
2IW80 Software specification and architecture

Software architecture:

Architectural Styles

Alexander Serebrenik

Before we start…

/ SET / W&I PAGE 1 18-3-2014

True or false?

• Domain-Specific Software Architecture is a part of a

Reference Architecture.

Before we start…

/ SET / W&I PAGE 2 18-3-2014

True or false?

• Domain-Specific Software Architecture is a part of a

Reference Architecture: FALSE

• Domain-Specific Software Architecture is broader

applicable than a product line.

Before we start…

/ SET / W&I PAGE 3 18-3-2014

True or false?

• Domain-Specific Software Architecture is a part of a

Reference Architecture: FALSE

• Domain-Specific Software Architecture is broader

applicable than a product line: TRUE

• Model-View-Controller is an examples of a Domain-

Specific Software Architecture

Before we start…

/ SET / W&I PAGE 4 18-3-2014

True or false?

• Domain-Specific Software Architecture is a part of a

Reference Architecture: FALSE

• Domain-Specific Software Architecture is broader

applicable than a product line: TRUE

• Model-View-Controller is an examples of a Domain-

Specific Software Architecture FALSE

This week sources

Slides by

Johan Lukkien Rudolf Mak

Recall: Architectural patterns vs. Architectural

styles vs. Design patterns

• Architectural patterns define the

implementation strategies of those

components and connectors (‘how?’)

• More domain specific

• Architectural styles define the

components and connectors

(‘what?’)

• Less domain specific

• Good architecture makes use of

design patterns (on a more fine-

granular level)

• We’ll see examples later on

• Usually domain independent

/ SET / W&I PAGE 6 18-3-2014

2IPC0

Architectural Styles

• An architectural style is a named collection of architectural
design decisions that

− are applicable in a given development context

− constrain architectural design decisions that are specific
to a particular system within that context

− elicit beneficial qualities in each resulting system

• Reflect less domain specificity than architectural patterns

• Useful in determining everything from subroutine structure to
top-level application structure

• Many styles exist and we will discuss them in detail in the next
lecture

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Benefits of Using Styles

• Reuse

• Design: Well-understood solutions applied to new problems

• Code: Shared implementations of invariant aspects of a style

• Understandability of system organization

• A phrase such as “client-server” conveys a lot of information

• Interoperability

• Supported by style standardization

• Style-specificity

• Analyses: enabled by the constrained design space

• Visualizations: depictions matching engineers’ mental models

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Basic Properties of Styles

• A vocabulary of design elements

• Component and connector types; data elements

− e.g., pipes, filters, objects, servers

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Recap: Connectors

• “Architectural styles define the components and

connectors”

• A software connector is an architectural building block

tasked with effecting and regulating interactions among

components (Taylor, Medvidovic, Dashofy)

• Procedure call connectors

• Shared memory connectors

• Message passing connectors

• Streaming connectors

• Distribution connectors

• Wrapper/adaptor connectors

• …

/ SET / W&I PAGE 10 18-3-2014

Basic Properties of Styles

• A vocabulary of design elements

• Component and connector types; data elements

− e.g., pipes, filters, objects, servers

• A set of configuration rules

• Topological constraints that determine allowed compositions

of elements

− e.g., a component may be connected to at most two other

components

• A semantic interpretation

• Compositions of design elements have well-defined

meanings

• Possible analyses of systems built in a style

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Some Common Styles

• Traditional, language-
influenced styles
• Main program and subroutines

• Object-oriented

• Layered
• Virtual machines

• Client-server

• Data-flow styles
• Batch sequential

• Pipe and filter

• Shared memory
• Blackboard

• Rule based

• Interpreter

• Interpreter

• Mobile code

• Implicit invocation

• Event-based

• Publish-subscribe

• Peer-to-peer

• “Derived” styles

• C2

• CORBA

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Architecture Style Analysis

• Summary

• Design elements (components, connectors, data)

• Topology

• Examples of use

• Advantages/disadvantages

• Relation to programming languages/environments

/ SET / W&I PAGE 13 18-3-2014

Main program and subroutines

• You should be familiar with this style from a basic

programming course

/ SET / W&I PAGE 14 18-3-2014

Main program:

• displays greetings and

instructions

• enters a loop in which it calls

the three subroutines in turn.

Main program and subroutines: Style Analysis

• Summary:

• Decomposition based upon separation of functional

processing steps

• Design elements

• Components: main program and subroutines

• Connectors: function/procedure calls

• Data: Values passed in/out subroutines

• Topology

• Static organization is hierarchical

• Full structure: a directed graph

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Main program and subroutines: Style Analysis

• What are common examples of its use?

• Small programs, pedagogical uses

• What are the advantages of using the style?

• Modularity: subroutines can be replaced as long as

interface semantics are unaffected

• What are the disadvantages of using the style?

• Usually fails to scale

• Inadequate attention to data structures

• Effort to accommodate new requirements: unpredictable

• Relation to programming languages/environments

• Traditional programming languages: BASIC, Pascal, C…

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Object-Oriented Lunar Lander

You should be familiar with this

style from an OO-programming

course.

Identify similarities and

differences between the

styles.

Object-Oriented Lunar Lander

Similarities:

connectors

(procedure calls) +

data (arguments)

Object-Oriented Lunar Lander

Similarities:

connectors

(procedure calls) +

data (arguments)

Differences: encapsulation

(UI, SpaceCraft, Environment)

• Procedural: input & output are

separated

• OO: input & output are together

How would this look

like as a class diagram?

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

EnvironmentSimulation

moonGravity: double

calculateStatus(burnRate: double,

s: SpaceCraft): SpaceCraft

SpaceCraft

altitude: double

fuel: double

time: int

velocity: double

SpaceCraft(a:double,

f:double, t:int, v: double)

setAltitude(a: double)

setFuel(f: double)

…

getAltitude()

getFuel()

…

GUI

burnRate: double

getBurnRate(): double

displayStatus(s:SpaceCraft)

creates

uses

1

1

1

1..*

Object-Oriented Style: Style Analysis

• Summary:

• State strongly encapsulated. Internal representation is
hidden from other objects

• Objects are responsible for their internal representation
integrity

• Design elements

• Components: objects (data and associated operations)

• Connectors: method invocations

• Data: arguments passed to methods

• Topology

• Can vary arbitrarily: data and interfaces can be shared

through inheritance

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Object-Oriented Style: Style Analysis

• What are common examples of its use?

• pedagogy

• complex, dynamic data structures

• close correlation between physical world entities and

entities in the program

• What are the advantages of using the style?

• Integrity: data is manipulated only by appropriate methods

• Abstraction: internals are hidden

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Object-Oriented Style: Style Analysis

• What are the disadvantages of using the style?

• Not efficient enough for high performance computing (e.g.,

scientific computing, data science)

• Distributed applications require extensive middleware to

provide access to remote objects

• In absence of additional structural principles unrestricted

OO can lead to highly complex applications

• Relation to programming languages/environments

• OO-languages: Java, C++…

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Layered Style Lunar Lander

• Basic idea:

• Each layer exposes an interface (API) to

be used by the layer above it

• Each layer acts as a

− Server: service provider to layer “above”

− Client: service consumer of the layer

“below”

• Taylor et al call this style “virtual

machines”

• I do not like this name since these virtual

machines are not related to simulation or

program execution as in “Java Virtual

Machine”, Python, etc.

/ SET / W&I PAGE 24 18-3-2014

Layering

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Strict Layering Nonstrict Layering

Layered Style: Style Analysis

• Summary:

• An ordered sequence of layers, each layer offers services
(interfaces) that can be used by programs (components)
residing with the layer(s) above it

• Design elements

• Components: layers, each layer usually several programs

• Connectors: typically procedure calls

• Data: parameters passed between layers

• Topology

• Linear (strict layering), acyclic (non-strict layering)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Layered Style: Style Analysis

• What are common examples of its use?

• operating systems

− 2INC0 “Operating systems” SfS:Y3Q1

• network and protocol stacks

− 2IC60 “Computer networks and security” SfS, WbS:Y2Q4

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

http://www.ibm.com/developerworks/linux/library/l-linux-kernel/

Layered Style: Style Analysis

• What are the advantages of using the style?

• Clear dependence structure benefits evolution

− Lower layers are independent from the upper layers

− Upper layers can evolve independently from the lower
layers as long as the interface semantics is unchanged

− Strict layering: limits propagation of change

• Reuse

− e.g., standardized layer interfaces for libraries/frameworks

• What are the disadvantages of using the style?

• Not universally applicable

• Performance (mostly for strict layering and many layers)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Client-Server Style

• Similar to the layered style

• Differences

• Only two layers

− Client(s)

− Server

• Network-based connection

• Clients

• Thin – no processing

beyond UI

• Thick – otherwise

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Client-Server Style: Style Analysis

• Summary:

• Client initiates communication by sending server a request.

• Server performs the requested action and replies.

• Design elements

• Components: client(s) and server

• Connectors: remote procedure call, network protocols

• Data: parameters and return values

• Topology

• Two-level, multiple clients making requests to server

• No client-client communication

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Client-Server Style: Style Analysis

• What are common examples of its use?

• centralization of data is required

• server: high-capacity machine (processing power)

• clients: simple UI tasks

• many business applications

− 2IIC0 “Business Information Systems” SfS, WbS:Y3Q1

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Client-Server Style: Style Analysis

• What are common examples of its use?

• centralization of data is required

• server: high-capacity machine (processing power)

• clients: simple UI tasks

• many business applications

− 2IIC0 “Business Information Systems” SfS, WbS:Y3Q1

• What are the advantages of using the style?

• Data centralization, powerful server serving many clients

• What are the disadvantages of using the style?

• Single point of failure

• Network bandwidth / amount of requests

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Some Common Styles

• Traditional, language-
influenced styles
• Main program and subroutines

• Object-oriented

• Layered
• (Virtual machines)

• Client-server

• Data-flow styles
• Batch sequential

• Pipe and filter

• Shared memory
• Blackboard

• Rule based

• Interpreter

• Interpreter

• Mobile code

• Implicit invocation

• Event-based

• Publish-subscribe

• Peer-to-peer

• “Derived” styles

• C2

• CORBA

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Batch Sequential

• Dataflow styles focus on how data moves between

processing elements

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• Batch-sequential

• “The Granddaddy of Styles”

• Separate programs are

executed in order

• Aggregated data (on magnetic

tape) transferred by the user

from one program to another

Batch Sequential

/ SET / W&I PAGE 35 18-3-2014

What about the Lunar Lander?

Batch Sequential

Not a recipe for a

successful lunar

mission!

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Batch Sequential: Style Analysis

• Summary:

• Separate programs executed one at a time, till completion

• Design elements

• Components: independent programs

• Connectors: “the human hand” carrying tapes between the

programs, a.k.a. “sneaker-net”

• Data: aggregated on tapes

• Topology

• Linear

• What are common examples of its use?

• Transaction processing in financial systems

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Batch Sequential: Style Analysis

• What are the advantages of using the style?

• Simplicity

• Severable executions

• What are the disadvantages of using the style?

• No concurrency

• No interaction between components

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipe and Filter

• In Batch Sequential the next program waits till the

preceding one has finished processing data completely.

• What if the next program could process data

elements as soon as they become available?

• programs can operate concurrently speed up

• data is considered as streams

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipe and Filter

• In Batch Sequential the next program waits till the

preceding one has finished processing data completely.

• What if the next program could process data

elements as soon as they become available?

• programs can operate concurrently speed up

• data is considered as streams

• Lunar Lander

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipe and Filter: Style Analysis

• Summary:

• Separate programs executed, potentially concurrently

• Design elements

• Components: independent programs, a.k.a. filters

• Connectors: routers of data streams (pipes), provided by an

operating system

− Variations

− Pipelines — linear sequences of filters

− Bounded pipes — limited amount of data on a pipe

− Typed pipes — data strongly typed

• Data: linear data streams, traditionally – text

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipe and Filter: Style Analysis

• Topology

• Usually linear pipelines, sometimes T-joins are possible

• What are common examples of its use?

 Have you seen this style before?

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipe and Filter: Style Analysis

• Topology

• Usually linear pipelines, sometimes T-joins are possible

• What are common examples of its use?

 Have you seen this style before?

• Unix: ls invoices | grep –e “August” | sort

• MS-DOS: dir | findstr “Onder*”

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipe and Filter: Style Analysis

• Topology

• Usually linear pipelines, sometimes T-joins are possible

• What are common examples of its use?

 Have you seen this style before?

• Unix: ls invoices | grep –e “August” | sort

• MS-DOS: dir | findstr “Onder*”

• Operating systems applications, shells

• Massive data processing applications

− Results of the processing are more important than the

process itself

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Pipes and Filters: Style Analysis

• What are the advantages of using the style?

• Simplicity

• Filters are independent

• New combinations can be easily constructed

• What are the disadvantages of using the style?

• Data structures to be exchanged should be relatively simple

− Usually text tables

• No interaction between components

• Relation to programming languages

• Unix shells

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Blackboard Style

• Two kinds of components

• Central data structure — blackboard

• Components operating on the blackboard

• System control is entirely driven by the blackboard state

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

https://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=_lcXWx6tOHnO2M&tbnid=vKc0m3nirDdc6M:&ved=0CAUQjRw&url=https%3A%2F%2Fwww.facebook.co

m%2Fmontereyinstitute%3Fref%3Dstream%26viewer_id%3D0&ei=HenjUrWLC4XGswaUh4GoAg&psig=AFQjCNHy_ehnRWgddxY0e9t-Uxvsrd8Hsg&ust=1390754460129161

• Shared blackboard: problem

description

• Multiple experts

• identify a (sub)problem they can solve,

• work on it

• post the solution on the blackboard

• enable other experts to solve their

problem

Blackboard Lunar Lander

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Experts perform

independent tasks

Blackboard maintains

the game state

Blackboard: Style Analysis

• Summary:

• Separate programs communicate through the shared
repository, known as the blackboard

• Design elements

• Components:

− shared blackboard

− independent programs, a.k.a. knowledge sources

• Connectors: depending on the context

− procedure calls, database queries, direct references…

• Data: stored on the blackboard

• Topology: star, the blackboard as the central node

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• What are common examples of its use?

• Heuristic problem solving in artificial intelligence

• Compiler!

/ SET / W&I PAGE 49 18-3-2014

Blackboard: Style Analysis

Internal representations

of the program

(stored in blackboard)

Lexical analyzer

Syntactic analyzer

Semantic analyzer

Bytecode

generator

Optimizer

Blackboard: Style Analysis

• What are the advantages of using the style?

• Solution strategies should not be preplanned

• Data/problem determine the solutions!

• What are the disadvantages of using the style?

• Overhead when

− a straight-forward solution strategy is available

− interaction between “independent” programs need a
complex regulation

− data on the blackboard is a subject to frequent change
(and requires propagation to all other components)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Interpreter Style

• Compilers translate the (source) code to the executable

form at once

• Interpreters translate the (source) code instructions one

by one and execute them

• To pass data from one instruction to the other we need to

keep the Interpreter state

Interpreter Style

• Compilers translate the (source) code to the executable

form at once

• Interpreters translate the (source) code instructions one

by one and execute them

• To pass data from one instruction to the other we need to

keep the Interpreter state

Interpreter Style

• Compilers translate the (source) code to the executable

form at once

• Interpreters translate the (source) code instructions one

by one and execute them

• To pass data from one instruction to the other we need to

keep the Interpreter state

Interpreter Style

• Compilers translate the (source) code to the executable

form at once

• Interpreters translate the (source) code instructions one

by one and execute them

• To pass data from one instruction to the other we need to

keep the Interpreter state

How is this related to architecture?

Interpreter Lunar Lander

• User commands constitute a

language

“Burn 50” – set the burnrate to 50

“Check status”

…

• Example of a domain-specific

language (DSL)

• Do you recall Domain-Specific Software

Architectures?

• Active research topic in Eindhoven

− 2IS15 Generic language technology

• This language is being interpreted by

the rest of the implementation

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Interpreter Style: Style Analysis

• Summary:

• Interpreter parses and executes input commands, updating
the state maintained by the interpreter

• Design elements

• Components:

− command interpreter

− program/interpreter state

− user interface.

• Connectors: typically very closely bound with direct

procedure calls and shared state.

• Data: commands

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• Topology

• Tightly-coupled three-tier, state can be separate

• What are common examples of its use?

• Great when the user should be able to program herself

− e.g., Excel formulas

− domain-specific languages become more and more

popular

− Not all of them are interpreted, but many of them are…

/ SET / W&I PAGE 57 18-3-2014

Interpreter Style: Style Analysis

• What are the advantages of using the style?

• Highly dynamic behavior possible, where the set of

commands is dynamically modified.

• System architecture may remain constant while new

capabilities are created based upon existing primitives.

• What are the disadvantages of using the style?

• Performance

− it takes longer to execute the interpreted code

− but many optimizations might be possible

• Memory management

− when multiple interpreters are invoked simultaneously

/ SET / W&I PAGE 58 18-3-2014

Interpreter Style: Style Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Mobile Code Style

• Sometimes interpretation cannot be performed locally

• Code-on-demand

− Client has resources and processing power

− Server has code to be executed

− Client requests the code, obtains it and runs it locally

/ SET / W&I PAGE 59 18-3-2014

Client Server

request webpage

return JavaScript code

Java-

Script

code

run in the

browser

Mobile Code Style

• Sometimes interpretation cannot be performed locally

• Code-on-demand

• Remote execution/evaluation

− client has code but does not have resources to execute it

− software resources (e.g., interpreter)

− or hardware resources (e.g., processing power)

− 2IN28 Grid and cloud computing

/ SET / W&I PAGE 60 18-3-2014

Client Server (grid)

code

results

run

Mobile Code Style

• Sometimes interpretation cannot be performed locally

• Code-on-demand

• Remote execution/evaluation

• Mobile agent

− initiator has code and some resources but not all

− can autonomously decide to migrate to a different node to

obtain additional resources

/ SET / W&I PAGE 61 18-3-2014

http://maf.sourceforge.net/

Mobile Code Style: Major challenge – Security

• Code being executed might be malicious!

• privacy invasion

• denial of service

• Solutions:

• Sandboxing

− Mobile code runs only in a restricted environment,

“sandbox”, and does not have access to vital parts of the

system

• Signing

− Only mobile code signed by a trusted party can be executed

• Responsibility: execution dock handling receipt and execution

of code and state

/ SET / W&I PAGE 62 18-3-2014

• 2IC60 Computer networks

and security – Y2Q4

• Master track IST

Mobile Code Style: Style Analysis

• Summary:

• Code moves to be interpreted on another host

• Variants: code on demand, remote execution, mobile agent

• Design elements

• Components: code interpreter, execution dock

• Connectors:

− network protocols

− code/data packaging for transmission

• Data: code, program state, data for the code

• Topology: network

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• What are common examples of its use?

• processing large amounts of distributed data

• dynamic behavior / customization

• What are the advantages of using the style?

• dynamic adaptability

• performance (resources)

• What are the disadvantages of using the style?

• security challenges

• network/transmission costs

/ SET / W&I PAGE 64 18-3-2014

Mobile Code Style: Style Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Some Common Styles

• Traditional, language-
influenced styles
• Main program and subroutines

• Object-oriented

• Layered
• (Virtual machines)

• Client-server

• Data-flow styles
• Batch sequential

• Pipe and filter

• Shared memory
• Blackboard

• Rule based

• Interpreter

• Interpreter

• Mobile code

• Implicit invocation

• Event-based

• Publish-subscribe

• Peer-to-peer

• “Derived” styles

• C2

• CORBA

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Implicit Invocation Styles

• Basic idea

• Event announcement instead of method invocation

• “Listeners” register interest in and associate methods with

events

• System invokes all registered methods implicitly

• Style invariants

• “Announcers” are unaware of their events’ effects

• No assumption about processing in response to events

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Publish-Subscribe

• Subscribers register/deregister to receive specific

messages or specific content.

• Publishers broadcast messages to subscribers.

/ SET / W&I PAGE 67 18-3-2014

http://israel21c.org/israel-in-the-spotlight/going-on-

vacation-dont-stop-your-newspaper-subscription-donate-it/

• Analogy: newspaper subscription

• Subscriber chooses the newspaper

• Publisher delivers only to

subscribers

• Ergo, publisher has to maintain a

list of subscribers

• Sometimes we’ll need proxies to

manage distribution.

Publish-Subscriber Lunar Lander

68
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Players

Publish-Subscribe Style: Style Analysis

• Summary:

• Subscribers register/deregister to receive specific

messages or specific content.

• Publishers broadcast messages to subscribers

synchronously or asynchronously.

• Design elements

• Components: publishers, subscribers

• Connectors: procedure calls/network protocols

• Data: subscriptions, notifications, published information

• Topology:

• Either subscribers directly connected to publishers

• Or via intermediaries

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• What are common examples of its use?

• Social media “friending”

• GUI

• Multi-player network-based games

• What are the advantages of using the style?

• Subscribers are independent from each other

• Very efficient one-way information dissemination

• What are the disadvantages of using the style?

• When a number of subscribers is very high, special

protocols are needed

/ SET / W&I PAGE 70 18-3-2014

Publish-Subscribe Style: Style Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Event-Based Style

• In Publish-Subscribe the publisher is responsible for

maintaining the list of subscribers

• What if the subscribers were responsible for knowing their

publishers?

/ SET / W&I PAGE 71 18-3-2014

We no longer need to

distinguish publishers and

subscribers!

Event-based Lunar Lander

72
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Frequently called

“event bus”

Commercial

middleware

Event-Based Style: Style Analysis

• Summary:

• Independent components asynchronously emit and receive events

communicated over event buses

• Design elements

• Components: concurrent event generators/consumers

• Connectors: event bus (may be more than one)

• Data: events

• Topology:

• Communication via the event bus only

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• What are common examples of its use?

• User interface software

• Enterprise information systems with many independent

components (financial, HR, production, …)

• What are the advantages of using the style?

• Scalable

• Easy to evolve (just add another component!)

• Heterogeneous (as long as components can communicate

with the bus they can be implemented in any possible way)

• What are the disadvantages of using the style?

• No guarantee when the event will be processed

/ SET / W&I PAGE 74 18-3-2014

Event-Based Style: Style Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Peer-to-Peer Style

• In the Event-Based approach we no longer distinguish

between publishers and subscribers

• “Every component can act as publisher and/or subscriber”

• What if we try to do the same for “client-server”?

• We had it in the layered (virtual machine) style

• But it was restricted to the layered structure!

Peer-to-Peer Style

• In the Event-Based approach we no longer distinguish

between publishers and subscribers

• “Every component can act as publisher and/or subscriber”

• What if we try to do the same for “client-server”?

• We had it in the layered (virtual machine) style

• But it was restricted to the layered structure!

Peers:
• independent components

• can act as either clients or

servers
Client-Server Peer-to-Peer

Peer-to-Peer Lunar Lander

77
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

T0

Tn

Adapted version:

• multiple landers need

to communicate about

the landing area to

avoid collisions

• communication is

possible only within a

certain range.

Peer-to-Peer: Style Analysis

• Summary:

• State and behavior are distributed among peers which can

act as either clients or servers.

• Design elements

• Components: peers

• Connectors: network protocols, often custom

• Data: network messages

• Topology:

• Network, usually dynamically and arbitrarily varying

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• What are common examples of its use?

• sources of information are distributed

• network is ad-hoc

/ SET / W&I PAGE 79 18-3-2014

Publish-Subscribe Style: Style Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• What are the advantages of using the style?

• Robustness (if a node is not available the functionality is

taken over)

• Scalability

• Decentralization

• What are the disadvantages of using the style?

• Security (peers might be malicious or egoistic)

• Latency (when information retrieval time is crucial)

/ SET / W&I PAGE 80 18-3-2014

Peer-to-Peer Style: Style Analysis

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Heterogeneous Styles

• More complex styles created through composition of

simpler styles

• REST

• C2

− Implicit invocation + Layering + other constraints

• Distributed objects

− OO + client-server network style

− CORBA

− 2II45 Architecture of Distributed Systems

81
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Style Summary (1/4)

82

Style
Category &
Name

Summary Use It When Avoid It When

Language-influenced styles

Main Program
and
Subroutines

Main program controls
program execution, calling
multiple subroutines.

Application is small and simple. Complex data structures needed.
Future modifications likely.

Object-oriented Objects encapsulate state
and accessing functions

Close mapping between external
entities and internal objects is
sensible.
Many complex and interrelated
data structures.

Application is distributed in a
heterogeneous network.
Strong independence between
components necessary.
High performance required.

Layered

Virtual
Machines

Virtual machine, or a
layer, offers services to
layers above it

Many applications can be based
upon a single, common layer of
services.
Interface service specification
resilient when implementation of
a layer must change.

Many levels are required (causes
inefficiency).
Data structures must be accessed
from multiple layers.

Client-server Clients request service
from a server

Centralization of computation
and data at a single location (the
server) promotes manageability
and scalability; end-user
processing limited to data entry
and presentation.

Centrality presents a single-point-
of-failure risk; Network bandwidth
limited; Client machine capabilities
rival or exceed the server’s.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Style Summary, continued (2/4)

83

Data-flow styles

Batch

sequential

Separate programs

executed sequentially,
with batched input

Problem easily f ormulated as a

set of sequential, severable
steps.

Interactiv ity or concurrency

between components necessary
or desirable.
Random-access to data required.

Pipe-and-filter Separate programs, a.k.a.
filters, executed,
potentially concurrently.
Pipes route data streams
between filters

[As with batch-sequential] Filters
are usef ul in more than one
application. Data structures
easily serializable.

Interaction between components
required. Exchange of complex
data structures between
components required.

Shared memory

Blackboard Independent programs,
access and communicate
exclusively through a
global repository known
as blackboard

All calculation centers on a
common, changing data
structure;
Order of processing dynamically
determined and data-driven.

Programs deal with independent
parts of the common data.
Interface to common data
susceptible to change. When
interactions between the

independent programs require
complex regulation.

Rule-based Use facts or rules entered
into the knowledge base
to resolve a query

Problem data and queries
expressible as simple rules over
which inference may be

perf ormed.

Number of rules is large.
Interaction between rules present.
High-performance required.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Style Summary, continued (3/4)

84

Interpreter

Interpreter Interpreter parses and

executes the input stream,
updating the state
maintained by the
interpreter

Highly dynamic behavior

required. High degree of end-
user customizability.

High perf ormance required.

Mobile Code Code is mobile, that is, it
is executed in a remote
host

When it is more efficient to move
processing to a data set than the
data set to processing.
When it is desirous to
dynamically customize a local
processing node through
inclusion of external code

Security of mobile code cannot be
assured, or sandboxed.
When tight control of versions of
deployed sof tware is required.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Style Summary, continued (4/4)

85

Implicit Invocation

Publish-

subscribe

Publishers broadcast

messages to subscribers

Components are very loosely

coupled. Subscription data is
small and efficiently transported.

When middleware to support high-

volume data is unavailable.

Event-based Independent components

asynchronously emit and
receive events
communicated over event
buses

Components are concurrent and

independent.
Components heterogeneous and
network-distributed.

Guarantees on real-time

processing of events is required.

Peer-to-peer Peers hold state and
behavior and can act as

both clients and servers

Peers are distributed in a
network, can be heterogeneous,

and mutually independent.
Robust in face of independent
failures.
Highly scalable.

Trustworthiness of independent
peers cannot be assured or

managed.
Resource discovery inef ficient
without designated nodes.

More complex styles

C2 Layered network of
concurrent components
communicating by events

When independence f rom
substrate technologies required.
Heterogeneous applications.
When support for product-lines
desired.

When high-performance across
many layers required.
When multiple threads are
inef ficient.

Distributed
Objects

Objects instantiated on
dif ferent hosts

Objective is to preserve illusion
of location-transparency

When high overhead of supporting
middleware is excessive. When

network properties are
unmaskable, in practical terms.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Summary

• Different styles result in

• Different architectures

• Architectures with greatly differing properties

• A style does not fully determine resulting architecture

• A single style can result in different architectures

• Considerable room for

− Individual judgment

− Variations among architects

• A style defines domain of discourse

• About problem (domain)

• About resulting system

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

