity comes from the 

three largest procedures 
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Evolution of the information flow complexity  

• Mozilla 

• Shepperd 

version 

• Above: Σ 

the metrics 

over all 

modules 

• Below: 3 

largest 

modules 

• What does 

this tell? 
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Summary so far… 

• Complexity metrics 

• Halstead’s effort 

• McCabe (cyclomatic) 

• Henry Kafura/Shepperd 

(information flow) 

 

• Are these related? 

• And what about bugs? 

 

• Harry,Kafura,Harris 1981 

• 165 Unix procedures 

• What does this tell us? 
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Bugs 

Halstead 

McCabe HK 

0.95 0.96 
0.89 

0.84 

0.36 

0.38 



From imperative to OO 

• All metrics so far were designed for imperative 

languages 

• Applicable for OO 

− On the method level 

− Also 

− Number of files  number of classes/packages 

− Fan-in  afferent coupling (Ca) 

− Fan-out  efferent coupling (Ce) 

• But do not reflect OO-specific complexity 

− Inheritance, class fields, abstractness, … 

• Popular metric sets 

• Chidamber and Kemerer, Li and Henry, Lorenz and 

Kidd, Abreu, Martin 
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Chidamber and Kemerer  

• WMC – weighted methods per class 

•  Sum of metrics(m) for all methods m in class C 

• DIT – depth of inheritance tree 

• java.lang.Object? Libraries?  

• NOC – number of children 

• Direct descendents 

• CBO – coupling between object classes 

• A is coupled to B if A uses methods/fields of B 

• CBO(A) = | {B|A is coupled to B} | 

• RFC - #methods that can be executed in response to 

a message being received by an object of that class.  
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Chidamber and Kemerer 

• WMC – weighted methods per class 

•  Sum of metrics(m) for all methods m in class C 

•  Popular metrics: McCabe’s complexity and unity 

• WMC/unity = number of methods 

• Statistically significant correlation with the number of 

defects  
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• WMC/unity 

• Dark: Basili et al. 

• Light: Gyimothy 

et al. [Mozilla 1.6] 

• Red: High-

quality NASA 

system  



Chidamber and Kemerer 

• WMC – weighted methods per class 

•  Sum of metrics(m) for all methods m in class C 

•  Popular metrics: McCabe’s complexity and unity 

• WMC/unity = number of methods 

• Statistically significant correlation with the number of 

defects  
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• WMC/unity 

• Gyimothy et al.  

• Average 



Depth of inheritance - DIT 

• Variants: Were to start and what classes to include?  

• 1, JFrame is a library class, excluded 

• 2, JFrame is a library class, included 

• 7 
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JFrame MyFrame 

java.awt.F

rame 

java.awt.

Window 

java.lang.

Object 

java.awt.C

omponent 

java.awt.C

ontainer 



DIT – what is good and what is bad? 

• Three NASA systems 

• What can you say about the use of inheritance in 

systems A, B and C? 

• Observation: quality assessment depends not just 

on one class but on the entire distribution 
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Average DIT in Mozilla 

• How can you explain the decreasing trend?  
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Other CK metrics 

• NOC – number of 

children 

• CBO – coupling between 

object classes 

• RFC - #methods that can 

be executed in response 

to a message being 

received by an object of 

that class. 

• More or less 

“exponentially” 

distributed 
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Significance of CK metrics to 

predict the number of faults  



Modularity metrics: LCOM 

• LCOM – lack of cohesion of 

methods 

 

• Chidamber Kemerer:  

 

 

 

where 

• P  = #pairs of distinct methods in C 

that do not share instance 

variables 

• Q = #pairs of distinct methods in C 

that share instance variables 
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

 


otherwise0

 if
)(

QPQP
CLCOM

[BBM] 180 classes 

Discriminative ability 

is insufficient 

 

What about methods 

that use get/set 

instead of direct 

access? 



First solution: LCOMN 

• Defined similarly to LCOM but allows negative values 
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QPCLCOMN )(

LCOM LCOMN 



Still… 
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• Method * method tables 

• Light blue: Q, dark blue: P 

• Calculate the LCOMs 

• Does this correspond to your intuition? 



Henderson-Sellers, Constantine and Graham 1996 

• m – number of methods 

• v – number of variables (attrs) 

• m(Vi) - #methods that access Vi 
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                           and  

 

• No cohesion: every method accesses a unique variable 

                          and   

 

• Can LCOM exceed 1?  
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LCOM > 1? 
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• If some variables are not accessed at all, then  

 

 

and if no variables are accessed 

 

 

 

 

Hence 

    LCOM is undefined for m = 1 

    LCOM  2   
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Evolution of LCOM [Henderson-Sellers et al.] 

• Project 6 (commercial human resource system) 

suggests stabilization, but no similar conclusion can 

be made for other projects 
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Sato, Goldman, 

Kon 2007 



Shortcomings of LCOM [Henderson-Sellers ] 

• Method-variable diagrams: dark 

spot = access 

• LCOM(A) ? LCOM(B) ?LCOM(C) ? 
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Shortcomings of LCOM [Henderson-Sellers ] 

• All LCOM values are the same: 0.67 

− m=4, m(Vi) = 2 for all i  

 

• A seems to be less cohesive than 

B and C! 
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Alternative [Hitz, Montazeri 1995] 

• LCOM as the number of strongly 

connected components in the 

following graph 

• Vertices: methods 

− except for getters/setters  

• Edge between a and b, if 

− a and b access the same variable 

 

• LCOM values 

• 0, no methods 

• 1, cohesive component 

• 2 or more, lack of cohesion 

/ SET / W&I PAGE 55 13-3-2014 



Alternative [Hitz, Montazeri 1995] 

• LCOM as the number of strongly 

connected components in the 

following graph 

• Vertices: methods 

− except for getters/setters  

• Edge between a and b, if 

− a and b access the same variable 

 

• LCOM values 

• 0, no methods 

• 1, cohesive component 

• 2 or more, lack of cohesion 
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Question: LCOM? 



Experimental evaluation of LCOM variants 

Cox, Etzkorn and 

Hughes 2006 

Correlation with expert assessment 

Group 1 Group 2 

Chidamber Kemerer -0.43 (p = 0.12) -0.57 (p = 0.08) 

Henderson-Sellers  -0.44 (p = 0.12) -0.46 (p = 0.18) 

Hitz, Montazeri  -0.47 (p = 0.06) -0.53 (p = 0.08) 
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Etzkorn, Gholston, 

Fortune, Stein, 

Utley, Farrington, 

Cox 

Correlation with expert assessment 

Group 1 Group 2 

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8) 

Henderson-Sellers  -0.44 (rating 7/8) -0.45 (rating 7/8) 

Hitz, Montazeri  -0.51 (rating 2/8) -0.54 (rating 5/8) 



LCC and TCC [Bieman, Kang 1994] 

• Recall: LCOM HM “a and b access the same variable” 

• What if a calls a’, b calls b’, and a’ and b’ access the 

same variable? 

• Metrics 

• NDP – number of pairs of methods directly 

accessing the same variable 

• NIP – number of pairs of methods directly or 

indirectly accessing the same variable  

• NP – number of pairs of methods: n(n-1)/2 

• Tight class cohesion TCC = NDP/NP 

• Loose class cohesion LCC = NIP/NP 

• NB: Constructors and destructors are excluded 
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Experimental evaluation of LCC/TCC  
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Etzkorn, Gholston, 

Fortune, Stein, Utley, 

Farrington, Cox 

Correlation with expert assessment 

Group 1 Group 2 

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8) 

Henderson-Sellers  -0.44 (rating 7/8) -0.45 (rating 7/8) 

Hitz, Montazeri  -0.51 (rating 2/8) -0.54 (rating 5/8) 

TCC -0.22 (rating 8/8) -0.057 (rating 8/8) 

LCC -0.54 (rating 1/8) -0.73 (rating 1.5/8) 



Metrics so far… 

/ SET / W&I PAGE 61 13-3-2014 

Level Metrics 

Method LOC, McCabe 

Class WMC, NOC, DIT, LCOM (and 

variants), LCC/TCC 

Packages ??? 



Package metrics 

• Size:  

• number of classes/interfaces 

• number of classes in the subpackages 

• Dependencies 

•  visualization 

• à la fan-in and fan-out 

− Marchesi’s UML metrics 

− Martin’s Dn: abstractness-instability balance or “the 

normalized distance from the main sequence” 

− PASTA  

• Aggregations of class metrics  
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“Fan-out” 

[Martin 1994] [Martin 2000] [JDepend] 

Ce: 

[Marchesi 1998] 

PK1 or R: 
[Martin 2000] 



Fan-in 

• “Fan-in” similarly to the “Fan-out” 

• Afferent coupling (Martin) 

• PK2 (Marchesi) 
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• Dark: TDD, light: no-TDD 

• Test-driven development 

positively affects Ca 

• The lower Ca - the better. 

• Exception: JUnit vs. 

Jerico 

• But Jericho is extremely 

small (2 packages) 

 [Hilton 2009] 



More fan-in and fan-out 

• “Fan-in” similarly to the “Fan-out” 

• Afferent coupling (Martin) 

• PK2 (Marchesi) 

 

• Validation 
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Marchesi Man-

months 

#Pack avg(PK1)  

Railway 

simulator 

13 6 8.7 

Warehouse 

management 

7 5 5.0 

CASE tool 13 5 8.1 

SAP 

(Herzig) 

Correlation 

post-release 

defects 

Afferent 0.091 

Efferent 

[Martin 

2000] 

0.157 

Class-in 0.084 

Class-out 0.086 

Fan-in 0.287 

Fan-out 0.148 



Evolution of afferent and efferent coupling 

• Almost all systems show an increasing trend (Lehman’s 

growing complexity) 

• Project 7 (workflow system) is almost stable but very high! 

• Outsourced development 

• No automated tests 

• Severe maintainability problems 
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Sato, 

Goldman, 

Kon 2007 
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Package metrics: Stability  

• Stable packages 
• Do not depend upon 

classes outside 

• Many dependents 

• Should be extensible via 
inheritance (abstract) 

• Instable packages 
• Depend upon many 

classes outside 

• No dependents 

• Should not be extensible 
via inheritance (concrete) 

 

Stability is related to the amount of work required to make 

a change [Martin, 2000]. 



What does balance mean? 
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A good real-life package must be instable 

enough in order to be easily modified   

It must be generic enough to be adaptable to 

evolving  requirements, either without or with only 

minimal modifications   

Hence: contradictory criteria 
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Dn – Distance from the main sequence 

Abstractness = 

#AbstrClasses/#Classes 

Instability = 
Ce/(Ce+Ca) 

1 

1 
0 

Dn =  

   | Abstractness +     

     Instability – 1 | 

main sequence 
zone of pain 

zone of  

uselessness 

[R.Martin 1994] 



Normalized distance from the main sequence 
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• Dark: TDD, light: no-TDD 

• Test-driven development 

positively affects Dn 

• The lower Dn - the better. 

• The same exception 

(Jericho vs. JUnit) 

[Hilton 2009] 
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Distribution and evolution 

Exponential 

distribution 

For all benchmark 

systems studied, 

here Vuze 4.0.0.4 20 

28 

Peak: many feature 
requests (average Dn) 

JBoss 



PASTA [Hautus 2002] 

• PASTA – Package structure analysis tool 

 

• Metrics  

• Similarly “fan-in/fan-out”: based on dependencies 

between packages 

• Go beyond calculating numbers of dependencies 

 

• Focus on dependencies between the subpackages 

•  Some dependencies are worse than others 

• What are the “bad dependencies”? 

• Cyclic dependencies, layering violations 
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PASTA [Hautus] 

• Idea: remove bad (cycle-

causing) dependencies 

• Weight – number of 

references from one 

subpackage to another 

one.  

• Dependencies to be 

removed are such that 

− The result is acyclic 

− The total weight of the 

dependencies removed 

is minimal 

• Minimal effort required to 

resolve all the cycles 
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Upwards dependencies should 

be removed 



From dependencies to metrics 

• PASTA(P) = Total weight 

of the dependencies  to 

be removed / total weight 

of the dependencies 

 

• No empirical validation of 

the metrics 

 

• No studies of the metrics 

evolution 
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One metric is good, more metrics are better (?) 

• [Kaur, Singh 2011] propose an adaptation… 
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)ln(2.16)(23.0)ln(2.51711 LOCgVVMI 
Halstead McCabe LOC 

• Recall… 

)ln(2.16)ln(23.02.5171 NCSCCMIP 
Related to 

PK1 and 

instability 

Related to 

NOC and NOM 

Related to 

nesting, 

strongly 

connected 

components, 

abstractness 

and PK2 



Summary so far: package metrics 

• Size: number of classes 

 

• Dependencies à la fan-in and fan-out 

• Marchesi’s UML metrics 

• Martin’s Dn: abstractness-instability balance or “the 

normalized distance from the main sequence” 

• PASTA  

 

• Next: aggregations of class metrics 
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Metrics for higher-level objects as aggregation 

of metrics for low-level objects 
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Aggregation techniques 

• Metrics-independent 

• Applicable for any metrics to be aggregated 

− Traditional: mean, median... 

− “By no means” 

− Econometric: inequality indices 

 

• Metrics-dependent 

• Produce more precise results 

• BUT: need to be redone for any new metrics 

• Based on fitting probability distributions 
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Metrics independent: Coefficient of variation 
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• Coefficient of variation: C = σ/μ 

 

• Allows to compare distributions with different means 

 

• Sometimes used to assess stability of the metrics  

− Metrics is stable for C < 0.3 

− Unreliable for small samples 

− Evolution should be studied… 

  



Metrics are like money 
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Popular technique: Gini coefficient 

• Gini coefficient measure of economic inequality 

• Ranges on [0; 1 – 1/n] 

• High values indicate high inequality 
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Gini coefficient: Formally 

• Lorenz curve:  

• % of income shared by the lower % of the population    
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A 

B 

• Gini = A/(A+B) 

• Since A+B = 0.5 

 Gini = 2A 



Gini and software metrics [Vasa et al. 2009] 
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• For most of the metrics on the benchmark systems: 0.45  

Gini  0.75  

• Higher Gini/WMC: presence of generated code or code, 

structured in a way similar to the generated code (parsers) 



Gini and metrics: Exceptions 
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System Metrics Increase Explanation 

JabRef WMC 0.75 0.91 Machine generated parser 

introduced 

Checkstyle Fan-in 

(classes) 

0.44 0.80 Plug-in based architecture 

introduced. 

Jasper-

Reports 

#Public 

methods  

0.58 0.69 Introduction of 

a set of new base classes. 

WebWork Fan-out 0.51 0.62 A large utility class and 

multiple cases of copy-and 

paste introduced. 



Gini and evolution: Spring 

• Rather stable: programmers accumulate competence 

and tend to solve similar problems by similar means 

• Similar for other econometric techniques: Theil, 

Hoover, Atkinson, ... 
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Aggregation techniques 

• Metrics-independent 

• Applicable for any metrics to be aggregated 

• Are the results also metrics-independent? 

• Based on econometrics 

 

Metrics-dependent 

• Produces more precise results 

• BUT: needs to be redone for any new metrics 

• Based on fitting probability distributions 
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Metrics-dependent aggregation: Statistical 

fitting 

1. Collect the metrics values for the lower-level 

elements 

2. Present a histogram 

3. Fit a (theoretical) probability distribution to 

describe the sample distribution 

a) Select a family of theoretical distributions 

b) Fit the parameters of the probability distribution 

c) Assess the goodness of fit 

 

4. If a theoretical distribution can be fitted, use the 

fitted parameters as the aggregated value 
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Step 1: Histograms 

• We have seen quite a number of them already! 
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Robles et al. 2006: LOC in Debian 2.0 (left) and 3.0 (right) 



Histograms are not without problems 

• Data: 50 birth weights of  children with a severe 

idiopathic respiratory syndrome  
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• The same data leads 

to four different 

“distributions” 

 

• What can affect the 

way histogram looks 

like? 

• Bin width 

• Position of the 

bin’s edges 



Kernel density estimators 

• Advantages 

• Statistically more sound (no dependency on the end-

points of the bins) 

• Produces smooth curves 

 

• Disadvantages 

• Statistically more complex 

• Parameter tuning might be a challenge 
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Kernel density estimates: Intuition 

• Data: -2.1, -1.3, -0.4, 1.9, 5.1, 6.2 
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Histogram: every value is 

a rectangle. 

Shape is a “sum” of the 

rectangles. 

-4 -2 2 4 6 8 0 

What if each value will be 

a “bump” that can be 

added together to create 

a smooth curve? 



Kernel density estimation: Formally 
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Where 

• n – number of observations 

• h – a smoothing parameter, the “bandwidth” 

• K – a weighting function, the “kernel” 

 

Histogram can be obtained using                    as K 

 

Once K is chosen one can determine the optimal h. 
-1 1 0 



Histogram as a kern density estimate 

• h is the bin width 

• x and xi are in the same bin if   

/ SET / W&I PAGE 93 13-3-2014 

11 



h

xx i

-1 1 0 



Histogram vs. Kernel density estimate 
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Step 2: fitting a distribution 

• Family of distributions is chosen based on shape 

• If the parameters fitting is not good enough try a 

different one! 
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Tamai, Nakatani. 

Negative binomial 

distribution 
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Step 3c. Goodness of fit: Pearson χ2 test 

• The test statistic 

where 

• O – observed frequency of the result i 

• E – expected frequency of the result i  

 

• Compare X2 with the theoretical χ2 distribution for 

the given number of degrees of freedom: P(χ2 > X2) 

• Degrees of freedom = number of observations – 

number of fitted parameters 

• Comparison is done based on table values 

• If the P(χ2 > X2) < threshold – the fit is good 

• Common thresholds are 0.1, 0.05 and 0.01 

 / SET / W&I PAGE 97 13-3-2014 

 






n

i i

ii

E

EO
X

1

2

2



Recapitulation: Statistical fitting 

1. Collect the metrics values for the lower-level 

elements 

2. Present a histogram 

3. Fit a (theoretical) probability distribution to 

describe the sample distribution 

a) Select a family of theoretical distributions 

b) Fit the parameters of the probability distribution 

c) Assess the goodness of fit 

 

4. If a theoretical distribution can be fitted, use the 

fitted parameters as the aggregated value 
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What about the evolution of the aggregated 

values?  

• Geometry library: Jun, 

subsystem “Geometry” 

• Tamai, Nakatani: Negative 

binomial distribution 

 

 

  

• p, k – distribution parameters  

 

 

•            - binomial coefficient 

extended to the reals 
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• Increase – functionality 

enhancement 

• Decrease – refactoring  



In general, how do we study evolution?  

• Visual inspection 

• Is this a real “trend” or just  

   noise? 
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In general, how do we study evolution?  

• Time-series analysis 

• Simplest form: linear 

    regression with time 

 

 

 

 

 

 

 

/ SET / W&I PAGE 101 13-3-2014 

Linear trend 

Significant 

Strong 

More advanced 

techniques:  

 

2DD23 - Time 

series analysis 

and forecasting 
 



Summary 

• Aggregation: 

• Metrics-independent 

− Applicable for any metrics to be aggregated 

− Traditional: mean, median... 

− “By no means” 

− Econometric: inequality indices 

 

• Metrics-dependent 

− Produce more precise results 

− BUT: need to be redone for any new metrics 

− Based on fitting probability distributions 
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Measuring change: Churn metrics 

• Why? Past evolution to predict future evolution  

 

• Code Churn [Lehman, Belady 1985]: 

• Amount of code change taking place within a software 

unit over time 

 

• Code Churn metrics [Nagappan, Bell 2005]: 
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Absolute: 

Churned LOC, Deleted LOC, 

File Count, Weeks of Churn, 

Churn Count, Files Churned 

Relative: 



Case Study: Windows Server 2003 

• Analyze Code Churn between WS2003 and WS2003-

SP1 to predict defect density in WS2003-SP1 

• 40 million LOC, 2000 binaries 

• Use absolute and relative churn measures 

 

• Conclusion 1: Absolute measures are no good 

• R2 < 0.05  

 

• Conclusion 2: Relative measures are good! 

• An increase in relative code churn measures is 

accompanied by an increase in system defect density 

• R2  0.8 

/ Mathematics and Computer Science PAGE 104 13-3-2014 



Case Study: Windows Server 2003 
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• Construct a statistical 

model 

• Training set: 2/3 of the 

Windows  Set binaries 

• Check the quality of the 

prediction  

• Test set: remaining 

binaries 

• Three models 

• Right: all relative churn 

metrics are taken into 

account 



Open issues 

• To predict bugs from history, but we need a history 

filled with bugs to do so 

• Ideally, we don’t have such a history 

 

• We would like to learn from previous projects: 

• Can we make predictions without history? 

• How can we leverage knowledge between projects? 

• Are there universal properties? 

• Not just code properties but also properties of the 

entire software process 
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Conclusions 

• Package metrics 

• Directly defined: Dn, Marchesi metrics, PASTA 

• Results of aggregation 

 

• Churn metrics 
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