
EASY Meta-Programming with Rascal 1

EASY Meta-Programming
with Rascal

Leveraging the Extract-Analyze-SYnthesize Paradigm

Paul Klint & Jurgen Vinju

Joint work with (amongst others):
Bas Basten, Mark Hills, Anastasia Izmaylova, Davy Landman,

Arnold Lankamp, Bert Lisser, Atze van der Ploeg,
Tijs van der Storm, Vadim Zaytsev

EASY Meta-Programming with Rascal 2

Cast of Our Heroes

● Alice, system administrator

● Bernd, forensic investigator

● Charlotte, financial engineer

● Daniel, multi-core specialist

● Elisabeth, model-driven engineering specialist

EASY Meta-Programming with Rascal 3

Meet Alice

● Alice is security administrator at a large online
marketplace

● Objective: look for security breaches

● Solution:

● Extract relevant information from system log files,
e.g. failed login attempts in Secure Shell

● Extract IP address, login name, frequency, …

● Synthesize a security report

EASY Meta-Programming with Rascal 4

Meet Bernd

● Bernd: investigator at German forensic lab

● Objective: finding common patterns in
confiscated digital information in many different
formats. This is very labor intensive.

● Solution:

● Design DERRICK a domain-specific language for
this type of investigation

● Extract data, analyze the used data formats and
synthesize Java code to do the actual investigation

EASY Meta-Programming with Rascal 5

Meet Charlotte

● Charlotte works at a large financial institution in
Paris

● Objective: connect legacy software to the web

● Solution:

● extract call information from the legacy code,
analyze it, and synthesize an overview of the call
structure

● Use entry points in the legacy code as entry points
for the web interface

● Automate these transformations

EASY Meta-Programming with Rascal 6

Meet Daniel

● Daniel is concurrency researcher at one of the
largest hardware manufacturers worldwide

● Objective: leverage the potential of multi-core
processors and find concurrency errors

● Solution:

● extract concurrency-related facts from the code
(e.g., thread creation, locking), analyze these facts
and synthesize an abstract automaton

● Analyze this automaton with third-party verification
tools

EASY Meta-Programming with Rascal 7

Meet Elisabeth

● Elisabeth is software architect at an airplane
manufacturer

● Objective: Model reliability of controller software

● Solution:

● describe software architecture with UML and add
reliability annotations

● Extract reliability information and synthesize input
for statistics tool

● Generate executable code that takes reliability into
account

EASY Meta-Programming with Rascal 8

What are their
Technical Challenges?

● How to parse source code/data files/models?

● How to extract facts from them?

● How to perform computations on these facts?

● How to generate new source code
(trafo, refactor, compile)?

● How to synthesize visualizations, charts?

EASY: Extract-Analyze-SYnthesize ParadigmEASY: Extract-Analyze-SYnthesize Paradigm

EASY Meta-Programming with Rascal 9

System
Under

Investigation
(SUI)

Extract
Extract

Internal Representation
Internal Representation Analyze

Analyze

Synthesize
Synthesize

Results
Results

??
EASY

Paradigm

EASY Meta-Programming with Rascal 10

Why a new Language?

Goal
Keep all benefits of advanced (academic)

tools and unify them in a
new, extensible, teachable framework

Goal
Keep all benefits of advanced (academic)

tools and unify them in a
new, extensible, teachable framework

● No current technology spans the full range of
EASY steps

● There are many fine technologies but they are

● highly specialized with steep learning curves

● hard to learn unintegrated technologies

● not integrated with a standard IDE

● hard to extend

EASY Meta-Programming with Rascal 11

Here comes Rascal to the Rescue

EASY Meta-Programming with Rascal 12

Rascal Elevator Pitch

EASY Meta-Programming with Rascal 13

Rascal Elevator Pitch

● Sophisticated built-in
data types

● Immutable data

● Static safety

● Generic types

● Local type inference

● Pattern Matching

● Syntax definitions and
parsing

● Concrete syntax

● Visiting/traversal

● Comprehensions

● Higher-order

● Familiar syntax

● Java and Eclipse
integration

● Read-Eval-Print
(REPL)

EASY Meta-Programming with Rascal 14

EASY Meta-Programming with Rascal 15

Rascal ...

● is a new language for meta-programming

● is based on Syntax Analysis, Term Rewriting,
Relational Calculus

● extended super set (regarding features not
syntax!) of ASF+SDF and Rscript

● relations used for sharing and merging of facts
for different languages/modules

● embedded in the Eclipse IDE

● easily extensible with Java code

EASY Meta-Programming with Rascal 16

Rascal design based on ...

● Principle of least surprise

● Familiar (Java-like) syntax

● Imperative core

● What you see is what you get

● No heuristics (or at least as few as possible)

● Explicit preferred over implicit

● Learnability

● Layered design

● Low barrier to entry

EASY Meta-Programming with Rascal 17

Rascal provides

● Rich (immutable) data: lists, sets, maps, tuples,
relations, ... with comprehensions and many
operators

● Syntax definitions & parser generation

● Syntax trees, tree traversal

● Pattern matching (text, trees, lists, sets, ...) and
pattern-directed invocation

● Code generation (string templates & trees)

● Java and Eclipse (IMP) integration

EASY Meta-Programming with Rascal 18

Rascal Programming

Bridging Gaps

Synthesis

Abstract syntax
Concrete syntax

Rewriting
Annotation

Data

ASTs
Sets
relations

Analysis

Parsing/Matching
Comprehension
Projection

Extraction
Traversal

Visualization

Figure

Templates

EASY Meta-Programming with Rascal 19

One-stop-shop
Cool parsers

Deal of the day:
Cheap type checkers

Just in: new modeling gadgets

Fancy visualization

EASY Meta-Programming with Rascal 20

Some Classical Examples

● Read-Eval-Print

● Hello

● Factorial

● ColoredTrees

EASY Meta-Programming with Rascal 21

rascal>1 + 1
int: 2

rascal>[1,2,3]
list[int]: [1,2,3]

rascal>[1,2,3] + [9,5,1]
list[int]:[1,2,3,9,5,1]

Read-Eval-Print

List concatenation

EASY Meta-Programming with Rascal 22

rascal>{1,2,3}
set[int]: {1,2,3}

rascal>{1,2,1}
set[int]: {1,2}

rascal>{1,2,3} + {9,5,1}
set[int]:{1,2,3,9,5}

Read-Eval-Print

Set union

Sets do not
contain duplicates

EASY Meta-Programming with Rascal 23

rascal>{i*i|i <- [1..10]}
set[int]: {1,4,9,16,25,36,...}

rascal>{i*i|i <- [1..10],t%2==0}
set[int]: {4,16,36,...}

Read-Eval-Print
Set comprehension

EASY Meta-Programming with Rascal 24

Read-Eval-Print

rascal>import IO;
ok
rascal>for (i <- [1..10]) {
>>>>>>> println("<i> * <i> = <i * i>");
>>>>>>>}
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25
6 * 6 = 36
7 * 7 = 49
8 * 8 = 64
9 * 9 = 81
10 * 10 = 100
list[void]: []

String
interpolation

EASY Meta-Programming with Rascal 25

Hello (on the command line)

rascal > import IO;
ok

rascal> println(“Hello, my first Rascal program”);
Hello, my first Rascal program
ok

EASY Meta-Programming with Rascal 26

Hello (as function in module)
module demo::basic::Hello
import IO;
public void hello() {
 println(“Hello, my first Rascal program”);
}

rascal > import demo::basic::Hello;
ok

rascal> hello();
Hello, my first Rascal program
ok

EASY Meta-Programming with Rascal 27

Factorial

module demo::Factorial
public int fac(int N){
 return N <= 0 ? 1 : N * fac(N - 1);
}

rascal> import demo::Factorial;
ok

rascal> fac(47);
int: 25862324151116818064296435515361197996
9197632389120000000000

EASY Meta-Programming with Rascal 28

Types and Values

● Atomic: bool, num, int, real, str, loc (source
code location), datetime

● Structured: list, set, map, tuple, rel (n-ary
relation), abstract data type, parse tree

● Type system:

● Types can be parameterized (polymorphism)

● All function signatures are explicitly typed

● Inside function bodies types can be inferred (local
type inference)

EASY Meta-Programming with Rascal 29

Type Example

bool true, false

int, real 1, 0, -1, 123, 1.023e20, -25.5

str “abc”, “values is <x>”

loc |file:///etc/passwd|

datetime $2010-07-15T09:15:23.123+03:00

tuple[t
1
, ..., t

n
] <1,2>, <”john”, 43, true>

list[t] [], [1], [1,2,3], [true, 2, “abc”]

set[t] {}, {1,3,5,7}, {“john”, 4.0}

rel[t
1
, ..., t

n
] {<1,10,100>,<2,20,200>}

map[t, u] (), (“a”:1, “b”:2,”c”:3)

node f, add(x,y), g(“abc”,[2,3,4])

EASY Meta-Programming with Rascal 30

User-defined datastructures

● Named alternatives

● name acts as constructor

● can be used in patterns

● Named fields (access/update via . notation)

● All datastructures are a subtype of the standard

type node
● Permits very generic operations on data

● Parse trees resulting from parsing source code

are represented by the datatype Tree

EASY Meta-Programming with Rascal 31

ColoredTrees: CTree

data CTree = leaf(int N)
 | red(CTree left, CTree right)
 | black(Ctree left, Ctree right) ;

rb = red(black(leaf(1), red(leaf(2), leaf(3))),
 black(leaf(4), leaf(5)));

1 4 5

2 3

EASY Meta-Programming with Rascal 32

data STAT = asgStat(Id name, EXP exp)
 | ifStat(EXP exp,list[STAT] thenpart,
 list[STAT] elsepart)
 | whileStat(EXP exp, list[STAT] body)
 ;

Abstract Syntax

EASY Meta-Programming with Rascal 33

Type
Hierarchy

valuevalue

boolbool

voidvoid

intint
realreal

strstr
locloc
listlist

setset

mapmap
tupletuple

relrel

nodenode

ADT1 ADTn
data

alias

A1 An

= subtype-of

Tree

C Java

...

...

Tree

...

Tree

numnum

EASY Meta-Programming with Rascal 34

Pattern matching

Given a pattern and a value:

● Determine whether the pattern matches the value

● If so, bind any variables occurring in the pattern to
corresponding subparts of the value

EASY Meta-Programming with Rascal 35

Pattern matching

Pattern matching is used in:

● Explicit match operator Pattern := Value
● Switch: matching controls case selection

● Visit: matching controls visit of tree nodes

 * Function calls: matching controls dynamic dispatch

EASY Meta-Programming with Rascal 36

Patterns

Regular: Grep/Perl like regular expressions

Abstract: match data types

Concrete: match parse trees

/^<before:\W*><word:\w+><after:.*$>/

whileStat(Exp, Stats*)

` while <Exp> do <Stats*> od `

EASY Meta-Programming with Rascal 37

rascal>/[a-z]+/ := "abc"
bool: true

rascal>/rac/ := "abracadabra";
bool: true

rascal>/^rac/ := "abracadabra";
bool: false

rascal>/rac$/ := "abracadabra";
bool: false

Regular Patterns

EASY Meta-Programming with Rascal 38

rascal>if(/\W<x:[a-z]+>/ := "12abc34")
 println("x = <x>");
ok

Regular Patterns

● Matches non-word characters (\W) followed

by one or more letters.

● Binds text matched by [a-z]+ to variable x. (Is

only available in the body of the if statement)

● Prints: abc.

● Regular patterns are tricky (in any language)!

EASY Meta-Programming with Rascal 39

Patterns

Abstract/Concrete patterns support:

● List matching: [P1, ..., Pn]

● Set matching: {P1, ..., Pn}

● Named subpatterns: N:P

● Anti-patterns: !P

● Descendant: /N

Can be combined/nested in arbitrary ways

EASY Meta-Programming with Rascal 40

List Matching
rascal> L = [1, 2, 3, 1, 2];
list[int]: [1,2,3,1,2]

rascal> [X*, 3, X] := L;
bool: true

rascal> X;
Error: X is undefined

rascal> if([X*, 3, X] := L) println(“X = <X>”);
X = [1, 2]
ok

List pattern

X* is a list variable

and abbreviates

list[int] X

List matching provides
associative (A) matching

X is bound but has
limited scope

EASY Meta-Programming with Rascal 41

Set Matching

rascal> S = {1, 2, 3, 4, 5};
set[int]: {1,2,3,4,5}

rascal> {3, Y*} := S;
bool: true

rascal> if({3, Y*} := S) println(“Y = <Y>”);
Y = {5,4,2,1}
ok

Set pattern

Y* is a set variable

and abbreviates

set[int] Y

Set matching provides
associative, commutative, identity (ACI) matching

EASY Meta-Programming with Rascal 42

Note

● List and Set matching are non-unitary

● E.g., [L*, M*] := [1, 2] has three solutions:

● L == [], M == [1,2]

● L == [1], M == [2]

● L == [1,2], M == []

● In boolean expressions, matching, etc.
solutions are generated when failure occurs
later on (local backtracking)

EASY Meta-Programming with Rascal 43

Descendant
Matching

whileStat(_, /ifStat(_,_,_))

Match a while statement
that contains an if statement
at arbitrary depth

EASY Meta-Programming with Rascal 44

Enumerators
and Tests

● Enumerate the elements in a value

● Tests determine properties of a value

● Enumerators and tests are used in
comprehensions

* And in if, for, while, etc.

EASY Meta-Programming with Rascal 45

Enumerators

● Elements of a list or set

● The tuples in a relation

● The key/value pairs in a map

● The elements in a datastructure (in various
orders!)

int x <- { 1, 3, 5, 7, 11 }
int x <- [1 .. 10]
asgStat(Id name, _) <- P

EASY Meta-Programming with Rascal 46

Comprehensions

● Comprehensions for lists, sets and maps

● Enumerators generate values; tests filter them

rascal> {n * n | int n ← [1 .. 10], n % 3 == 0};
set[int]: {9, 36, 81}

rascal> [n | /leaf(int n) ← rb];
list[int]: [1,2,3,4,5]

rascal> {name | /asgStat(id name, _) ← P};
{ ... }

1 4 5

2 3

EASY Meta-Programming with Rascal 47

Control structures

● Combinations of enumerators and tests drive
the control structures

● for, while, all, one

rascal> for(/int n ← rb, n > 3){ println(n);}
4
5
ok
rascal> for(/asgStat(Id name, _) ← P, size(name)>10){
 println(name);
}
...

1 4 5

2 3

EASY Meta-Programming with Rascal 48

Counting words in a string

public int countWords(str S){
 int count = 0;
 for(/[a-zA-Z0-9]+/ := S){
 count += 1;
 }
 return count;
}

"'Twas brillig, and the slithy toves"countWords() => 6

Iterates over all
matches

EASY Meta-Programming with Rascal 49

Switching

● A switch does a top-level case distinction

switch (P){
case whileStat(EXP Exp, Stats*):
 println("A while statement");
case ifStat(Exp, Stats1*, Stat2*):
 println("An if statement");
}

Every switch is a code smell, you can also use functions dispatched by patterns

EASY Meta-Programming with Rascal 50

Enough!

● Ok, that was quite a lot of information

● Rascal is for Meta-Programming

● Code analysis

● Code transformation

● Code generation

● Code visualization

● It is a normal programming language

● Learn it using the Tutor view and the Console

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	page0
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

