2IW81 Final Examination
Software Specification and Architecture
Mathematics and Computer Science
Eindhoven University of Technology
April 15, 2014, 9:00-12:00

Note: It is not allowed to use study material, lecture notes, computers, calculators or mobile
phones during the examination.

You should indicate your answers in the exam form itself. Should you require additional pa-
per, please ask the invigilator.

For your convenience summary of Event-B syntax is included as an appendix to this exam.

Part | (40 points)
Answer the following multiple-choice questions. Each question might have multiple correct
answers; you should encircle all of them in the exam text below. For each question you get

4)

2 points if all correct answers have been indicated and no incorrect answers have
been indicated;

1 point if some correct answers have been missed but no incorrect answers have
been indicated;

0 points if at least one incorrect answer has been indicated.

VEMUS, Virtual European Music School, was a big European project targeting dis-
tance music learning by designing a software system to support both music teachers
and learners. Music pieces played by the learners are subject to evaluations both by
teachers and by the automated systems. One of the requirements pertaining to the
latter reads: “The system should allow for automatic performance evaluation”.

a. This requirement is specific.
b. This requirement is a functional requirement.
c. Quality attribute related to this requirement is performance.
d. This requirement records traceability information.
Use case descriptions commonly contain:
a. Trigger, associations, guarantee.
b. Precondition, generalizations, main scenario.
c. Precondition, main scenario, alternative scenarios.
d. Aggregation, composition, generalization.

In an e-commerce application the customers have an option of checking the status of
their orders. To check the status of an order customer should be logged in. Use case
diagram describing this situation contains two use cases, Login and CheckOrderSta-
tus, and

a. adashed arrow from Login to CheckOrderStatus with a stereotype <<inclu-
de>>

b. a dashed arrow from Login to CheckOrderStatus with a stereotype
<<extend>>

c. adashed arrow from CheckOrderStatus to Login with a stereotype <<inclu-
de>>

d. adashed arrow from CheckOrderStatus to Login with a stereotype
<<extend>>

Identify correct statements about activity diagrams:

a. Activity diagrams have only one ActivityFinal marker @ and may have mul-
tiple FlowFinal markers ®

b. If an ExpansionRegion is present, it should have at least one FlowFinal mar-
ker

c. InterruptibleActivityRegion is indicated using the rake symbol l'h

d. Pins represent input/output parameters.

5) Consider the following diagram

K j create

What state would be reached after the following sequence of events: e1, e2, €3, e4, e6?
a. S11
b. S112 or S113 depending on the value of the guard p
c. S121
d. S122

6) Which of the following notations indicate(s) that interface | is provided by class P?

a) P R e = | b) =l ESEREY > |

7) Which statements hold for the following diagram

Flight —0..* assignment 0.1 — Plane

create

a. One flight can be assigned only to zero or one planes.
b. One flight can be assigned to any number of planes.
c. One plane can be assigned only to zero or one flights.

d. One plane can be assigned to any number of flights.

8) Which one(s) of the following sequence diagram fragments is consistent with the
class diagram fragment?

A l . |
» BOMEA ik l + SeidB: it |
+ MAPOAA() it l + rencaB et I
A 8 A 8
A . . b) .
- methodA() . H mehosB)
—_— —_—

methodA() . : mehosii)

9) Identify correct statements pertaining to deployment diagrams:

a.

Artefacts are physical elements of the system such as devices and execution
environments.

Artefacts: information items produced during software development or when
operating the system.

Manifestation maps artefacts to components, use cases, classes, compo-
nents, packages.

Manifestation maps components, use cases, classes, components to arte-
facts.

10) Inspect the following diagram: some messages are incorrect. ldentify them:

a. mi
b. m2
c. m3
d. m6
A ‘B
| |
| |
|
|
m1 l
' ' 4
m2
C
|
|
|
|
m5 |
e |

3
X

create

11) See the diagram below. What is the maximum number of instances of D that can be
connected to one instance of A?

o
1
1
2.5 1.3
N
B8 8
0.1
0.1
34 05
D

a. 12
b. 0
c. 30
d. 35

12) In a timing diagram...
a. horizontal lines indicate instantaneous change of a state;
b. a timing ruler should always be present;

c. time constraint {t1..t2} notation indicates that the event takes place between
t1 and t2;

d. multiple timelines might be present.

13) Choose informal description that corresponds to the following Event-B specification

authorized € User « Activity
takeplace € Room «— Activity
location € User -+ Room

a. Auser is authorized to engage in several activities. Each activity takes place
in a specific room.

b. Auseris authorized to engage in several activities. Activities take place in
rooms.

c. Activities take place in rooms. All users are located in rooms.

d. Each user is authorized to engage in only one activity. Users can be located
in rooms.

14) Consider the following fragment of an Event-B specification:

VARIABLES

authorized
takeplace
location
INVARIANIS
invl : authorized € User « Activity
takeplace € Room «— Activity
location € User -++ Room
invd Yu,r - uw» r € location =» takeplacel{r}] < authorized[{u}]
EVENTS
EnterRoom -
ANY
user
room
WHE RE
1rdl - user € User
1rd2 . room € Room
THEN
actl location({user) « room
END

Here “=" denotes implication. The verification of this specification fails. Choose the

guard that should be added to the event “EnterRoom” to guarantee verification of this
specification.

a. grd3 : vact - room ~ act € takeplace = user ~ act € authorised
b. grd3 : user » room € location
c. grd3 : takeplace[{room}] ¢ authorized[{user}]

d. grd3 : room ~ act e takeplace A user » act € authorized

15) [Rozanski and Woods] Company C, an established financial organization, wishes to
expand its presence on the Internet with the ability to market a range of financial ser-
vices to members of the public. These services are aimed at residents of the country
where Company C is based, as well as some international customers. Company C
plans to contract out the development and operation of the system to an established
Web developer.

a.

b.

Assessors of the system are staff from the Web development company.

Assessors of the system include senior managers who will authorize funding
for the project.

Assessors of the system include Company C’s internal accounting and legal
staff, as well as external financial regulators from any country in which Com-
pany C wants to trade.

Assessors of the system include ordinary members of the public, who will ac-
cess the public-facing Web site, along with internal administrative staff, who
will carry out its back-office functions.

16) Kruchten’s 4+1 process view

a.

covers aspects related to the concurrency viewpoint of Taylor, Medvidovi¢ and
Dashofy;

covers aspects related to the operational viewpoint of Rozanski and Woods;
can be represented by a UML component diagram;

is a viewpoint in terms of the ISO/IEC/IEEE 42010 standard.

17) Consider the following variability model.

Mobile phone

/N_

Screen Calls Media

iy AN

Color High L(----- 4 camer NP3
resolution

Which combinations of mobile phones’ features are allowed by this model?

a.
b.
c.

d.

GPS, Basic screen, Calls
Basic screen, High resolution screen, Calls, MP3
GPS, Color screen, Calls, Camera

High resolution screen, Calls, Camera

18) Indicate true statements pertaining to the Model-View-Controller architectural pattern

a.
b.

C.

Model corresponds to a Boundary class
Model can change without involving Controller
Model-View-Controller enforces event-driven behavior

Model-View-Controller supports only one View per Model.

19) Which architectural style is represented by the following diagram? Circular figure on
the right represents both the visualization tool and the visualization obtained.

a. Layered style

b. Pipes and filters style
c. Blackboard style

d. Mobile code style

20) The Gnutella protocol is an open decentralized group membership and search proto-
col. Gnutella has been designed to operate in a dynamic environment, where hosts
can join and leave the network frequently. Furthermore, Gnutella is expected to be
scalable and reliable, i.e., external attacks should not cause significant data or per-
formance loss. Which one of the following architectural styles would you apply if you
have been designing Gnutella?

a. Peer-to-peer
b. Mobile code
c. Client-server

d. Blackboard

Part Il (60 points)

Part Il contains five modeling exercises, by solving each one of them you can earn up to
15 points. You should solve four exercises out of five. Please read all the exercises
first, choose the ones you are most confident in to work on, and work on those exercises.
If you solve all five exercises, we will only grade the four exercises you have solved first.

1. [15 points] Design a variability model corresponding to the following description by
Hundt, Mehner, Pfeiffer and Sokenou (2007).

“The security component is intended to provide access control by user au-
thentication and authorization. A user management stores login names and
passwords.

Authentication is the minimal function required for access control. If only au-
thentication is requested, the authenticated user has complete access to the
application. The minimal requirement for authentication is the login feature.
Login is carried out either through a user interface or through operating sys-
tem user identification. An optional logout feature supports to explicitly log out
from the system. After logout, a new user or the same must be able to re-lo-
gin. Optionally, a timeout is available to logout a user automatically after a
configurable time span has elapsed without user interaction. Logout and ti-
meout are not supported if login is realized by operating system user identifi-
cation.

Authorization is dependent on authentication. For authorization, it is assumed
that access restrictions for each user can be specified. Authorization is sup-
posed to cover business objects containing data (per value) but also work
flows (per work flow) or certain operations (per operation). Different access
rights and different user roles are distinguished.”

2.

[15 points] Suppose we are developing a non-web-based information system. This
software will be used to collect and process data about certain entities. The require-
ments on the user interface are not completely clear. We would like to minimize the
risks regarding these requirements by splitting each interface into frames. We have
two types of interfaces:

» data-entry interfaces: consist of two frames. The main frame displays existing
data items in a data-grid. By selecting an item from this data-grid, the second
frame will display a detailed view of the item and will allow the user to edit/remove
the item. After making a change in the second frame, this change should be re-
flected immediately in the main frame.

« information display interfaces: consist of several frames. Each frame offers a dif-
ferent representation for the same data items, e.g., spreadsheet, pie chart, bar
chart.

Which architectural patterns/styles would be useful in this situation?

What components of the system would you associate with each part of the chosen
architectural patterns/styles?

How would you address the problems in this description by applying these patterns/
styles?

3.

[15 points] Consider the following ATM system.

The ATM system allows clients to work with bank accounts. To use the ATM a client
has to perform authentication. After authentication has been performed, the client
gets access to the accounts that he/she is assigned to. The client can perform the
following operations with his/her accounts:

e withdraw money from his/her account;

 transfer money from his/her account to any other account;
» deposit money in his/her account;

» stop working with the ATM and with his/her accounts.

The balance variable defines the amount of money stored on accounts. There are
two types of accounts: debit and credit. Balance of a debit account must be greater
than or equal to zero. Balance of a credit account can be negative, but must not ex-
ceed a predefined maximum credit sum.

Money is stored on accounts in different currency. There are four types of currency
available: Dollar, Euro, Rupee, and Yuan. The exchange rate defines the rate at
which one currency will be exchanged for another when withdrawing, transferring, or
depositing money of different currency.

Compose an Event-B specification of this ATM system. Use the following Event-B
specification as an initial version (here the specification is not split into the context
and the machine for the sake of brevity):

SETS
Clients
Accounts
AccountType
CONSTANTS
Debit
Credit
MaxCredit
AXIOMS
yxm) : partition{AccountType, {Debit}, {Credit})
3 X, MaxCredit = 1000

VARIABLES
authorized
atm user the suthorized client of the ATM
clients2accounts assigning accounts to cl
balance
access accounts that the atm user can access
INVARIANIS
invl clients2accounts € Clients «— Accounts
inv authorized € BOOL
in atm_user € Clients
invd access € Accounts
1nve authorized = FALSE =& access = @
in authorized = TRUE =+ access = {x - atm_user » x & clients2accounts | x}
inv7 balance € Accounts — Z
EVENITS
Authentication
ANY client
WHERE ...

THEN ...

END

Transfer
ANY source, destination, amount
WHERE ...
THEN ...
END

Deposit
ANY destination, amount
WHERE ...
THEN ...
END

Withdraw
ANY source, amount
WHERE ...
THEN ...
END

Stop
WHERE ...
THEN ...
END

END

Add guards (WHERE-section) and actions (THEN-section) to the listed events to
specify the ATM functionality. Specify types of the proposed parameters in the guards
of the events. Ensure that the invariants hold after each of these events is executed.
Add necessary variables, invariants and guards to describe debit/credit types of ac-
counts. Add necessary sets, constants, axioms, variables, invariants, parameters and
guards to describe currencies and exchange of currencies.

4. [15 points] Give a class diagram that models the domain of the card game Klondi-
ke. Give only classes, associations, and multiplicities. No attributes or methods requi-
red.

Klondike is a solitaire game where part of the cards are initially placed on the table in
a harp shape, the so-called tableau (see picture). The rest of the cards are placed
face down in the deck pile and one by one turned over and either added to the ta-
bleau or to the discard pile. Cards have a rank and a suit. During the game, four suit
piles are built (in the top right of the picture), one for each suit.

5. [15 points] Consider the following required functionality of an online DVD shop:

Customers should be able to search for DVDs by Title and Category (some examples
of categories are: Series, Movies, Music). Once they find a product they like, they
can add a DVD to their shopping cart. This requires that they are logged in, therefore
if they do not yet have an account, they should be able to create one. When creating
an account, a username and password should be chosen, and optionally, they can
enter their home address and/or the credit card information they want to use for
paying. Credit card information consists of the name on the credit card, the credit
card company, the credit card number, and the expiration date.

They can add as many DVDs to the shopping cart as they want, and they can also
remove DVDs. If they decide at some point to check out the shopping cart, then they
are asked to check the shipping address and credit card information supplied, and if
either of those was not supplied, they are asked to supply it. Next, they can review
the contents of the shopping cart, and if they agree, they can send the order. Then,
the credit card information is sent to the bank, and, if approved, the order is finalised.
If the information was not approved, then the customer is made aware of this, so he/
she can change the payment option.

A delivery agent can check the status of online orders, and process an order, mea-
ning that it changes its status from “pending” to “delivered”.

Finally, the administrator is responsible for the DVD inventory. She can check the
current inventory, order new DVDs from the supplier, and add DVDs to the inventory.

a. Create a UML Use Case Diagram for the online DVD shop. In addition, give a de-
tailed description (pre-condition, trigger, guarantee, main scenario,...) of the use
case for “check out shopping cart”.

b. Based on your use case description of “check out shopping cart’, create a UML
Sequence Diagram.

c. Create a UML Activity Diagram to depict the business process for processing a
DVD order. There are three parties involved in processing an order: Shipping, Online
Sales, and Accounting. The process starts when Online Sales receives an order for
DVDs from a user. To complete the order, the store needs to charge the credit card
and deliver the DVDs. To charge the card, Online Sales sends the credit card infor-
mation to Accounting, who will then validate and process the credit card. To deliver
the DVDs, Shipping will first fill the order, then prepare the package, and finally deli-
ver it. Once the DVDs are delivered and the credit card is charged, the order is clo-
sed.

This page has been intentionally left blank

A Concise Summary of the Event-B mathematical toolkit !

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the | ASCII form
that is used for input to Rodin.

In the following: P, @ and R denote predicates;

x and y denote single variables;

z denotes a single or comma-separated list of variables;

p denotes a pattern of variables, possibly including — and parentheses;
S and T denote set expressions;

U denotes a set of sets;

m and n denote integer expressions;

f and g denote functions;

r denotes a relation;

F and F' denote expressions;

E | F is a recursive pattern, ie it matches e1, es and also ey, eq, e3 ... ; similarly for z,y;

Freeness: The meta-predicate —free(z, E) means that none of the variables in z occur free in E. This meta-
predicate is defined recursively on the structure of F, but that will not be done here explicitly. The base cases
are: —free(z,Vz - P = Q), —~free(z,32 - PN Q), —free(z,{z- P | F}), ~free(z, z - P|E), and free(z, z).

In the following the statement that P must constrain z means that the type of z must be at least inferrable from
P.

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is
no confusion.

Note: Event-B has a formal syntax and this summary does not attempt to describe that syntax. What it
attempts to do is to explain Event-B constructs. Some words like expression collide with the formal syntax.
Where a syntactical entity is intended the word will appear in italics, e.g. expression, predicate.

1 Predicates 2 Sets
1. False L 1. Singleton set: {E'} {E}
2. T T
e 2. Set enumeration: {E,F'} {E, F}

3. Conjunction: P A Q
Left associative.

See note on the pattern E, F' at top of summary.

3. Empty set: @

javl
av] H
(o] ct [V
= 154 H o
[t 4]
=] P=] o [0)
-
—

4. Disjunction: PV @
Left associative.

4. Set comprehension: { z-P | F }’{ z. P|F}
General form: the set of all values of F' for all

values of z that satisfy the predicate P. P must
be parenthesised or an error will be diagnosed. constrain the variables in z.

6. Bquivalence: P« Q ' 5. Set comprehension: { F' | P FI|P
Pes Q=P=QAQ=P ' P AR

Non-associative: this means that P< Q< R must
be parenthesised or an error will be diagnosed.

5. Implication: P = Q

2,
o
2
)
9]
w0
o)
=}
)
[y
<
¢}
-+
=%
0w
B
[}
)
=]
)]
-+
5
)
-+
w
O
u*U
:Uu
2l v
Zlo
ot

Special form: the set of all values of F' that sat-
isfy the predicate P. In this case the set of bound
variables z are all the free variables in F'.

7. Negation: =P {F|P}={zP|F} where z is all the variables
in F.
8. Universal quantification:
Vz-P=Q 6. Set comprehension: { = | P } {x 1P}
Strictly, Vz- P, but usually an implication. A special case of item 5: the set of all values of x
For all values of z, satisfying P, Q is satisfied. that satisfy the predicate P.
The types of z must be inferrable from the predi- {z|P}={zP|z}
cate P.
9. Existential quantification: 7. Union: SUT
3P0 .
Strictly, 3z- P, but usually a conjunction. 8. Intersection: SNT
There exist values of z, satisfying P, that satisfy
Q. 9. Difference: S\ T
The type of z must be inferrable from the predicate S\T ={z|zeSAx¢T}
P.
10. Ordered pair: E — F .
10. Equality: E = F E=F E— F# (E,F)
. Left associative.
11. Inequality: F # F E/=F

In all places where an ordered pair is required,

IVersion January 23, 2014(©1996-2014 Ken Robinson

11.

12.

13.

14.

15.

16.

17.

18.

2.1

FE — F must be used. FE,F will not be ac-
cepted as an ordered pair, it is always a list.
{z,y-P | z — y} illustrates the different usage.

Cartesian product: S x T S *x T
SxT={z—y|lzeSAyeT}
Left-associative.

Powerset: P(S) POW(S)
P(S) = {s|s < S}

Non-empty subsets: Pq(.59) POW1(8)
Py (S) = P(S)\{@}

Cardinality: card(S))
Defined only for finite(S).

Generalized union: union(U) union (U)
The union of all the elements of U.

YU-U € P(P(9)) =

union(U) ={z |z € SAIs-:seU Az € s}
where —free(z,s,U)

I
o
R
Q.
~
)

Generalized intersection: inter(U)
The intersection of all the elements of U.

U+ o,

YU-U € P(P(S)) =

inter(U) ={zx |z € SAVs-se U=z € s}
where —free(z,s,U)

Quantified union:

Uz-P|S |UNION z.P | S|
P must constrain the variables in z.
Vz:P=SCT=
U(z-P|E)={z|zeTAN3z-PAzx €S}

where —free(x,z,T), —free(xz,P), -—free(z,S),
—free(x, z)

Quantified intersection:

Nz-P|S |INTER z.P | S|
P must constrain the variables in z,
{z| P} # 2,

Vz-(P=SCT))=
Nz-P|S={z|zeTANNVzP=2zecS)}

where —free(x,z), —free(x,T), —free(x,P),
—free(x, S).

Set predicates

. Set membership: £ € S
Set non-membership: E ¢ S
Subset: S CT S<: T
Not a subset: S T
Proper subset: S C T S<: T

. Not a proper subset: s ¢ t

Finite set: finite(S)

finite(S) < S is finite.

Partition: partition(S,z,y) ’partition(S,x,y)‘

x and y partition the set S, ie S = xUyAzNy = @
Specialised use for enumerated sets:
partition(S, {A}, {B}, {C}).
S={A,B,C}NA+BAB#CANC#A

3 BOOL and bool

BOOL is the enumerated set: {FALSE, TRUE}
and bool is defined on a predicate P as follows:

1. P is provable: bool(P) = TRUE
2. =P is provable: bool(P) = FALSE

4 Numbers

The following is based on the set of integers, the set of
natural numbers (non-negative integers), and the set of
positive (non-zero) natural numbers.

1. The set of integer numbers: Z INT

2. The set of natural numbers: N NAT

3. The set of positive natural numbers: N;
N; = N\{0}

4. Minimum: min(S)

S C Z and finite(S) or S must have a lower bound.

5. Maximum: max(S)
S C Z and finite(S) or S must have an upper
bound.

6. Sum: m+n m+n

7. Difference: m —n m-n
n<m

8. Product: m xn m* n

9. Quotient: m/n
n#0
10. Remainder: m mod n m mod n

n#0

11. Interval: m..n
m.n={i|lm<iANi<n}

=]

. B8
. ~
B B

4.1 Number predicates

1. Greater: m > n m>n
2. Less: m<n
3. Greater or equal: m > n
4. Less or equal: m <n m<=n

5 Relations

A relation is a set of ordered pairs; a many to many
mapping.

1. Relations: S < T S <->T
ST =P(SxT)
Associativity: relations are right associative:
reXeoYoeZ=reXe Yo Z).

2. Domain: dom(r) dom(r)
Vrere ST =
dom(r) = {z-(Jy-z—yer)}

]
8
~
la}
~

3. Range: ran(r)
Vrere ST =
ran(r) = {y-Gz-c—»y €r)}

4. Total relation:S «+ T
if r € S« T then dom(r) =S

5. Surjective relation:S <» T S <->> T

ifr e S<» T thenran(r) =T

6. Total surjective relation:S «» T'

if r € S «» T then dom(r) = S and ran(r) =T

7. Forward composition: p;q

Vp,qpe S TANqeT U=
pig={z—y|(Fzzxz—zeEprhz—ycq)}

8. Backward composition: pogq
poqg=4g;p

p circ q

Q.

9. Identity: id
S<id={z—z|ze S}
id is generic and the set S is inferred from the
context.

10. Domain restriction: S <1 r S<|r
Sar={z—vyl|lz—yerAxzeS}

11. Domain subtraction: S < r
S<ar={z—ylz—ycrrx¢S}

12. Range restriction: r > T r [>T
roT={z—yla—ycrAnyeT}.

13. Range subtraction: r & T
reT={z—ylyerny¢T}.

14. Inverse: r—!

ri={y—z|lr—yer}

15. Relational image: r[5] r[s]

rlS]={y|Iz-x e SAz—yer}.
16. Overriding: r1 < o rl <+ r2
r1 <+ 19 = ro U (dom(re) < ry).

= [9)]
— A
4 A
\V4 —
=
Q 2 — o]

17. Direct product: p ® q p ><
pRqg={z—(y—2)|za—yeEpiraz— zE€q)}.

18. Parallel product: p || ¢

(x

1

pllg={z,ymnaz—mepAy—necq
y) = (m—n)}.

19. Projection: prj;

el
o]

.
-

prj; is generic.
(SxT)<prj; ={(z—y)—»ax|z—yeSxT}

20. Projection: prj,

hel
R

.
N

prj is generic.
(SxT)<prjg={(z—y)—ylz—yecSxT}

5.1 Iteration and Closure

Iteration and closure are important functions on rela-
tions that are not currently part of the kernel Event-B
language. They can be defined in a Context, but not
polymorphically.

Note: iteration and irreflexive closure will be imple-
mented in a proposed extension of the mathematical
language. The operators will be non-associative.

. Reflexive Closure: r*

3. Irreflexive Closure: r+

. Partial functions: S+ T

. Total functions: S — T

. Partial injections: S T

. Total injections: S — T

. Total surjections: S — T

. Iteration: r" r'n

reS«S=r"=85<gidArmtt =r;rn,

Note: to avoid inconsistency S should be the fi-
nite base set for r, ie the smallest set for which all
reS«.S.

Could be defined as a function iterate(r — n).

H
)
*

r*=Un-(n e N|rm).
Could be defined as a function rclosure(r).
Note: 70 C r*.

H
)
+

rt=Un-(n €Ny |r").

Could be defined as a function iclosure(r).

Note: 7% € r* by default, but may be present
depending on r.

5.2 Functions

A function is a relation with the restriction that each
element of the domain is related to a unique element in
the range; a many to one mapping.

S +>T
S»T={rreSTArrt;rCT<id}.

S ——>T
ST ={ffeS+TAdom(f) =S}

S>> T

SeT={ffeSw»TANfleT+S
One-to-one relations.

—

S >>T
S—T=8TNS—T.

. Partial surjections: S -+ T S +>>T

S»T={f-feS+»TAran(f)=T}
Onto relations.

S -——>>T
S—>»>T=85+»TNS—>T.

. Bijections: ST S>> T

S—»T=85—-TNS—>T.
One-to-one and onto relations.

. Lambda abstraction:

~

(Ap-P | E)

P must constrain the variables in p.
(Ap-P | E) = {2-P | p— E}, where z is a list of
variables that appear in the pattern p.

hp.PIE)

. Function application: f(FE) f(E)

E—yef=FEcdom(f)Afe XY, where
type(f) =P(X xY).

Note: in Event-B, relations and functions only
ever have one argument, but that argument may
be a pair or tuple, hence f(E — F)|f(E |-> F)
f(E,F) is never valid.

Models

. Contexts: contain sets and constants used by

other contexts or machines.

CONTEXT Identifier
EXTENDS Machine_Identifiers
SETS Identifiers
CONSTANTS Identifiers
AXIOMS Predicates

END

Note: theorems can be presented in the AXIOMS
part of a context.

2. Machines: contain events.

MACHINE Identifier
REFINES Machine_Identifiers
SEES Context_Identifiers
VARIABLES Identifiers
INVARIANT Predicates
VARIANT Expression
EVENTS Events

END

Note: theorems can be presented in the INVARI-
ANT section of a machine and the WHERE part
of an event.

6.1 Events

Event_name

REFINES Event_identifiers
ANY Identifiers
WHERE Predicates
WITH Witnesses
THEN Actions

END

There is one distinguished event named INITIALISA-
TION used to initialise the variables of a machine, thus
establishing the invariant.

6.2 Actions

Actions are used to change the state of a machine. There
may be multiple actions, but they take effect concur-
rently, that is, in parallel. The semantics of events are
defined in terms of substitutions. The substitution [G]P
defines a predicate obtained by replacing the values of
the variables in P according to the action G. General
substitutions are not available in the Event-B language.

Note on concurrency: any single variable can be mod-
ified in at most one action, otherwise the effect of the
actions would, in general, be inconsistent.

1. skip, the null action:
skip denotes the empty set of actions for an event.

2. Simple assignment action: z := F x := E
:= = “becomes equal to”: replace free occurrences
of x by E.

3. Choice from set: z :€ S
1€ = “becomes in”: arbitrarily choose a value from
the set S.

4. Choice by predicate: z :| P
)| = “becomes such that”: arbitrarily choose val-
ues for the variable in z that satisfy the predicate
P. Within P, x refers to the value of the variable
x before the action and z’ refers to the value of
the variable after the action.

5. Functional override: f(z):=F

Substitute the value E for the function/relation f
at the point x.

This is a shorthand:

fl):=F = f:=f< {z— E}.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and
corrections at various stages of the evolution of this summary.

