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Cast of Our Heroes

● Alice, system administrator

● Bernd, forensic investigator

● Charlotte, financial engineer

● Daniel, multi-core specialist

● Elisabeth, model-driven engineering specialist
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Meet Alice

● Alice is security administrator at a large online 
marketplace 

● Objective: look for security breaches

● Solution: 

● Extract relevant information from system log files, 
e.g. failed login attempts in Secure Shell

● Extract IP address, login name, frequency, …

● Synthesize a security report
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Meet Bernd

● Bernd: investigator at German forensic lab

● Objective: finding common patterns in 
confiscated digital information in many different 
formats. This is very labor intensive.

● Solution: 

● Design  DERRICK a domain-specific language for 
this type of investigation

● Extract data, analyze the used data formats and 
synthesize Java code to do the actual investigation
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Meet Charlotte

● Charlotte works at a large financial institution in 
Paris

● Objective: connect legacy software to the web

● Solution: 

● extract call information from the legacy code, 
analyze it, and synthesize an overview of the call 
structure

● Use entry points in the legacy code as entry points 
for the web interface

● Automate these transformations
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Meet Daniel

● Daniel is concurrency researcher at one of the 
largest hardware manufacturers worldwide

● Objective: leverage the potential of multi-core 
processors and find concurrency errors

● Solution:

● extract concurrency-related facts from the code 
(e.g., thread creation, locking), analyze these facts 
and synthesize an abstract automaton

● Analyze this automaton with third-party verification 
tools
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Meet Elisabeth

● Elisabeth is software architect at an airplane 
manufacturer

● Objective: Model reliability of controller software

● Solution:

● describe software architecture with UML and add 
reliability annotations

● Extract reliability information and synthesize input 
for statistics tool

● Generate executable code that takes reliability into 
account
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What are their 
Technical Challenges?

● How to parse source code/data files/models?

● How to extract facts from them?

● How to perform computations on these facts?

● How to generate new source code              
(trafo, refactor, compile)?

● How to synthesize visualizations, charts?

EASY: Extract-Analyze-SYnthesize ParadigmEASY: Extract-Analyze-SYnthesize Paradigm
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Why a new Language?

Goal
Keep all benefits of advanced (academic)

tools and unify them  in a 
new, extensible, teachable framework

Goal
Keep all benefits of advanced (academic)

tools and unify them  in a 
new, extensible, teachable framework

● No current technology spans the full range of 
EASY steps

● There are many fine technologies but they are

● highly specialized with steep learning curves

● hard to learn unintegrated technologies

● not integrated with a standard IDE

● hard to extend
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Here comes Rascal to the Rescue
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Rascal Elevator Pitch
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Rascal Elevator Pitch

● Sophisticated built-in 
data types

● Immutable data

● Static safety

● Generic types

● Local type inference

● Pattern Matching

● Syntax definitions and 
parsing

● Concrete syntax

● Visiting/traversal

● Comprehensions

● Higher-order

● Familiar syntax

● Java and Eclipse 
integration

● Read-Eval-Print 
(REPL)
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Rascal  ...

● is a new language for meta-programming

● is based on Syntax Analysis, Term Rewriting, 
Relational Calculus

● extended super set (regarding features not 
syntax!) of ASF+SDF and Rscript

● relations used for sharing and merging of facts 
for different languages/modules

● embedded in the Eclipse IDE

● easily extensible with Java code
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Rascal design based on ... 

● Principle of least surprise

● Familiar (Java-like) syntax

● Imperative core

● What you see is what you get

● No heuristics (or at least as few as possible)

● Explicit preferred over implicit 

● Learnability

● Layered design

● Low barrier to entry
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Rascal provides

● Rich (immutable) data: lists, sets, maps, tuples, 
relations, ... with comprehensions and many 
operators

● Syntax definitions & parser generation

● Syntax trees, tree traversal

● Pattern matching (text, trees, lists, sets, ...) and 
pattern-directed invocation

● Code generation (string templates & trees)

● Java and Eclipse (IMP) integration
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Rascal Programming

Bridging Gaps

Synthesis

Abstract syntax
Concrete syntax

Rewriting
Annotation

Data

ASTs
Sets
relations

Analysis

Parsing/Matching
Comprehension
Projection

Extraction 
Traversal

Visualization

Figure

Templates
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One-stop-shop
Cool parsers

Deal of the day:
Cheap type checkers

Just in: new modeling gadgets

Fancy visualization
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Some Classical Examples

● Read-Eval-Print

● Hello

● Factorial

● ColoredTrees
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rascal>1 + 1
int: 2

rascal>[1,2,3]
list[int]: [1,2,3]

rascal>[1,2,3] + [9,5,1]
list[int]:[1,2,3,9,5,1] 

Read-Eval-Print

List concatenation
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rascal>{1,2,3}
set[int]: {1,2,3}

rascal>{1,2,1}
set[int]: {1,2}

rascal>{1,2,3} + {9,5,1}
set[int]:{1,2,3,9,5}

Read-Eval-Print

Set union

Sets do not 
contain duplicates
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rascal>{i*i|i <- [1..10]}
set[int]: {1,4,9,16,25,36,...}

rascal>{i*i|i <- [1..10],t%2==0}
set[int]: {4,16,36,...}

Read-Eval-Print
Set comprehension
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Read-Eval-Print

rascal>import IO;
ok
rascal>for (i <- [1..10]) {
>>>>>>>  println("<i> * <i> = <i * i>");
>>>>>>>}
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25
6 * 6 = 36
7 * 7 = 49
8 * 8 = 64
9 * 9 = 81
10 * 10 = 100
list[void]: []

String
interpolation
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Hello (on the command line)

rascal > import IO;
ok

rascal> println(“Hello, my first Rascal program”);
Hello, my first Rascal program
ok
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Hello (as function in module)
module demo::basic::Hello
import IO;
public void hello() {
  println(“Hello, my first Rascal program”);
}

rascal > import demo::basic::Hello;
ok

rascal> hello();
Hello, my first Rascal program
ok
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Factorial

module demo::Factorial
public int fac(int N){
  return N <= 0 ? 1 : N * fac(N - 1);
}

rascal> import demo::Factorial;
ok

rascal> fac(47);
int: 25862324151116818064296435515361197996
9197632389120000000000



EASY Meta-Programming with Rascal 28

Types and Values

● Atomic: bool, num, int, real, str, loc (source 
code location), datetime

● Structured: list, set, map, tuple, rel (n-ary 
relation), abstract data type, parse tree

● Type system:

● Types can be parameterized (polymorphism)

● All function signatures are explicitly typed

● Inside function bodies types can be inferred (local 
type inference)
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Type Example

bool true, false

int, real 1, 0, -1, 123, 1.023e20, -25.5

str “abc”, “values is <x>”

loc |file:///etc/passwd|

datetime $2010-07-15T09:15:23.123+03:00

tuple[t
1
, ..., t

n
] <1,2>, <”john”, 43, true>

list[t] [], [1], [1,2,3], [true, 2, “abc”]

set[t] {}, {1,3,5,7}, {“john”, 4.0}

rel[t
1
, ..., t

n
] {<1,10,100>,<2,20,200>}

map[t, u] (), (“a”:1, “b”:2,”c”:3)

node f, add(x,y), g(“abc”,[2,3,4])
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User-defined datastructures

● Named alternatives

● name acts as constructor

● can be used in patterns

● Named fields (access/update via . notation)

● All datastructures are a subtype of the standard 

type node
● Permits very generic operations on data

● Parse trees resulting from parsing source code 

are represented by the datatype Tree
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ColoredTrees: CTree

data CTree =  leaf(int N)
                   |  red(CTree left, CTree right)
                   |  black(Ctree left, Ctree right) ;

rb = red(black(leaf(1), red(leaf(2), leaf(3))),
              black(leaf(4), leaf(5)));

1 4 5

2 3
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data STAT = asgStat(Id name, EXP exp) 
                  | ifStat(EXP exp,list[STAT] thenpart,
                                             list[STAT] elsepart) 
                  | whileStat(EXP exp, list[STAT] body) 
                  ;

Abstract Syntax
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Type 
Hierarchy

valuevalue

boolbool

voidvoid

intint
realreal

strstr
locloc
listlist

setset

mapmap
tupletuple

relrel

nodenode

ADT1 ADTn
data

alias

A1 An

= subtype-of

Tree

C Java

...

...

Tree

...

Tree

numnum
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Pattern matching

Given a pattern and a value:

● Determine whether the pattern matches the value

● If so, bind any variables occurring in the pattern to 
corresponding subparts of the value
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Pattern matching

Pattern matching is used in:

● Explicit match operator Pattern := Value
● Switch: matching controls case selection

● Visit: matching controls visit of tree nodes

  *  Function calls: matching controls dynamic dispatch
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Patterns

Regular: Grep/Perl like regular expressions

Abstract: match data types

Concrete: match parse trees

/^<before:\W*><word:\w+><after:.*$>/

whileStat(Exp, Stats*)

` while <Exp> do <Stats*> od `
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rascal>/[a-z]+/ := "abc"
bool: true

rascal>/rac/ := "abracadabra";
bool: true

rascal>/^rac/ := "abracadabra";
bool: false

rascal>/rac$/ := "abracadabra";
bool: false

Regular Patterns
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rascal>if(/\W<x:[a-z]+>/ := "12abc34")    
          println("x = <x>");
ok

Regular Patterns

● Matches non-word characters (\W) followed 

by one or more letters.

● Binds text matched by [a-z]+ to variable x. (Is 

only available in the body of the if statement)

● Prints: abc.

● Regular patterns are tricky (in any language)!
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Patterns

Abstract/Concrete patterns support:

● List matching: [ P1, ..., Pn]

● Set matching: {P1, ..., Pn}

● Named subpatterns: N:P

● Anti-patterns: !P

● Descendant: /N

Can be combined/nested in arbitrary ways
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List Matching
rascal> L = [1, 2, 3, 1, 2];
list[int]: [1,2,3,1,2]

rascal> [X*, 3, X] := L;
bool: true

rascal> X;
Error: X is undefined

rascal> if([X*, 3, X] := L) println(“X = <X>”);
X = [1, 2]
ok

List pattern

X* is a list variable

and abbreviates

list[int] X

List matching provides
associative (A) matching

X is bound but has 
limited scope
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Set Matching

rascal> S = {1, 2, 3, 4, 5};
set[int]: {1,2,3,4,5}

rascal> {3, Y*} := S;
bool: true

rascal> if({3, Y*} := S) println(“Y = <Y>”);
Y = {5,4,2,1}
ok

Set pattern

Y* is a set variable

and abbreviates

set[int] Y

Set matching provides 
associative, commutative, identity (ACI) matching
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Note

● List and Set matching are non-unitary

● E.g., [L*, M*] := [1, 2] has three solutions:

● L == [ ],    M == [1,2]

● L == [1],    M == [2]

● L == [1,2], M == [ ]

● In boolean expressions, matching, etc. 
solutions are generated when failure occurs 
later on (local backtracking)
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Descendant 
Matching

whileStat(_, /ifStat(_,_,_))

Match a while statement
that contains an if statement
at arbitrary depth
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Enumerators 
and Tests

● Enumerate the elements in a value

● Tests determine properties of a value

● Enumerators and tests are used in 
comprehensions

* And in if, for, while, etc.
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Enumerators 

● Elements of a list or set

● The tuples in a relation

● The key/value pairs in a map

● The elements in a datastructure (in various 
orders!)

int x <- { 1, 3, 5, 7, 11 }
int x <- [ 1 .. 10 ]
asgStat(Id name, _) <- P
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Comprehensions

● Comprehensions for lists, sets and maps

● Enumerators generate values; tests filter them

rascal> {n * n | int n ← [1 .. 10], n % 3 == 0};
set[int]: {9, 36, 81}

rascal> [ n | /leaf(int n) ← rb ];
list[int]: [1,2,3,4,5]

rascal> {name | /asgStat(id name, _) ← P};
{ ... }

1 4 5

2 3
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Control structures

● Combinations of enumerators and tests drive 
the control structures

● for, while, all, one

rascal> for(/int n ← rb, n > 3){ println(n);}
4
5
ok
rascal> for(/asgStat(Id name, _) ← P, size(name)>10){
   println(name);
}
...

1 4 5

2 3
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Counting words in a string

public int countWords(str S){
  int count = 0;
  for(/[a-zA-Z0-9]+/ := S){
       count += 1;
  }
  return count;
}

"'Twas brillig, and the slithy toves"countWords(                                                                   ) => 6

Iterates over all 
matches
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Switching

● A switch does a top-level case distinction

switch (P){
case whileStat(EXP Exp, Stats*):
     println("A while statement");
case ifStat(Exp, Stats1*, Stat2*):
     println("An if statement");
}

Every switch is a code smell, you can also use functions dispatched by patterns
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Enough!

● Ok, that was quite a lot of information

● Rascal is for Meta-Programming

● Code analysis

● Code transformation

● Code generation

● Code visualization

● It is a normal programming language

● Learn it using the Tutor view and the Console
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