
2IS55 Software Evolution

Software metrics

Alexander Serebrenik

Assignments

• Assignment 3: deadline – March 17!

• Assignment 4: testing

• Assignment 5:

• Do software evolution laws hold in practice?

• Use software metrics to instrument and verify the claim

• Preprocessed datasets

/ SET / W&I PAGE 1 13-3-2014

Recall…

• Metric:

• “A quantitative measure of the degree to which a system,

component, or process possesses a given variable. ” ---

IEEE Standard 610.12-1990

• “A software metric is any type of measurement which

relates to a software system, process or related

documentation.” --- Ian Sommerville, Software Eng. 2006

• Short: mapping of software artefacts to a well-known

domain

/ SET / W&I PAGE 2 13-3-2014

Metrics and scales

• What metrics have we seen so far?

• Size: LOC, SLOC

• Code duplication: POP, RNR, …

• Requirements: Flesch-Kincaid grade level

/ SET / W&I PAGE 3 13-3-2014

Imple-
mentation
language

Priorities
(high >
middle >
low)

Tempe-
rature (C,
F)

m  ft #developers

To what

scale does

it belong?

Classification of metrics [à la Fenton, Pfleeger 1996]

/ SET / W&I PAGE 4 13-3-2014

Metrics

Size Length (S)LOC

Number of
files, classes

Amount of
functionality

Structure

Control flow

Data flow

Modularity

Program length (LOC)

• Variants:

• Total

• Non-blank

• SLOC (source LOC): Ignore comments and blank lines

• LLOC (logical LOC): Number of program statements

/ SET / W&I PAGE 5 13-3-2014

1 for (i = 0;

2 i < 100;

3 i += 1) {

4 printf("hello");

5 }

6

7 /* An important loop */

Total LOC: 7

Non-blank LOC: 6

SLOC: 5

LLOC: 2 (for and printf)

Advantages of (S)LOC

• Related to Lehman’s law of “continuous growth” (Law 6)

• Easy to calculate

• LLOC is more difficult to determine (parser needed)

• What happens with nested statements? for(i=0;i<10;i++)?

• Correlation with the #bugs

• Moderate (0.4-0.5) [Rosenberg 1997, Zhang 2009]

• Larger modules usually have more bugs

− “Ranking ability of LOC” [Fenton and Ohlsson 2000 , Zhang 2009]

• There are better (but more complex) ways to predict #bugs

• Can be used to predict the development effort!

/ SET / W&I PAGE 6 13-3-2014

Disadvantages of (S)LOC

• Ignores structure of the program

• Program code is more than just text!

• Difficult to compare modules in different languages

or written by different developers

• Some languages are more verbose due to

− Presence/absence of “built-in” functionality

− Structural verbosity (e.g., .h in C)

• Some developers are paid per LOC!

• Hand-written vs. generated code

/ SET / W&I PAGE 7 13-3-2014

(S)LOC distribution

• Distribution of SLOC in Debian 2.0 (left) and 3.0 (right)

• Controversy: log-normal or double Pareto?

• Importance: knowing distribution one can estimate the

probability to obtain files of a given size

• Hence, to estimate size of the entire system

• And the effort required (size  effort)

/ SET / W&I PAGE 8 13-3-2014

Robles et al. 2006

What do we know about evolution of SLOC?

• Related to Lehman’s 6:

• The functional capability <…> must be continually

enhanced to maintain user satisfaction over system

lifetime.

• Earlier versions: “size”.

• Also related to Lehman’s 5:

• In general, the incremental growth (growth rate trend)

of E-type systems is constrained by the need to

maintain familiarity.

• Lehman interpreted this as linear growth

/ SET / W&I PAGE 9 13-3-2014

What do we know about evolution of SLOC?

/ SET / W&I PAGE 10 13-3-2014

Linear

Exponential?

Polynomial?

• Godfrey and Tu: superlinear growth is typical for OS

• Koch 2007: Quadratic growth is better for larger

OS projects (study of 8621 OS projects on

SourceForge)

LOC in Linux kernel

/ SET / W&I PAGE 11 13-3-2014

• Scacchi – mix of

superlinear and

sublinear

• Israeli, Feitelson:

• Linux kernel

• Multiple versions and

variants

− Production (blue

dashed)

− Development (red)

− Current 2.6 (green)
Superlinear up to 2.5,

linear for 2.6

(S)LOC: Summary

• Different variants: LOC, SLOC, LLOC

• Advantages:

• Easy to compute, moderately correlates with #bugs

• Can be used to estimate the development effort (more

details on May 15)

• Disadvantages

• Different programming languages and developers

• Hand-written vs. generated code

• Distribution “exponential-like”

• Evolution:

• Linear

• Linux (other OS?): Superlinear

• Mix
/ SET / W&I PAGE 12 13-3-2014

Length: #components

• Number of files, classes, packages

• Intuitive: “number of volumes in an encyclopaedia”

• Variants:

• All files, classes, packages

• No empty/library/third-party files, classes, packages

• No nested/inner classes

• No or only some auxiliary files (makefiles, header files)

• Correlation with the #post-release defects [Nagappan,

Ball, Zeller 2006]

• significant for modules A, B, C (strength:0.5-0.7),

insignificant for modules D, E

• for each module correlation with some other metrics!

 / SET / W&I PAGE 13 13-3-2014

So far

• x

/ SET / W&I PAGE 14 13-3-2014

Metrics

Size Length (S)LOC

Number of
files, classes

Amount of
functionality

Structure

Control flow

Data flow

Modularity

Complexity metrics: Halstead (1977)

• Sometimes is classified as size rather than complexity

• Unit of measurement

/ SET / W&I PAGE 15 13-3-2014

Line: LOC,

SLOC, LLOC

Units, files,

classes

Parts of a

statement:

operators

and operands

Packages,

directories

• Operators:

• traditional (+,++, >), keywords (return, if, continue)

• Operands

• identifiers, constants

Halstead metrics

/ SET / W&I PAGE 16 13-3-2014

• Length: N = N1 + N2

• Vocabulary: n = n1 + n2

• Volume: V = N log2n

• Insensitive to lay-out

• VerifySoft:

− 20  Volume(function)  1000

− 100  Volume(file)  8000

Total Unique

Operators N1 n1

Operands N2 n2

• Four basic metrics of Halstead

Halstead metrics: Example

void sort (int *a, int n) {

int i, j, t;

 if (n < 2) return;

 for (i=0 ; i < n-1; i++) {

 for (j=i+1 ; j < n ; j++) {

 if (a[i] > a[j]) {

 t = a[i];

 a[i] = a[j];

 a[j] = t;

 }

 }

 }

}
/ SET / W&I PAGE 17 13-3-2014

• Ignore the function definition

• Count operators and operands

Total Unique

Operators N1 = 50 n1 = 17

Operands N2 = 30 n2 = 7

V = 80 log2(24)  392

Inside the boundaries [20;1000]

Further Halstead metrics

• Volume: V = N log2n

• Difficulty: D = (n1 / 2) * (N2 / n2)

• Sources of difficulty: new operators and repeated

operands

• Example: 17/2 * 30/7  36

• Effort: E = V * D

• Time to understand/implement (sec): T = E/18

• Running example: 793 sec  13 min

• Does this correspond to your experience?

• Bugs delivered: E2/3/3000

• For C/C++: known to underapproximate

• Running example: 0.19

/ SET / W&I PAGE 18 13-3-2014

Total Unique

Operators N1 n1

Operands N2 n2

Halstead metrics are sensitive to…

• What would be your answer?

• Syntactic sugar:

• Solution: normalization (see the code duplication

slides)

/ SET / W&I PAGE 19 13-3-2014

i = i+1 Total Unique

Operators N1 = 2 n1 = 2

Operands N2 = 3 n2 = 2

i++ Total Unique

Operators N1 = 1 n1 = 1

Operands N2 = 1 n2 = 1

Structural complexity

• Structural complexity:

• Control flow

• Data flow

• Modularity

/ SET / W&I PAGE 20 13-3-2014

Commonly

represented

as graphs

Graph-

based

metrics

• Number of vertices

• Number of edges

• Maximal length

(depth)

McCabe’s complexity (1976)

In general

• v(G) = #edges - #vertices + 2

For control flow graphs

• v(G) = #binaryDecisions + 1, or

• v(G) = #IFs + #LOOPs + 1

Number of paths in the control flow graph.

A.k.a. “cyclomatic complexity”

Each path should be tested!

v(G) – a testability metrics

/ SET / W&I PAGE 21 13-3-2014

Boundaries

• v(function)  15

• v(file)  100

McCabe’s complexity: Example

void sort (int *a, int n) {

int i, j, t;

 if (n < 2) return;

 for (i=0 ; i < n-1; i++) {

 for (j=i+1 ; j < n ; j++) {

 if (a[i] > a[j]) {

 t = a[i];

 a[i] = a[j];

 a[j] = t;

 }

 }

 }

}
/ SET / W&I PAGE 22 13-3-2014

• Count IFs and LOOPs

• IF: 2, LOOP: 2

• v(G) = 5

• Structural complexity

Question to you

• Is it possible that the McCabe’s complexity is higher

than the number of possible execution paths in the

program?

• Lower than this number?

/ SET / W&I PAGE 23 13-3-2014

McCabe’s complexity in Linux kernel

/ SET / W&I PAGE 24 13-3-2014

A. Israeli, D.G. Feitelson 2010

• Linux kernel

• Multiple

versions and

variants

• Production

(blue dashed)

• Development

(red)

• Current 2.6

(green)

McCabe’s complexity in Mozilla [Røsdal 2005]

• Most of the modules have low cyclomatic complexity

• Complexity of the system seems to stabilize

/ SET / W&I PAGE 25 13-3-2014

Summarizing: Maintainability index (MI)
[Coleman, Oman 1994]

• MI2 can be used only if comments

are meaningful

• If more than one module is

considered – use average values

for each one of the parameters

• Parameters were estimated by

fitting to expert evaluation

• BUT: few middle-sized systems!
/ SET / W&I PAGE 26 13-3-2014

)ln(2.16)(23.0)ln(2.51711 LOCgVVMI 
Halstead McCabe LOC

perCMMIMI 46.2sin5012 

% comments

85

65

0

McCabe complexity: Example

void sort (int *a, int n) {

int i, j, t;

 if (n < 2) return;

 for (i=0 ; i < n-1; i++) {

 for (j=i+1 ; j < n ; j++) {

 if (a[i] > a[j]) {

 t = a[i];

 a[i] = a[j];

 a[j] = t;

 }

 }

 }

}
/ SET / W&I PAGE 27 13-3-2014

• Halstead’s V  392

• McCabe’s v(G) = 5

• LOC = 14

• MI1  96

• Easy to maintain!

Comments?

Peaks:

• 25% (OK),

• 1% and

81% - ???

/ SET / W&I PAGE 28 13-3-2014

[Liso 2001]

Better:

• 0.12  K  0.2

perCM46.2sin50

Another alternative:

• Percentage as a fraction

[0;1] – [Thomas 2008, Ph.D. thesis]

• The more comments – the

better?

/ SET / W&I PAGE 29 13-3-2014

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

5
0

percentage of comments

M
I

c
o
n
tr

ib
u
ti
o
n

Evolution of the maintainability index in Linux

• Size, Halstead

volume and

McCabe

complexity

decrease

• % comments

decreases as well

• BUT they use the

[0;1] definition, so

the impact is

limited

/ SET / W&I PAGE 30 13-3-2014

A. Israeli, D.G. Feitelson 2010

What about modularity?

• Squares are modules, lines are calls,

ends of the lines are functions.

• Which design is better?

/ SET / W&I PAGE 31 13-3-2014

Design A Design B • Cohesion: calls

inside the

module

• Coupling: calls

between the

modules

A B

Cohesion Lo Hi

Coupling Hi Lo

Do you remember?

• Many intra-package dependencies: high cohesion

• Few inter-package dependencies: low coupling

• Joint measure

/ SET / W&I PAGE 32 13-3-2014

2

i

i
i

N
A




 1


ii

i
i

NN
A


or

ji

ji

ji
NN

E
2

,

,







  


1

1 1

,

1)1(

21 k

i

k

ij

ji

k

i

i E
kk

A
k

MQ k - Number of

packages

Modularity metrics: Fan-in and Fan-out

• Fan-in of M: number of

modules calling functions

in M

• Fan-out of M: number of

modules called by M

• Modules with fan-in = 0

• What are these modules?

• Dead-code

• Outside of the system

boundaries

• Approximation of the “call”

relation is imprecise

/ SET / W&I PAGE 33 13-3-2014

Henry and Kafura’s information flow

complexity [HK 1981]

• Fan-in and fan-out can be defined for procedures

• HK: take global data structures into account:

− read for fan-in,

− write for fan-out

• Henry and Kafura: procedure as HW component

connecting inputs to outputs

• Shepperd

/ SET / W&I PAGE 34 13-3-2014

2)*(* fanoutfaninslochk 

2)*(fanoutfanins 

Information flow complexity of Unix

procedures

• Solid – #procedures within

the complexity range

• Dashed - #changed

procedures within the

complexity range

• Highly complex procedures

are difficult to change but

they are changed often!

• Complexity comes from the

three largest procedures

/ SET / W&I PAGE 35 13-3-2014

1e+00 1e+02 1e+04 1e+06

0
1
0

2
0

3
0

4
0

Henry-Kafura complexity

F
re

q
u
e
n
cy

Evolution of the information flow complexity

• Mozilla

• Shepperd

version

• Above: Σ

the metrics

over all

modules

• Below: 3

largest

modules

• What does

this tell?

/ SET / W&I PAGE 36 13-3-2014

Summary so far…

• Complexity metrics

• Halstead’s effort

• McCabe (cyclomatic)

• Henry Kafura/Shepperd

(information flow)

• Are these related?

• And what about bugs?

• Harry,Kafura,Harris 1981

• 165 Unix procedures

• What does this tell us?

/ SET / W&I PAGE 37 13-3-2014

Bugs

Halstead

McCabe HK

0.95 0.96
0.89

0.84

0.36

0.38

From imperative to OO

• All metrics so far were designed for imperative

languages

• Applicable for OO

− On the method level

− Also

− Number of files  number of classes/packages

− Fan-in  afferent coupling (Ca)

− Fan-out  efferent coupling (Ce)

• But do not reflect OO-specific complexity

− Inheritance, class fields, abstractness, …

• Popular metric sets

• Chidamber and Kemerer, Li and Henry, Lorenz and

Kidd, Abreu, Martin

/ SET / W&I PAGE 39 13-3-2014

Chidamber and Kemerer

• WMC – weighted methods per class

• Sum of metrics(m) for all methods m in class C

• DIT – depth of inheritance tree

• java.lang.Object? Libraries?

• NOC – number of children

• Direct descendents

• CBO – coupling between object classes

• A is coupled to B if A uses methods/fields of B

• CBO(A) = | {B|A is coupled to B} |

• RFC - #methods that can be executed in response to

a message being received by an object of that class.

/ SET / W&I PAGE 40 13-3-2014

Chidamber and Kemerer

• WMC – weighted methods per class

• Sum of metrics(m) for all methods m in class C

• Popular metrics: McCabe’s complexity and unity

• WMC/unity = number of methods

• Statistically significant correlation with the number of

defects

/ SET / W&I PAGE 41 13-3-2014

• WMC/unity

• Dark: Basili et al.

• Light: Gyimothy

et al. [Mozilla 1.6]

• Red: High-

quality NASA

system

Chidamber and Kemerer

• WMC – weighted methods per class

• Sum of metrics(m) for all methods m in class C

• Popular metrics: McCabe’s complexity and unity

• WMC/unity = number of methods

• Statistically significant correlation with the number of

defects

/ SET / W&I PAGE 42 13-3-2014

• WMC/unity

• Gyimothy et al.

• Average

Depth of inheritance - DIT

• Variants: Were to start and what classes to include?

• 1, JFrame is a library class, excluded

• 2, JFrame is a library class, included

• 7

/ SET / W&I PAGE 43 13-3-2014

JFrame MyFrame

java.awt.F

rame

java.awt.

Window

java.lang.

Object

java.awt.C

omponent

java.awt.C

ontainer

DIT – what is good and what is bad?

• Three NASA systems

• What can you say about the use of inheritance in

systems A, B and C?

• Observation: quality assessment depends not just

on one class but on the entire distribution
/ SET / W&I PAGE 44 13-3-2014

Average DIT in Mozilla

• How can you explain the decreasing trend?

/ SET / W&I PAGE 45 13-3-2014

Other CK metrics

• NOC – number of

children

• CBO – coupling between

object classes

• RFC - #methods that can

be executed in response

to a message being

received by an object of

that class.

• More or less

“exponentially”

distributed

 / SET / W&I PAGE 46 13-3-2014

Significance of CK metrics to

predict the number of faults

Modularity metrics: LCOM

• LCOM – lack of cohesion of

methods

• Chidamber Kemerer:

where

• P = #pairs of distinct methods in C

that do not share instance

variables

• Q = #pairs of distinct methods in C

that share instance variables

 / SET / W&I PAGE 47 13-3-2014



 


otherwise0

 if
)(

QPQP
CLCOM

[BBM] 180 classes

Discriminative ability

is insufficient

What about methods

that use get/set

instead of direct

access?

First solution: LCOMN

• Defined similarly to LCOM but allows negative values

/ SET / W&I PAGE 48 13-3-2014

QPCLCOMN )(

LCOM LCOMN

Still…

/ SET / W&I PAGE 49 13-3-2014

• Method * method tables

• Light blue: Q, dark blue: P

• Calculate the LCOMs

• Does this correspond to your intuition?

Henderson-Sellers, Constantine and Graham 1996

• m – number of methods

• v – number of variables (attrs)

• m(Vi) - #methods that access Vi

/ SET / W&I PAGE 50 13-3-2014

m

mVm
v

v

i

i














1

)(
1

1

• Cohesion is maximal: all methods access all variables

 and

• No cohesion: every method accesses a unique variable

 and

• Can LCOM exceed 1?

mVm i )(0LCOM

1)(iVm 1LCOM

LCOM > 1?

/ SET / W&I PAGE 51 13-3-2014

• If some variables are not accessed at all, then

and if no variables are accessed

Hence

 LCOM is undefined for m = 1

 LCOM  2

1

1
1

11

)(
1

1






















mm

m

m

mVm
v

v

i

i

0)(iVm

Evolution of LCOM [Henderson-Sellers et al.]

• Project 6 (commercial human resource system)

suggests stabilization, but no similar conclusion can

be made for other projects

/ SET / W&I PAGE 52 13-3-2014

Sato, Goldman,

Kon 2007

Shortcomings of LCOM [Henderson-Sellers]

• Method-variable diagrams: dark

spot = access

• LCOM(A) ? LCOM(B) ?LCOM(C) ?

/ SET / W&I PAGE 53 13-3-2014

A Variables

M

et

ho

ds

B Variables

M

et

ho

ds

C Variables

M

et

ho

ds

m

mVm
v

v

i

i














1

)(
1

1

Due to [Fernández, Peña 2006]

Shortcomings of LCOM [Henderson-Sellers]

• All LCOM values are the same: 0.67

− m=4, m(Vi) = 2 for all i

• A seems to be less cohesive than

B and C!

/ SET / W&I PAGE 54 13-3-2014

A Variables

M

et

ho

ds

B Variables

M

et

ho

ds

C Variables

M

et

ho

ds

m

mVm
v

v

i

i














1

)(
1

1

Due to [Fernández, Peña 2006]

Alternative [Hitz, Montazeri 1995]

• LCOM as the number of strongly

connected components in the

following graph

• Vertices: methods

− except for getters/setters

• Edge between a and b, if

− a and b access the same variable

• LCOM values

• 0, no methods

• 1, cohesive component

• 2 or more, lack of cohesion

/ SET / W&I PAGE 55 13-3-2014

Alternative [Hitz, Montazeri 1995]

• LCOM as the number of strongly

connected components in the

following graph

• Vertices: methods

− except for getters/setters

• Edge between a and b, if

− a and b access the same variable

• LCOM values

• 0, no methods

• 1, cohesive component

• 2 or more, lack of cohesion

/ SET / W&I PAGE 56 13-3-2014

A Variables

M

et

ho

ds

B Variables

M

et

ho

ds

Question: LCOM?

Experimental evaluation of LCOM variants

Cox, Etzkorn and

Hughes 2006

Correlation with expert assessment

Group 1 Group 2

Chidamber Kemerer -0.43 (p = 0.12) -0.57 (p = 0.08)

Henderson-Sellers -0.44 (p = 0.12) -0.46 (p = 0.18)

Hitz, Montazeri -0.47 (p = 0.06) -0.53 (p = 0.08)

/ SET / W&I PAGE 57 13-3-2014

Etzkorn, Gholston,

Fortune, Stein,

Utley, Farrington,

Cox

Correlation with expert assessment

Group 1 Group 2

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8)

Henderson-Sellers -0.44 (rating 7/8) -0.45 (rating 7/8)

Hitz, Montazeri -0.51 (rating 2/8) -0.54 (rating 5/8)

LCC and TCC [Bieman, Kang 1994]

• Recall: LCOM HM “a and b access the same variable”

• What if a calls a’, b calls b’, and a’ and b’ access the

same variable?

• Metrics

• NDP – number of pairs of methods directly

accessing the same variable

• NIP – number of pairs of methods directly or

indirectly accessing the same variable

• NP – number of pairs of methods: n(n-1)/2

• Tight class cohesion TCC = NDP/NP

• Loose class cohesion LCC = NIP/NP

• NB: Constructors and destructors are excluded

/ SET / W&I PAGE 58 13-3-2014

Experimental evaluation of LCC/TCC

/ SET / W&I PAGE 60 13-3-2014

Etzkorn, Gholston,

Fortune, Stein, Utley,

Farrington, Cox

Correlation with expert assessment

Group 1 Group 2

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8)

Henderson-Sellers -0.44 (rating 7/8) -0.45 (rating 7/8)

Hitz, Montazeri -0.51 (rating 2/8) -0.54 (rating 5/8)

TCC -0.22 (rating 8/8) -0.057 (rating 8/8)

LCC -0.54 (rating 1/8) -0.73 (rating 1.5/8)

Metrics so far…

/ SET / W&I PAGE 61 13-3-2014

Level Metrics

Method LOC, McCabe

Class WMC, NOC, DIT, LCOM (and

variants), LCC/TCC

Packages ???

Package metrics

• Size:

• number of classes/interfaces

• number of classes in the subpackages

• Dependencies

• visualization

• à la fan-in and fan-out

− Marchesi’s UML metrics

− Martin’s Dn: abstractness-instability balance or “the

normalized distance from the main sequence”

− PASTA

• Aggregations of class metrics

/ SET / W&I PAGE 62 13-3-2014

PAGE 63

“Fan-out”

[Martin 1994] [Martin 2000] [JDepend]

Ce:

[Marchesi 1998]

PK1 or R:
[Martin 2000]

Fan-in

• “Fan-in” similarly to the “Fan-out”

• Afferent coupling (Martin)

• PK2 (Marchesi)

/ SET / W&I PAGE 64 13-3-2014

• Dark: TDD, light: no-TDD

• Test-driven development

positively affects Ca

• The lower Ca - the better.

• Exception: JUnit vs.

Jerico

• But Jericho is extremely

small (2 packages)

 [Hilton 2009]

More fan-in and fan-out

• “Fan-in” similarly to the “Fan-out”

• Afferent coupling (Martin)

• PK2 (Marchesi)

• Validation

/ SET / W&I PAGE 65 13-3-2014

Marchesi Man-

months

#Pack avg(PK1)

Railway

simulator

13 6 8.7

Warehouse

management

7 5 5.0

CASE tool 13 5 8.1

SAP

(Herzig)

Correlation

post-release

defects

Afferent 0.091

Efferent

[Martin

2000]

0.157

Class-in 0.084

Class-out 0.086

Fan-in 0.287

Fan-out 0.148

Evolution of afferent and efferent coupling

• Almost all systems show an increasing trend (Lehman’s

growing complexity)

• Project 7 (workflow system) is almost stable but very high!

• Outsourced development

• No automated tests

• Severe maintainability problems

/ SET / W&I PAGE 66 13-3-2014

Sato,

Goldman,

Kon 2007

PAGE 67

Package metrics: Stability

• Stable packages
• Do not depend upon

classes outside

• Many dependents

• Should be extensible via
inheritance (abstract)

• Instable packages
• Depend upon many

classes outside

• No dependents

• Should not be extensible
via inheritance (concrete)

Stability is related to the amount of work required to make

a change [Martin, 2000].

What does balance mean?

PAGE 68

A good real-life package must be instable

enough in order to be easily modified

It must be generic enough to be adaptable to

evolving requirements, either without or with only

minimal modifications

Hence: contradictory criteria

PAGE 69

Dn – Distance from the main sequence

Abstractness =

#AbstrClasses/#Classes

Instability =
Ce/(Ce+Ca)

1

1
0

Dn =

 | Abstractness +

 Instability – 1 |

main sequence
zone of pain

zone of

uselessness

[R.Martin 1994]

Normalized distance from the main sequence

/ SET / W&I PAGE 70 13-3-2014

• Dark: TDD, light: no-TDD

• Test-driven development

positively affects Dn

• The lower Dn - the better.

• The same exception

(Jericho vs. JUnit)

[Hilton 2009]

PAGE 71

Distribution and evolution

Exponential

distribution

For all benchmark

systems studied,

here Vuze 4.0.0.4 20

28

Peak: many feature
requests (average Dn)

JBoss

PASTA [Hautus 2002]

• PASTA – Package structure analysis tool

• Metrics

• Similarly “fan-in/fan-out”: based on dependencies

between packages

• Go beyond calculating numbers of dependencies

• Focus on dependencies between the subpackages

• Some dependencies are worse than others

• What are the “bad dependencies”?

• Cyclic dependencies, layering violations

/ SET / W&I PAGE 72 13-3-2014

PASTA [Hautus]

• Idea: remove bad (cycle-

causing) dependencies

• Weight – number of

references from one

subpackage to another

one.

• Dependencies to be

removed are such that

− The result is acyclic

− The total weight of the

dependencies removed

is minimal

• Minimal effort required to

resolve all the cycles

/ SET / W&I PAGE 73 13-3-2014

Upwards dependencies should

be removed

From dependencies to metrics

• PASTA(P) = Total weight

of the dependencies to

be removed / total weight

of the dependencies

• No empirical validation of

the metrics

• No studies of the metrics

evolution

/ SET / W&I PAGE 74 13-3-2014

One metric is good, more metrics are better (?)

• [Kaur, Singh 2011] propose an adaptation…

/ SET / W&I PAGE 75 13-3-2014

)ln(2.16)(23.0)ln(2.51711 LOCgVVMI 
Halstead McCabe LOC

• Recall…

)ln(2.16)ln(23.02.5171 NCSCCMIP 
Related to

PK1 and

instability

Related to

NOC and NOM

Related to

nesting,

strongly

connected

components,

abstractness

and PK2

Summary so far: package metrics

• Size: number of classes

• Dependencies à la fan-in and fan-out

• Marchesi’s UML metrics

• Martin’s Dn: abstractness-instability balance or “the

normalized distance from the main sequence”

• PASTA

• Next: aggregations of class metrics

/ SET / W&I PAGE 76 13-3-2014

Metrics for higher-level objects as aggregation

of metrics for low-level objects

PAGE 77

Aggregation techniques

• Metrics-independent

• Applicable for any metrics to be aggregated

− Traditional: mean, median...

− “By no means”

− Econometric: inequality indices

• Metrics-dependent

• Produce more precise results

• BUT: need to be redone for any new metrics

• Based on fitting probability distributions

/ SET / W&I PAGE 78 13-3-2014

Metrics independent: Coefficient of variation

/ SET / W&I PAGE 79 13-3-2014

• Coefficient of variation: C = σ/μ

• Allows to compare distributions with different means

• Sometimes used to assess stability of the metrics

− Metrics is stable for C < 0.3

− Unreliable for small samples

− Evolution should be studied…

Metrics are like money

PAGE 80

0

200

400

600

800

1000

1200

1400

1600

1800

2000

software metrics

econometric

values

poor rich • region

• education

• gender

• …

• prog. lang.

• domain

• …

/ SET / W&I / TU/e

Popular technique: Gini coefficient

• Gini coefficient measure of economic inequality

• Ranges on [0; 1 – 1/n]

• High values indicate high inequality

/ SET / W&I PAGE 81 13-3-2014

Gini coefficient: Formally

• Lorenz curve:

• % of income shared by the lower % of the population

/ SET / W&I PAGE 82 13-3-2014

A

B

• Gini = A/(A+B)

• Since A+B = 0.5

 Gini = 2A

Gini and software metrics [Vasa et al. 2009]

/ SET / W&I PAGE 83 13-3-2014

• For most of the metrics on the benchmark systems: 0.45 

Gini  0.75

• Higher Gini/WMC: presence of generated code or code,

structured in a way similar to the generated code (parsers)

Gini and metrics: Exceptions

/ SET / W&I PAGE 84 13-3-2014

System Metrics Increase Explanation

JabRef WMC 0.75 0.91 Machine generated parser

introduced

Checkstyle Fan-in

(classes)

0.44 0.80 Plug-in based architecture

introduced.

Jasper-

Reports

#Public

methods

0.58 0.69 Introduction of

a set of new base classes.

WebWork Fan-out 0.51 0.62 A large utility class and

multiple cases of copy-and

paste introduced.

Gini and evolution: Spring

• Rather stable: programmers accumulate competence

and tend to solve similar problems by similar means

• Similar for other econometric techniques: Theil,

Hoover, Atkinson, ...

/ SET / W&I PAGE 85 13-3-2014

Aggregation techniques

• Metrics-independent

• Applicable for any metrics to be aggregated

• Are the results also metrics-independent?

• Based on econometrics

Metrics-dependent

• Produces more precise results

• BUT: needs to be redone for any new metrics

• Based on fitting probability distributions

/ SET / W&I PAGE 86 13-3-2014

Metrics-dependent aggregation: Statistical

fitting

1. Collect the metrics values for the lower-level

elements

2. Present a histogram

3. Fit a (theoretical) probability distribution to

describe the sample distribution

a) Select a family of theoretical distributions

b) Fit the parameters of the probability distribution

c) Assess the goodness of fit

4. If a theoretical distribution can be fitted, use the

fitted parameters as the aggregated value

/ SET / W&I PAGE 87 13-3-2014

Step 1: Histograms

• We have seen quite a number of them already!

/ SET / W&I PAGE 88 13-3-2014

Robles et al. 2006: LOC in Debian 2.0 (left) and 3.0 (right)

Histograms are not without problems

• Data: 50 birth weights of children with a severe

idiopathic respiratory syndrome

/ SET / W&I PAGE 89 13-3-2014

• The same data leads

to four different

“distributions”

• What can affect the

way histogram looks

like?

• Bin width

• Position of the

bin’s edges

Kernel density estimators

• Advantages

• Statistically more sound (no dependency on the end-

points of the bins)

• Produces smooth curves

• Disadvantages

• Statistically more complex

• Parameter tuning might be a challenge

/ SET / W&I PAGE 90 13-3-2014

Kernel density estimates: Intuition

• Data: -2.1, -1.3, -0.4, 1.9, 5.1, 6.2

/ SET / W&I PAGE 91 13-3-2014

Histogram: every value is

a rectangle.

Shape is a “sum” of the

rectangles.

-4 -2 2 4 6 8 0

What if each value will be

a “bump” that can be

added together to create

a smooth curve?

Kernel density estimation: Formally

/ SET / W&I PAGE 92 13-3-2014











 


n

i

i

h

xx
K

nh
xf

1

1
)(

Where

• n – number of observations

• h – a smoothing parameter, the “bandwidth”

• K – a weighting function, the “kernel”

Histogram can be obtained using as K

Once K is chosen one can determine the optimal h.
-1 1 0

Histogram as a kern density estimate

• h is the bin width

• x and xi are in the same bin if

/ SET / W&I PAGE 93 13-3-2014

11 



h

xx i

-1 1 0

Histogram vs. Kernel density estimate

/ SET / W&I PAGE 94 13-3-2014

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

Kernel density estimate

N = 425 Bandwidth = 0.03203

D
e
n
s
it
y

Histogram

Vuse4004

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Step 2: fitting a distribution

• Family of distributions is chosen based on shape

• If the parameters fitting is not good enough try a

different one!

/ SET / W&I PAGE 95 13-3-2014

Tamai, Nakatani.

Negative binomial

distribution

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

Dn

D
e
n
s
it
y

S, Roubtsov, vd Brand

Exponential distribution

Step 3c. Goodness of fit: Pearson χ2 test

• The test statistic

where

• O – observed frequency of the result i

• E – expected frequency of the result i

• Compare X2 with the theoretical χ2 distribution for

the given number of degrees of freedom: P(χ2 > X2)

• Degrees of freedom = number of observations –

number of fitted parameters

• Comparison is done based on table values

• If the P(χ2 > X2) < threshold – the fit is good

• Common thresholds are 0.1, 0.05 and 0.01

 / SET / W&I PAGE 97 13-3-2014

 






n

i i

ii

E

EO
X

1

2

2

Recapitulation: Statistical fitting

1. Collect the metrics values for the lower-level

elements

2. Present a histogram

3. Fit a (theoretical) probability distribution to

describe the sample distribution

a) Select a family of theoretical distributions

b) Fit the parameters of the probability distribution

c) Assess the goodness of fit

4. If a theoretical distribution can be fitted, use the

fitted parameters as the aggregated value

/ SET / W&I PAGE 98 13-3-2014

What about the evolution of the aggregated

values?

• Geometry library: Jun,

subsystem “Geometry”

• Tamai, Nakatani: Negative

binomial distribution

• p, k – distribution parameters

• - binomial coefficient

extended to the reals

/ SET / W&I PAGE 99 13-3-2014

kxk pp
k

x
xf 












)1(

1

1
)(














1

1

k

x

• Increase – functionality

enhancement

• Decrease – refactoring

In general, how do we study evolution?

• Visual inspection

• Is this a real “trend” or just

 noise?

/ SET / W&I PAGE 100 13-3-2014

In general, how do we study evolution?

• Time-series analysis

• Simplest form: linear

 regression with time

/ SET / W&I PAGE 101 13-3-2014

Linear trend

Significant

Strong

More advanced

techniques:

2DD23 - Time

series analysis

and forecasting

Summary

• Aggregation:

• Metrics-independent

− Applicable for any metrics to be aggregated

− Traditional: mean, median...

− “By no means”

− Econometric: inequality indices

• Metrics-dependent

− Produce more precise results

− BUT: need to be redone for any new metrics

− Based on fitting probability distributions

 / SET / W&I PAGE 102 13-3-2014

Measuring change: Churn metrics

• Why? Past evolution to predict future evolution

• Code Churn [Lehman, Belady 1985]:

• Amount of code change taking place within a software

unit over time

• Code Churn metrics [Nagappan, Bell 2005]:

/ Mathematics and Computer Science PAGE 103 13-3-2014

Absolute:

Churned LOC, Deleted LOC,

File Count, Weeks of Churn,

Churn Count, Files Churned

Relative:

Case Study: Windows Server 2003

• Analyze Code Churn between WS2003 and WS2003-

SP1 to predict defect density in WS2003-SP1

• 40 million LOC, 2000 binaries

• Use absolute and relative churn measures

• Conclusion 1: Absolute measures are no good

• R2 < 0.05

• Conclusion 2: Relative measures are good!

• An increase in relative code churn measures is

accompanied by an increase in system defect density

• R2  0.8

/ Mathematics and Computer Science PAGE 104 13-3-2014

Case Study: Windows Server 2003

/ Mathematics and Computer Science PAGE 105 13-3-2014

• Construct a statistical

model

• Training set: 2/3 of the

Windows Set binaries

• Check the quality of the

prediction

• Test set: remaining

binaries

• Three models

• Right: all relative churn

metrics are taken into

account

Open issues

• To predict bugs from history, but we need a history

filled with bugs to do so

• Ideally, we don’t have such a history

• We would like to learn from previous projects:

• Can we make predictions without history?

• How can we leverage knowledge between projects?

• Are there universal properties?

• Not just code properties but also properties of the

entire software process

/ Mathematics and Computer Science PAGE 106 13-3-2014

Conclusions

• Package metrics

• Directly defined: Dn, Marchesi metrics, PASTA

• Results of aggregation

• Churn metrics

/ SET / W&I PAGE 107 13-3-2014

