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Abstract. Static analysis tools help to detect programming errors but
generate a large number of alarms. Repositioning of alarms is recently
proposed technique to reduce the number of alarms by replacing a group
of similar alarms with a small number of newly created representative
alarms. However, the technique fails to replace a group of similar alarms
with a fewer representative alarms mainly when the immediately enclos-
ing conditional statements of the alarms are different and not nested.
This limitation is due to conservative assumption that a conditional
statement of an alarm may prevent the alarm from being an error.

To address the limitation above, we introduce the notion of non-impacting
control dependencies (NCDs). An NCD of an alarm is a transitive control
dependency of the alarm’s program point, that does not affect whether
the alarm is an error. We approximate the computation of NCDs based
on the alarms that are similar, and then reposition the similar alarms
by considering the effect of their NCDs. The NCD-based repositioning
allows to merge more similar alarms together and represent them by a
small number of representative alarms than the state-of-the-art reposi-
tioning technique. Thus, it can be expected to further reduce the number
of alarms.

To measure the reduction obtained, we evaluate the NCD-based reposi-
tioning using total 105,546 alarms generated on 16 open source C applica-
tions, 11 industry C applications, and 5 industry COBOL applications.
The evaluation results indicate that, compared to the state-of-the-art
repositioning technique, the NCD-based repositioning reduces the num-
ber of alarms respectively by up to 23.57%, 29.77%, and 36.09%. The
median reductions are 9.02%, 17.18%, and 28.61%, respectively.

1 Introduction

Static analysis tools help to automatically detect common programming errors
like division by zero and array index out of bounds [2,3./5,33] as well as help in
certification of safety-critical systems [6,(10,/17]. However, these tools report a
large number of alarms that are warning messages notifying the tool-user about
potential errors [11}/15}/22,/29/31]. Partitioning the alarms into true errors and
false alarms (false positives) requires manual inspection [11,/19,[30]. The large



number of false alarms generated and effort required to analyze them manually
have been identified as primary reasons for underuse of static analysis tools in
practice |4}/7,[15L{19].

Clustering is commonly used to reduce the number of alarms reported to the
user [14.[26]. State-of-the-art clustering techniques [13,[20424/34] group similar
alarmﬂ together such that (1) there are few dominant and many dominated
alarms; and (2) when the dominant alarms of a cluster are false positives, all
the alarms in the cluster are also false positives. The techniques count only the
dominant alarms as the alarms obtained after the clustering.

Repositioning of alarms [27] is recently proposed technique to overcome lim-
itations of the clustering techniques [13,20}/24,[34]. To achieve the reduction in
alarms, the technique repositions a group of similar alarms to a program point
where they can be safely replaced by a fewer newly created representative alarms
(called as repositioned alarms). The alarms repositioning is safe and performed
only if the following repositioning criterion is met—when a repositioned alarm
is a false positive, its corresponding original alarms are also false positives, and
vice versa. Thus, the repositioned alarms act as dominant alarms for the original
(similar) alarms that are replaced by them.

Problem The alarms repositioning technique [27] described above fails to repo-
sition and merge similar alarms when their immediately enclosing conditional
statements are different and not nested. As a consequence, in these cases, the
repositioning technique does not reduce the number of alarms. We call these cases
repositioning limitation scenarios. We illustrate this limitation using the alarms
(red rectangles) shown in Figure[l| The code is excerpted from archimedes-0.7.0.
The two code examples shown in Figures [Ta] and [Ih] are independent of each
other. Analyzing the code in Figure (resp. Figure using any static anal-
ysis tool generates two (resp. four) alarms corresponding to array index out of
bounds (resp. division by zero). Grouping these alarms using the state-of-the-art
clustering techniques [13[[204[24,[34] does not reduce their number.

Among the six alarms shown in Figure [} there exist three groups of similar
alarms: Aqg and Agg, Dggand Dgg, and Digg and Dgg. The alarms repositioning
technique cannot determine whether the control dependencieﬂ (i.e. the enclosing
conditional statements) of these alarms can prevent the alarms from being an
error. Thus, the technique conservatively assumes that the control dependencies
of these alarms can prevent the alarms from being an error, i.e., the dependencies
can impact those alarms. For example, the values read for nz at line 33| can be
zero due to which two similar alarms Dgg and Dy get generated. However, the
technique conservatively assumes that the control dependencies of these alarms
can prevent the zero value read for nx from reaching to lines and As
a result of the conservative assumption, the repositioning criterion cannot be
guaranteed for repositioning of these two similar alarms (Dgg and Dygg) to any

! Broadly, two alarms are said to be similar if the property/condition checked in one alarm implies
the property/condition checked in the other alarm (Section .
A control dependency of a program point p is a conditional edge in the control flow graph [1],
that decides whether p is to be reached or not (see Section .



Bl void Read_Input_File(void){

1void HoleHMEPBCs (void){ B2 ...
2 int h2d[309]; 33 fscanf (fp,"%d %d4d",&nx, &ny);
3 B4 fscanf (fp,"%s",pos);
4 ... 135
5 fscanf (fp,"%d" ,&ny); 36 //assert(nx!'=0); @
6 B7 if (strcmp(pos,"DOWN")==0) 4%
7 //assert(0<ny<304); @ 38 delt=LX/nx;  |[Lgf-—-eoee T
8 A% B
9 if (EDGE[2][i]1[0]1==0){. = po //assert(my!=0); ryd
10 h2dlny+4l=...; [Aml~ i1 if (strcmp(pos,"RIGHT")==0)
! ‘2 delt=LY/ny; [Dmg} o
12 I ks
13 if (EDGE[2] [i][0]==1 J k4  if(strcmp(pos,"UP")==0) i
14 || EDGE[21[i1[01==2)f" s  delt=LX/nx; ;
15 h2d[ny+4l=...; [Aml~ 6
16 } u7  if (strcmp (pos,"LEFT")==0)
17 us delt=LY/ny;
18} Mo }

(a) readinputfile.h (b) Hole_bes.h

Fig. 1: Examples of alarms to illustrate their NCD-based repositioning.

program point, e.g., to line That is, the resulting repositioned alarm can be an
error while none of these two alarms is an error. Thus, the repositioning technique
fails to reposition and merge these two similar alarms together. Similarly, the
technique also fails to reposition the other two groups of similar alarms shown
in Figure[ll As a result, the repositioning technique does not reduce the number
of alarms shown in Figure

We find that the above assumption about the control dependencies of the
alarms’ program points limits the reduction achieved by the repositioning tech-
nique, because not every control dependency of an alarm’s program point can
prevent the alarm being an error. For example, the conditions corresponding
to the control dependencies of the alarms shown in Figure [I] are most likely to
determine whether the program points of those alarms are to be reached and
not to prevent the alarms from being an error.

Our pilot study on 16 open source applications indicates that, 38% of the
alarms reported after their repositioning are still similar and appear in the repo-
sitioning limitation scenarios. These results suggest the scope for improvement.

Our Solution To overcome the problem above and further reduce the num-
ber of alarms, we introduce the notion of non-impacting control dependencies
(NCDs). An NCD of an alarm is a transitive control dependency of the alarm’s
program point, that does not affect whether the alarm is an error. As we intend
to reposition and merge more similar alarms together for reducing their number,



we restrict the scope of NCDs computation to the similar alarms only. Since de-
termining whether a control dependency is an NCD is undecidable, we compute
the NCDs of similar alarms approximately (described in Section. The NCDs
computed are subsequently used to reposition the similar alarms by considering
the effect of their NCDs (NCD-based repositioning). Thus, NCD-based reposi-
tioning allows to reposition more similar alarms together and replace them by
a fewer repositioned (dominant) alarms than the state-of-the-art repositioning
technique. For example, our approach to compute NCDs, identifies the control
dependencies of the alarms shown in Figure [I] as NCDs. Repositioning each
group of the similar alarms using the NCDs allows to replace the group by a
newly created dominant alarm (shown using green circles). Thus, NCD-based
repositioning reduces the number of alarms by three.

Although NCD-based repositioning is performed based on approximated NCDs,
the repositioned alarms do not miss detection of an error uncovered by the orig-
inal alarms. Thus, NCD-based repositioning can be expected to further safely
reduce the overall number of alarms.

To measure the reduction obtained, we evaluate NCD-based repositioning
on total 105,546 alarms generated for the following kinds of applications: (i) 16
open source C applications (ii) 11 industry C applications; and (iii) 5 industry
COBOL applications. The alarms are generated by a commercial tool for five
safety properties. The evaluation results indicate that, compared to the state-of-
the-art repositioning technique, NCD-based repositioning reduces the number of
alarms on these applications, respectively by up to 23.57%, 29.77%, and 36.09%.
The median reductions are 9.02%, 17.18%, and 28.61%, respectively.

Following are the key contributions of our work.

1. The notion of NCDs of alarms and computing them for similar alarms.

2. An NCD-based repositioning technique to reduce the number of alarms.

3. A large-scale empirical evaluation of the NCD-based repositioning technique
using 105,546 alarms on 16 open source and 16 industry applications.

Paper outline. Section [2] presents terms and notations that we use through-
out the paper. Section [3]describes the pilot study. Section [d] describes the notion
of NCDs and NCD-based repositioning. Section [5| presents a technique/algo-
rithm to implement NCD-based repositioning. Section [6] discusses our empirical
evaluation. Section [7] presents related work, and Section [§] concludes.

2 Terms and Notations

Control Flow Graph A control flow graph (CFG) [1] of a program is a directed
graph (N, &), where A is a set of nodes representing the program statements
(e.g., assignments and conditional statements); and £ is a set of edges such that
an edge (n,n’) represents a possible flow of program control from n € N to
n’ € N without any intervening node. We use n — n’ to denote an edge from
node n to node n’. Depending on whether the program control flows condition-
ally or unconditionally along an edge, the edge is labeled either as conditional



or unconditional. We denote the condition corresponding to a conditional edge
u — v as cond(u — v). A CFG has two distinguished nodes Start and End,
representing the entry and exit of the corresponding program, respectively. For
a given node n, we use pred(n) to denote predecessors of n in the graph.

Except for the Start and End nodes, we assume that there is a one-to-one
correspondence between the CFG nodes and their corresponding program state-
ments. Thus, we use the terms statement and node interchangeably. Henceforth,
in code examples we use n,, to denote the node of a program statement at
line m. For the sake of simplicity, we assume that the program statements do
not cause side effects and the conditional statements (branching nodes) do not
update values of a variable.

Program Points We write entry(n) and ezit(n) to denote the entry and exit of
anode n, i.e., the program points just before and immediately after the execution
of statement corresponding to the node n, respectively. The entry or exit of a
node is assumed not to be shared with entry or exit of any other node even
though they may indicate the same program point/state. A program point p;
dominates a program point ps if every path from the program entry to py contains
p1. A program point p; post-dominates a program point po if every path from
po to the program exit contains p;.

Data Dependencies A variable v at a program point p is said to be data
dependent on a definition d of v, if d is a reaching definition [16,/28] of v at
p. Data dependencies of a variable v are the definitions on which v is data
dependent.

Control Dependencies A node w is said to be control dependent on a condi-
tional edge u — v if w post-dominates v; and if w # u, w does not post-dominate
u [9,/12]. Control dependencies of a node n or a program point entry(n) (or
exit(n)) are the conditional edges on which the node n is control dependent.
A conditional edge e is called as transitive control dependency of a point p if
e belongs to the transitive closure of control dependencies of p. We use e ~» p
to denote that e is a transitive control dependency of a program point p. We
say that the conditions of two conditional edges e; and ey are equivalent if
cond(e1) < cond(ez). In the other case, we say that the conditions of the two
dependencies are different. On similar lines, we call two conditional edges n — n’
and m — m’ condition-wise equivalent only if (1) their conditions are equivalent;
and (2) every variable in their conditions has same data dependencies at exit(n)
and ezit(m).

Static Analysis Alarms A static analysis tool reports an alarm at the location
where the run-time error corresponding to the alarm is likely to occur. We refer
to the tool generated alarms as the original alarms and to their locations as
the original locations. We use cond(¢) to denote alarm condition of an alarm ¢,
i.e., the check performed by the analysis tool for detecting an error. The alarm
condition holds iff the corresponding alarm is a false positive. For example,
nx # 0 is the alarm condition of the alarms Dgg and Dgg shown in Figure
We use safe values (resp. unsafe values) to refer to the set of values of the
variable(s) in cond(¢$) due to which ¢ is a false positive (resp. an error).



We call two alarms ¢ and ¢ similar if cond(¢) = cond(¢') or cond(¢') =
cond (). An alarm ¢ is said be a dominant alarm of an alarm ¢’ only if when ¢ is
a false positive, ¢’ is also a false positive. We use ¢,, to denote an alarm ¢ located
at a program point p, and thus we say that the transitive control dependencies
of ¢, are same as the transitive control dependencies of p. We write e ~» ¢ to
indicate that e is a transitive control dependency of an alarm ¢. We use tuple
(¢, p) to denote a repositioned alarm at p with ¢ as its alarm condition.

3 Pilot Study

As a sanity check we performed a study to measure (1) what percentage of
alarms resulting after the state-of-the-art repositioning [27] are similar; and (2)
what percentage of these similar alarms appear in the repositioning limitation
scenarios (Section . The similar alarms appearing in those limitation scenarios
are candidates for reducing their number through NCD-based repositioning.

We selected 16 open source C applications that were previously used as bench-
marks for evaluating the alarms clustering techniques [21}34] and the reposition-
ing technique [27]. We analyzed these applications using our commercial static
analysis tool, TCS ECA [32], for five safety properties: division by zero, array
index out of bounds (AIOB), arithmetic overflow and underflow, dereference of a
null pointer, and uninitialized variables. The generated alarms are postprocessed
using the clustering techniques [21,24] and then the resulting dominant alarms
are repositioned using the state-of-the-art technique [27].

We first identified groups of similar alarms from 64779 alarms generated by
the setup above. Next we identified similar alarms in each group that have same
data dependencies for their variables, and counted those alarms as the similar
alarms appearing in the repositioning limitation scenarios. Results of this study
are shown in Table [l The column 7Total Alarms shows the number of total
alarms generated by state-of-the-art grouping and repositioning techniques for
the selected five properties. The column % Similar Alarms presents percentage
of similar alarms in the total alarms. The column % Same DDs (resp. % Different
DDs) presents percentage of the similar alarms that have same data dependencies
(resp. different data dependencies).

The study indicates that, on an average, 50.89% of the alarms obtained after
the state-of-the-art repositioning are similar, and 74% of these similar alarms—
38% of the total alarms—appear in the repositioning limitation scenarios. Based
on these results we expect postprocessing alarms using NCD-based repositioning
can help to reduce their number.

4 NCDs of Similar Alarms

4.1 The Notion of NCD of an Alarm

Definition 1 (NCD of an alarm). Let ¢ be an alarm reported in a program
P, and (n — n') is a transitive control dependency of ¢. Let P’ be obtained from



Table 1: Distribution of similar alarms in alarms reported after state-of-the-art
clustering and repositioning techniques.

Application Total Alarms %A?;I;lnlll:r %DSSI;G % Dle]ge;ent
archimedes-0.7.0 2275 51.60| 34.24 65.76
polymorph-0.4.0 25 28.00( 100.00 0.00
acpid-1.0.8 25 44.00| 45.45 54.55
spell-1.0 71 25.35| 44.44 55.56
nlkain-1.3 319 53.92| 36.63 63.37
stripcc-0.2.0 229 66.81| 84.31 15.69
ncompress-4.2.4 92 51.09| 53.19 46.81
barcode-0.96 1064 47.09] 61.68 38.32
barcode-0.98 1310 46.64| 60.72 39.28
combine-0.3.3 819 66.42| 71.14 28.86
gnuchess-5.05 1783 51.65| 55.27 44.73
antiword-0.37 613 32.79| 60.70 39.30
sudo-1.8.6 7433 43.72| 54.18 45.82
uucp-1.07 2068 51.50| 70.23 29.77
ffmpeg-0.4.8 45137 51.99| 82.33 17.67
sphinxbase-0.3 1516 54.68| 49.70 50.30
Total 64779 50.89| 74.55 25.45

P by replacing the condition of the branching node n with a non-deterministic
choice function. We say that the dependency n — n’ is an impacting control
dependency (ICD) of ¢ only if ¢ is a false positive in P but an error in P’. Oth-
erwise, say that the dependency n — n' is a non-impacting control dependency
(NCD) of ¢. O

We illustrate the notion of NCD/ICD by categorizing the effect of a control
dependency e ~ ¢, on ¢,, where e = n — n/. The classification is based on the
values that can be assigned to variables in cond(p).

Class 1 The variables in cond(¢,) are assigned with safe values by their data
dependencies, and thus ¢, is a false positive. In this case, e is an NCD of ¢,:
replacing the condition of the branching node n—the source node of e—by a
non-deterministic choice function does not cause ¢, to be an error.

Class 2 The variables in cond(¢,) are assigned with unsafe values by their data
dependencies, and ¢, is an error if the unsafe values reach the alarm program
point p. In this case, the effect of e on ¢, is in one of the following two ways
depending on whether the unsafe values reach ¢,.

Class 2.1: The condition cond(e) prevents the flow of the unsafe values from
reaching ¢, and thus ¢, is a false positive. In this case, if the condition of
the source node n of e is replaced by a non-deterministic choice function, the
alarm is an error as those unsafe values reach ¢,. That is, e affects whether
¢p is an error or a false positive. Thus, in this case, we say that e is an



1 void f1(int p, int q){ 9 if(q == 5){

2 int t, arr[10], i = readInt(); |10 arr[i] = 1;

3 11 print (20/1);
4 if(p == 1) 12 }

5 i= 0; 13

6 14 if(q == 5)

7 if(p == 1) 15 t = arr[il;
8 arr[i] = 0; 16 }

Fig. 2: Examples to illustrate ICDs and NCDs of alarms.

ICD of ¢,, and cond(e) is a safety condition for ¢, because e prevents the
alarm from being an error. For example, in Figure|2] the control dependency
ng — ng of Agis ICD.

Class 2.2: The condition cond(e) does not prevent the flow of the unsafe values
from reaching ¢, and thus ¢, is an error. In this case, if the condition of
the source node n of e is replaced by a non-deterministic choice function,
the alarm would still remain as an error. That is, e does not affect whether
¢p is an error or a false positive. Thus, we say that e is an NCD of ¢,,. For
example, in Figure 2] the control dependency ng — nug of Dig is NCD.

4.2 Computation of NCDs of Similar Alarms

Computing whether a given dependency e of an alarm ¢ is an ICD or NCD
includes determining whether ¢ is a false positive. As determining whether ¢
is a false positive is undecidable in general [11,22], determining whether e is
an ICD/NCD of ¢ is also undecidable. Thus, we compute approximation of
ICDs/NCDs. As we aim to reposition similar alarms together, we focus on com-
puting NCDs of those similar alarms only. For a given set of similar alarms ®@g
and ¢ € Pg, the approximation of NCDs/ICDs of ¢ is described below.
Computation of ICDs For an alarm ¢, we compute its transitive control
dependency e ~» ¢ as ICD, only if every path reaching each alarm qu; € ®g has
a dependency €’ ~ ¢;, on it such that e and ¢’ are condition-wise equivalent. For
example, the control dependencies of the similar alarms Agm and Agg in Figure
are ICDs.

Computation of NCDs For an alarm ¢, we compute its transitive control
dependency e ~~ ¢ as NCD, if there exists a path reaching at an alarm (b; € &g
without having a dependency e’ ~ ¢/, on it such that e and e’ are condition-
wise equivalent. For example, in Figure[T] the control dependencies of the similar
alarms Dgg and Dgg are NCDs.

In other words, when ¢ € ®g, e ~ ¢, and a condition equivalent to cond(e)
appears on every path to each of the similar alarms @g, then we treat cond(e)
as a potential safety condition for each alarm in @g, and thus e as an ICD of ¢.
Otherwise, e is an NCD of ¢.



Intuition Behind the Approximation The NCDs of similar alarms computed
above approximate NCDs as defined in Definition 1. The idea of the approxi-
mation is based on the earlier observation by Kumar et al. [18] that removing
statements which merely control reachability of an alarm’s program point rarely
affects whether the alarm is false positive or not: removing the non-value im-
pacting control statements of the alarms changed only 2% of the false positive
alarms into errors. This suggests that for a given dependency e ~» ¢, cond(e)
is rarely a safety condition for ¢, i.e., e is rarely an ICD of ¢. Thus, intuitively,
the chance of existing different safety condition for each of the alarms in ®g is
even lower: if there exists a safety condition to prevent an alarm from being an
error, an equivalent condition also should exist for every other similar alarm. For
example, in Figure [1} if the condition stremp(pos, “DOW N”) == 0 is a safety
condition for Digg, the same condition should also have been for its similar alarm
Digm. Thus, we approximate the control dependencies of those two alarms to be
NCDs. On similar lines, the control dependencies of the other alarms in Figure
[[ are NCDs.

In the next section we discuss that, although the above computation of NCDs
is observation-based and approximated, the NCDs computed can be safely used
to reduce the overall number of alarms.

4.3 NCD-based Repositioning of Similar Alarms

To overcome the limitation of the state-of-the-repositioning (Section7 we repo-
sition a group of similar alarms by considering the effect of their NCDs. We design
NCD-based repositioning to satisfy the following constraints, where R is the set
of alarms resulting from the repositioning of a set of similar alarms @g.

C'1: The program points of the repositioned alarms R together dominate the
program point of every alarm ¢ € @g, so that when the repositioned alarms
R are false positives, the original alarms ®g are also false positives.

C?2: All the paths between the repositioned alarms R and every alarm ¢ € &g
does not have an ICD of ¢ (that is, all the control dependencies of an alarm
¢ € &g along a path between the repositioned alarms R and ¢ are NCDs).

C3: The number of the repositioned alarms R is strictly not greater than the
number of original alarms @g.

The constraint C'1 ensures that when ¢ € ®@g is an error, at least one of the
repositioned alarms R is also an error. Thus, the repositioning is safe, and the
repositioned alarms R together act as dominant alarms of the original alarms
®g. However, as the repositioned alarms are newly created, with C'1 we cannot
guarantee that when a repositioned alarm r, € R is an error, at least one of
its corresponding original alarms ¢’ C &g is an error. That is, r, may detect
an error spuriously. The spurious error detection occurs only when every path
between 7, and each ¢ € ¢’ has an ICD of ¢.

To overcome the problem above—a repositioned alarm detecting a spuri-
ous error—we add the second constraint C2. The constraint C'1 together with



C?2 guarantees that when a repositioned alarm is an error, at least one of its
corresponding original alarms is also an error, and vice versa. In other words,
when the repositioned alarms R are false positives, the original alarms &g are
also false positives, and vice versa. Thus, NCD-based repositioning with these
two constraints, C'1 and C2, meets the repositioning criterion (Section . As
NCD-based repositioning creates new alarms, with the third constraint C3, we
ensure that the repositioning never results in more alarms than the input for
repositioning. Thus, NCD-based repositioning performed with constraints C1,
C2, and C3 is safe, without spurious error detection by the repositioned alarms,
and without increasing the overall number of alarms.

For example, Figure [I] also shows NCD-based repositioning of the similar
alarms, obtained using the NCDs computed above (Section . The reposi-
tioned alarms are shown using green circles. The shown NCD-based repositioning
satisfies the three repositioning constraints (C1, C2, and C3).

During the repositioning of a set of similar alarms, when a repositioned alarm
can be created at multiple locations satisfying the three repositioning constraints,
we choose the location that is closer to its corresponding original alarms. Note
that, although NCD-based clustering is performed using approximated NCDs,
the repositioning obtained is still safe (Constraint C1).

When the approximate NCDs computation results in identifying ICDs of a
group of similar alarms as NCDs, the obtained repositioned alarm(s) may result
in detection of a spurious error. Due to this, (1) educating the tool user about the
spurious error detection is required; and (2) we also report traceability links be-
tween the repositioned and their corresponding original alarms. The traceability
links help user to inspect the corresponding original alarms when when a repo-
sitioned alarm is found to be an error. We experimentally evaluate the spurious
error detection rate incurred due to computing the NCDs approximately.

Moreover, when the approximate ICDs/NCDs computation results identify-
ing NCDs of a group of similar alarms as ICDs, NCD-based repositioning fails
to reposition those alarms.

5 NCD-based Repositioning Technique: Algorithm

This section presents a technique for NCD-based repositioning of alarms. The
technique computes ICDs of the alarms instead of NCDs: ICDs and NCDs of an
alarm are mutually exclusive. For efficiency the technique is designed to com-
pute ICDs of alarms while the alarms are repositioned: we do not compute the
ICDs separately before the repositioning is performed. We begin describing the
technique by defining live alarm conditions similarly to the live variables [16].

Definition 2 (Live Alarm-condition). An alarm condition c is said to be live
at a program point p, if a path from p to the program exit contains an alarm ¢
reported at a program point q with ¢ as its alarm condition, and the path segment
from p to q is definition free for any operand of c. O

For example, in Figure condition ny # 0 is live at exit(ngg) due to the
alarms Dy or Dgg. However, the same condition is not live at entry(ngg).



5.1 Live Alarm-conditions Analysis

Analysis Overview In this analysis, alarm conditions of a given set of origi-
nal alarms @ are propagated in the backward direction by computing them as
live alarm-conditions (liveConds). We use data flow analysis [16,28] to compute
liveConds at every program point in the program. The aim of this analysis, that
we call liveConds analysis, is to compute repositioned alarms for ¢. To this end,
for every liveCond ¢ that we compute at a program point p, we also compute
the following information.

1. The original alarm(s) due to which ¢ is a liveCond at p. We refer to these
alarms as related original alarms (relOrigAlarms) of £.

2. The program point(s) that are later used to create repositioned alarms: a
(new) repositioned alarm with ¢ as its alarm condition is created at each
of these program points. In other words, these program points denote the
locations where the relOrigAlarms of £ are to be repositioned. Thus, we refer
to these program points as repositioning locations (reposLocations) of £. A
reposLocation of £ is either the location of an original alarm due to which
¢ is a liveCond at p, or a program point computed during its backward
propagation (the meet operation discussed later).

3. The transitive control dependencies of the reposLocations of ¢ such that for
every dependency there exists a condition-wise equivalent dependency on all
the paths from p to every reposLocation. We refer to these dependencies as
related]CDs of ¢, because their conditions denote at least one safety condition
of the alarms that will get created at the reposLocations of /.

To compute traceability links between the repositioned alarms and their cor-
responding original alarms (and vice versa), we compute the relOrigAlarms of
¢ reposLocation-wise: reposLocations of £ are the program points where relOri-
gAlarms of ¢ are to be repositioned. We refer to the alarms computed corre-
sponding to a reposLocation p as relOrigAlarms of p. The relOrigAlarms of ¢
can be obtained by collecting together the relOrigAlarms of reposLocations of £.
Notations Let (N, E) be the control flow graph of the program: N is the set
of nodes and £ is the set of edges. Let P be the set of all program points in the
program. Let £, C &€ be the set of all conditional edges in the CFG, i.e., the set
of all transitive control dependencies of each p € P. Let L be the set of all alarm
conditions of a given set of original alarms &. Thus, the liveConds computed by
the liveConds analysis at a program point are given by a subset of L.

For a liveCond ¢ computed at a program point p, the reposLocations of
¢ and their corresponding relOrigAlarmﬂ are given by a subset of 2 where
A = P x 2%. Thus, the values computed for a liveCond ¢—its reposLocations
(with their corresponding relOrigAlarms) and its related[CDs—are given by an
element of X, where X = 24 x 2. We use a function f : £ — X that maps
a liveCond ¢ € L to a pair of its reposLocations A € 24 and relatedICDs

3 Note that the related original alarms (relOrigAlarms) of a liveCond £ are computed
corresponding to its reposLocations (reposLocation-wise).



Given 5,8’ € B :

S "ng S = J  { meetinfo(¢,n,s,5") } (1)
Ze(conds]n(S) U condsIn (S’))
merge(¢,n, A, E, A’ E") (({,A,E)e€ S, ((,A/,E'Yye S’
meetInfo(£,n,S,8") = ¢ (£, A, E) (¢,A,E) € S, £ ¢ condsIn(S") (2)
(€, A", E") (¢, A’,E'y € S’, £ ¢ condsIn(S)
merge(£,n, A, E, A", E") = mergeInfo({,n, A, A’, meetICDsInfo(E,E")) (3)

meetICDsInfo(E, E') = { e e

ecE, ¢ €F,
e and e’ are equivalent condition-wise

(4)

(¢, reposAlarm (n, A, A") ,0)  points(A) # points(A’), E =0

I Ln, A, A" E) = °
mergelnfo(¢,n, A, A", E) {(Z,AUA',E) otherwise ©)

reposAlarm(n, A, A") = { (entry(n), origAlarms(A) U origAlarms(A’))} (6)

E ¢ 2%. We write the liveCond ¢ with the mapped values as tuple (£, A, E).
Thus, at a program point p, the liveConds analysis computes a subset of Ly,
where L, = {((, A,E) | L € L, {({) = (A, E)}.

For a given set S C L, and A € 24 we define:

— condsIn(S) ={¢ | (¢, A’, E’) € S}, the set of all liveConds in S.
— points(A) = {p | (p,?') € A}, the set of all reposLocations in A.
— origAlarms(A) = Uy, aryca @', the set of all relOrigAlarms in A.

Lattice of liveConds Analysis As liveConds analysis computes subsets of Ly
flow-sensitively at every program point p € P, we denote the lattice of these
values by (B = 2£¢ " Mg). We use "Mp to denote the meet of the values flowing
in at the exit of a branching node n. For simplicity of the equation, we have
assumed that the branching node n corresponding to a meet operation is known
when the meet is performed. This meet operation is shown using Equation [I]
and it is idempotent, commutative, and associative. The meet operation for a
liveCond /¢ is described below.

1. When ¢ flows-in at the meet point through only one branch, its reposLoca-
tions and relatedICDs remain unchanged (Equation .

2. Following are the updates when (i) ¢ flows-in at the meet point through
both the branches, (ii) the reposLocations of £ flowing in through both the
branches are different; and (iii) the relatedICDs of ¢ flowing in through both
the branches does not have a condition-wise equivalent dependency (Equa-
tions [2| and . The reposLocations of ¢ are updated to entry(n), and the
relOrigAlarms of this reposLocation are obtained by combining together all
the relOrigAlarms of ¢ flowing in through both the branches. Moreover, the
relatedICDs of ¢ are updated to . These updates denote creation of a new
reposLocation entry(n): we use entry(n) instead of the meet point exit(n)
assuming that the branching nodes do not update values of a variable.

3. In the cases other than (1) and (2), the reposLocations of ¢ flowing in from
both the branches are combined together without updating their respective



Let mn€N; ecé& ¢, €®; £,0 €L; SeB.

n is End node

0
Outy = { " I_l 5 Edgec—p o (Inm) otherwise (7)
méEpred(n)

Edge, —p_ym(S) = {{¢, A, E U handleCtriDep (e, A)) | (¢, A, E) € S} (8)

handleCtriDep(e, A) = {{me } eti; a t'ransitive control dependency of p € points(A)
otherwise

In,, = Geny(Survived,,) U (Survived, \ GenRemoved(Survived,)) (9)

Survived,, = processForICDsKill (n, Outy \ Kill, (Outy)) (10)

. _ (¢, A, E) € S, n contains a definition
Killn(5) = {M’ A, E) ‘ of an operand of ¢ (1)
processForICDsKill(n, S) = {{¢, A, E\ kilUCDs(E,n)) | ({,A,E) € S} (12)

. _ e € E, and n contains a definition
killlCDs (E,n) = {e of an operand of cond(e) } (13)
Geny, (S) = { createLiveCond(¢,n,S) | n has alarm ¢ € & reported for it} (14)
. (¢,R,C) € S,
createLiveCond(¢p, n, S) = createlnfo (¢,n, {¢} U origAlarms(R)) cond(¢p) =4 (15)
createlnfo (¢, n, {p}) otherwise
createlnfo(¢,n, &) = {cond($), {(entry(n),d')}, 0)

_ n has alarm ¢ € & reported for it,

GenRemoved, (S) = {(Z,A,E) ’ (A E) €S, €= cond(e) (16)

Fig. 3: Data flow equations of the liveConds analysis.

relOrigAlarms, and the relatedICDs are updated to the control dependencies
that are condition-wise equivalent (Equations |5 and .

Data Flow Equations Figure |3| shows data flow equations of the liveConds
analysis that computes liveConds in intraprocedural setting. Out,, and In, de-
note the values computed by the liveConds analysis, respectively, at the exit and
entry of a node n (Equations |7| and |§|, respectively).

Equation [[4] indicates that a liveCond ¢ is generated for every original alarm
¢ reported for a node n, with () as the relatedICDs of ¢, and entry(n) as the only
reposLocation of £. When the same liveCond  also flows in at entry(n) from a
successor of n, (i) the relOrigAlarms of the liveCond flowing in are also added to
relOrigAlarms of the reposLocation entry(n) (Equation; and (ii) propagation
of the values of [ flowing in at entry(n) is stopped (Equation [16). With this com-
putation and the meet operation (Equation , we ensure that at any program
point there exists only one tuple for a liveCond and the values computed for it.
Note that the reposLocations of a liveCond are updated only when the liveCond
is generated (Equation or the meet operation is performed (Equation .

Following are the updates to relatedICDs of a liveCond ¢. (i) When ¢ gets
propagated through a transitive control dependency e of its reposLocation, e is
added to the relatedICDs of ¢ (Equation [§). (i) For a relatedICD e of ¢, if an



assignment node assigns values to a variable in cond(¢), then e is removed from
the relatedICDs of ¢ (Equation [12)).

For example, in Figure nz # 0 and ny # 0 are two liveConds computed
by the liveConds analysis at entry(ngg), i.e. in Ingg. At this point, the reposLo-
cations (with their relOrigAlarms) and relatedICDs of the first liveCond, nx # 0,
respectively are {(entry(ns7), { Dgg, Dam})} and 0. Moreover, the reposLocations
(with their relOrigAlarms) and relatedICDs of the second liveCond, ny # 0,

respectively are {{entry(n41), {Dag, Dag})} and 0.

Algorithm 1 Steps to perform NCD-based repositioning of alarms.
global Rs;
procedure PERFORMNCDREPOSITIONING
Ro = 0;
for each node n € N do
for each liveCond ¢ € Kill,,(Out,) do
createReposAlarms(¢, Outy);
end for
end for

/* Special case for the liveConds reaching procedure entry */

for each liveCond ¢ € condsIn(Instar:) do
createReposAlarms(¢, Ingiart);

end for

/* Postprocessing of repositioned alarms */
R} = performClustering(Rs);
Ry = performFallBack(Rj);

return Ry; /* Set of final repositioned alarms */
end procedure

procedure CREATEREPOSALARMS(Z, S)
for each (¢, A,FE) € S do
for each (¢,%') € A do
if (¢',q) € Ro and £ = (' then
Rs = (Ra \{{¢',q)}) U{{¢,q)}; /* Creating new repositioned alarm */
createLinks((¢, ¢), linksOf((¢', ¢)) U &');
else if (¢, q) € Rg and ¢ = (¢ then
createLinks((¢', q), ®'); /* Create new traceability links only */
else
Rs = RsU{{{,q)}; /* Creating new repositioned alarm */
createLinks((¢, q), ®');
end if
end for
end for
end procedure




5.2 NCD-based Repositioning using liveConds Analysis Results

In Algorithm [1| we provide steps to perform NCD-based repositioning using
results of the liveConds analysis described above (Section . The steps are
discussed below.

Creation of Repositioned Alarms As discussed in Section [5.1} the liveConds
analysis results are used to create repositioned alarms for the original alarms &:
the repositioned alarms are the results of NCD-based repositioning of ®. For a
liveCond ¢ computed at a program point p, a repositioned alarm (¢, q) is created
at each reposLocation ¢ of ¢ (that is, £ is the condition of the alarm repositioned
at every reposLocation of £). Moreover, the relOrigAlarms of ¢ are identified as
the original alarms corresponding to the repositioned alarm (¢, ¢), and thus use
them to report the traceability links between the repositioned alarm (¢, q) and
its corresponding original alarms.

At every program point p, we collect the liveConds that are liveConds at
p but not at a program point just prior to p, and use each of them to create
repositioned alarms as described above. The liveConds to be collected are the
liveConds that are killed at every node n, given by Kill,,(Out,). This approach
to collect the liveConds removes redundancy in creating the repositioned alarms.
As a special case, we collect the liveConds that reach the procedure entry (given
by Insiart), because a liveCond can reach this point (Start node) when all the
variables in the liveCond are local and uninitialized.

The above approach to collect the liveConds for creating the repositioned
alarms ensures the following: each liveCond ¢ that got generated at p due to
an original alarm ¢, € ¢ gets collected and used to create a repositioned alarm
along every path starting at the program entry and ending at p. Thus, along every
path reaching p, there exists a repositioned alarm with ¢ = cond(¢) as its alarm
condition. As a consequence of this, the repositioned alarms corresponding to the
original alarm ¢, together dominate ¢,. This indicates that the repositioning of
@ thus obtained is safe, i.e., the repositioning satisfies the constraint C'1 (Section
. Note that, the Equations and [12[together indicate that a repositioned
alarm is created only when the constraint C2 is satisfied (Section [4.3).
Clustering of the Repositioned Alarms Let Rg be the set of all reposi-
tioned alarms created using the liveConds analysis results (described above). As
a repositioned alarm can be a dominant alarm for another repositioned alarm,
we postprocess Rg for their clustering using the state-of-the-art clustering tech-
niques [20L[241[34]. As an example, consider the code in Figure [4al that has three
AIOB alarms reported at lines [} [0 and The repositioned alarms computed
for these alarms are Ry = {Ng, Am}, where Ng = (0 < ¢ < 9, entry(ng)) with
Ag and Apg as its corresponding original alarms. Observe that Ngis a dominant
alarm of Ag. Thus, to further reduce the number of alarms, we cluster these two
alarms. As a result, only one repositioned alarm Ng gets reported with all the
three original alarms as its corresponding original alarms.

Computation of Final Repositioned Alarms Let R be the set of repo-
sitioned alarms obtained after their clustering discussed in Section As a
limitation of our technique, in rare cases, repositioning of a given set of original



1void f1(int p, int q){ 21void f2(int p, int q){
2 int arr[10], i = 1ib1(); 22 int arr[5], i = 1lib1();
3 if(p < q){ 23 if(p < 5){

4 i = 1ib(O); 24 if(q == 5)

5 arrl[i]l = 0; [Agl<-.. 25 i = 1ib2(Q);

6 1 ; be  arrl[il = 1;
7 //assert(0 <i<9); 27 }

8§ if(p == 5) 28 else{

9 arr [i] = 3; 29 if(q == 1)

10 30 i = 1ib3();

11 if(q > 2) 31 arr[i] = 2;

12 arr [i] = 4; 32}

13} 33}

(a) Clustering of the repositioned alarms (b) Applying fallback

Fig. 4: Examples to illustrate postprocessing of the repositioned alarms.

alarms can result into more repositioned alarms than the original alarms. We
illustrate this using the two AIOB alarms shown in Figure[db] The repositioning
of these two alarms results in three repositioned alarms Rg = {Apg, Agm, (0 <
i < 9,entry(nzg))}. This limitation case arises because variables in their con-
ditions have different data dependencies. Clustering these repositioned alarms
also results in the same set of the repositioned alarms, i.e., R} = Rg. Thus, we
identify the cases where the repositioning of a group of similar alarms &' C @
results in more repositioned alarms than @’; and then apply fallback in these
cases: we report @ instead of reporting their corresponding repositioned alarms.
Thus, in this example, finally Apg and Agq get reported.

Note that the above limitation may occur only when the similar alarms being
repositioned have different data dependencies. Avoiding such similar alarms in
the input to NCD-based repositioning will miss to merge a few similar alarms,
e.g., the similar alarms Ng and Ag discussed above. Thus, as we intend to repo-
sition more similar alarms together, we accept all the tool-generated alarms
as input to NCD-based repositioning and resort to fallback in such limitation
cases. Additionally, we apply fallback when the repositioning of a group of sim-
ilar alarms results in equal number of the repositioned alarms. Applying the
fallback ensures that the repositioning obtained using the technique satisfies the
constraint C'3 (Section . Thus, our technique never increases the number of
alarms reported to the user than the input original alarms.

5.3 Properties of the NCD-based Repositioning Technique

Theorem 1. Given a set of alarms @, repositioning of ¢ obtained using the
NCD-based repositioning technique is safe.

Proof. Let ¢, € @ be an alarm. When the condition of the alarm, cond(¢,) is
generated as a liveCond at p, its reposLocation is p (Equation. This reposLo-



cation is updated only at the meet operation during the backward propagation
of cond(¢,), and only when the reposLocations flowing-in through both the
branches are different (Equations . Thus, the reposLocations of the liveCond
cond(¢,) at a program point includes p or the meet points that combinedly
dominate p (because the cond(,) is computed as liveCond).

The reposLocations of cond(¢,) at every program point where cond(¢,) is
killed, are used to create repositioned alrams: a repositioned alarm is created
with cond(¢,) as its alarm condition at each of its reposLocation. Collecting
the liveConds for alarms repositioning this way ensures the following: (1) each
liveCond ¢ generated at a program point p gets collected and used at least
once along every path starting at program entry and ending at p, and (2) £ is
repositioned at each of its reposLocation. This is sufficient to guarantee that
for every originanl alarm ¢,, there exists a repositioned alarm along every path
reaching ¢. Thus, repositioning performed is safe: all the behaviors of an original
alarm ¢, are shown by its corresponding repositioned alarm(s). In other words,
when ¢, is an error, at least one of its corresponding repositioned alarm is
also an error. Thus, the repositioning obtained by the NCD-based repositioning
technique is safe: detection of an error is not missed.

Moreover, the repositioning obtained after postprocessing of the repositioned
alarms—for their clustering and applying fallback in the limitation cases—is still
safe.

Theorem 2. Given a set of alarms @, repositioning of @ obtained using the
NCD-based repositioning technique satisfies the three criteria of NCD-based repo-
sitioning.

Proof. Constraint C'1: Proof for satisfying this constraint by the repositioning
obtained by the technique follows from Theorem [T}

Constraint C2: The Equations and [12] together indicate that a new re-
posLocation ¢ is created at a meet point only when all the paths between ¢
to its corresponding original alarms (relOrigAlarms) do not have ICDs of the
alrams. A new repositioned alarm is created at this location ¢ or at the program
points of the original alrams. As the constraint C2 is satisfied in both the cases,
the repositioning obtained using the technique also satisfies the constraint C2.
Constraint C3: Postprocessing the repositioned alarms for applying fallback in
the cases that does not reduce alarms ensures that repositioning constraint C3
is satisfied.

6 Empirical Evaluation

In this section we evaluate NCD-based repositioning technique (Section in
terms of the reduction in the number of alarms.

Implementation We implemented NCD-based repositioning technique using
analysis framework of our commercial static analysis tool, TCS ECA [32]. The
analysis framework supports analysis of C and COBOL programs. The frame-
work allows to implement data flow analyses using function summaries. We im-
plemented the liveConds analysis to compute liveConds inter-functionally and



Table 2: Experimental results for NCD-based clustering.

(a) Open source applications (b) Industry apps. (C & COBOL)
Size % R % . Size % . %
Appli- I t T
Application | (KL Al?pUt Redu- Tl.me Over- capg)oln (KL Ailalilrlns Redu- (mllrzg) Over-
0QC) A8 tion (mins) head 0QC) ction head

archimedes-0.7.0] 0.8 2275/10.55] 1.9 24.5| |[CApp1 3.4 383]12.79 1.8] 13.3
polymorph-0.4.0] 1.3] 25(12.00) 0.6 27.5| [C App 2 | 14.6 422 2.37 4.5 15.8

acpid-1.0.8 1.7 25[ 8.00[ 0.4 235 [CApp3 | 18.0 441[22.00 4.0 124
spell-1.0 2.0 71] 5.63|] 0.8] 18.4] [C App 4 | 18.1] 1055]20.47 5.6] 23.7
nlkain-1.3 2.5 319 1.57] 0.5 15.7] [C App5 | 18.3 535]23.55 4.7] 12.5
stripcc-0.2.0 2.5 229 8.30 1.0] 16.8] [C App 6 | 30.5] 1001]29.77 5.1] 23.4
ncompress-4.2.4 [ 3.8 92 3.26 0.5] 23.6/ |CApp 7 | 30.9 1379(17.19 42.3 2.8
barcode-0.96 4.2 1064 9.02] 2.4] 17.7| [C App 8 | 34.6] 23404| 4.28]| 186.9] 17.8
barcode-0.98 4.9 1310 9.08]] 2.8] 15.7] [C App 9 [111.0] 2241[12.72 7.0] 22.2

combine-0.3.3 10.0 819(23.57] 4.3] 55.3] |C App 10]127.8 987]12.97 1.8] 21.7
gnuchess-5.05 10.6] 1783|15.09) 8.6] 95.4) |[C App 11[187.2] 4494]18.09 36.2| 36.7
antiword-0.37 27.1 613 9.95|| 26.7| 72.2| [COBOL 1| 11.4 341 5.57 1.1] 783

sudo-1.8.6 32.1] 7433[ 8.69|] 133.2] 22.5| [COBOL 2| 11.9 601|28.62 7.1] 20.9
uucp-1.07 73.7] 2068| 6.58|] 21.6] 7.5 [COBOL 3| 16.7 499 0.40 6.4]179.4
ffmpeg-0.4.8 83.7| 45137/10.41|| 239.0] 11.6] [COBOL 4| 26.8] 1158|32.21|| 25.7| 63.0

sphinxbase-0.3 [121.9] 1516| 5.67 6.5| 17.3| [COBOL 5| 37.8 1826(36.09 3.7| 80.0

by considering transivity. In the inter-functional implementation, the data flow
analysis is solved in bottom-up order only: liveConds are propagated from a
called-function to its callers but not from a caller-function to the called func-
tions.

Selection of Applications and Alarms To evaluate the applicability and
performance of NCD-based repositioning technique in different contexts, we se-
lect in total 32 applications that belonged to the following three categories. (i)
16 open source applications written in C and previously used as benchmarks
for evaluating the alarms clustering and repositioning techniques [211[27}/34]; (ii)
11 industry C applications from the automotive domain; and (iii) 5 industry
COBOL applications from the banking domain.

We analyzed the applications using TCS ECA for five commonly checked cat-
egories of run-time errors (safety properties): array index out of bounds (AIOB),
division by zero (DZ), integer overflow underflow (OFUF), uninitialized vari-
ables (UIV), and illegal dereference of a pointer (IDP). The IDP property is
not applicable for COBOL applications as COBOL programs do not have point-
ers. The tool-generated alarms are postprocessed using the alarms clustering
techniques [21,/24] and then the resulting dominant alarms are postprocessed
using the state-of-the-art repositioning [27]. The resulting repositioned alarms
are provided as input to NCD-based repositioning. All the applications in the
three sets were analyzed and the alarms were postprocessed using a machine
with i7 2.5GHz processor and 16GB RAM.

Results Table [2| presents the evaluation results as per the categories of the ap-
plications (open source and industry). The column Input Alarms presents the
number of alarms that were given as input to NCD-based repositioning tech-



nique, while the column % Reduction presents the percentage reduction achieved
in the number of alarms by the technique. The evaluation results indicate that,
compared to state-of-the-art repositioning, NCD-based repositioning technique
reduces the number of alarms on the three sets of applications—open source,
C industry, and COBOL industry—by up to 23.57%, 29.77%, and 36.09% re-
spectively. The median reductions are 9.02%, 17.18%, and 28.61%, respectively.
Moreover, the average reductions respectively are 10.16%, 8.97%, and 27.68%.

The column Time in Table [2| presents the time taken to (i) analyze the
applications for those five properties, (ii) postprocess the TCS ECA-generated
alarms using the clustering and the state-of-the-art repositioning techniques.
The columns % Owerhead presents the performance overhead incurred due to
the extra time taken by NCD-based repositioning technique. We believe the
performance overhead added is acceptable because the alarms reduction can be
expected to reduce the users’ manual effort which is much more expensive than
machine time. Moreover, the reduced alarms may result in performance gain
when the alarms are postprocessed for false positives elimination using time-
expensive techniques like model checking.

Other observations:

(1) We measured the reduction in the number of alarms generated for each
of the properties selected. The median reductions computed property-wise on
all the applications, are 25.8% (AIOB), 45.72% (DZ), 6.89% (OFUF), 18.17%
(UIV), and 10.3% (IDP). (2) The fallback got applied (Section in 2592
instances during NCD-based repositioning of the total 105,546 alarms. (3) We
measured distribution of similar alarms in alarms resulting after NCD-based
repositioning. Results of this study are shown under After NCD-based reposi-
tioning in Table 3| (right side). For comparison purpose, we also show distibution
of similar alarms in alarms resulting after state-of-the-art clustering and reposi-
tioning techniques, i.e., before NCD-based repositioning (left side). The results
indicate that around 43% of the dominant alarms resulting after NCD-based
repositioning on the open source applications are found to be similar alarms,
and 64% of these similar alarms appear in the repositioning limitation scenarios.
See in Table 3] Our manual analysis of 200 alarms appearing in these limitation
scenarios showed they are not merged together due to (i) presence of common
safety conditions (ICDs), (ii) limitations in our implementation to compute the
liveConds inter-functionally, or (iii) the fallback got applied.

Evaluation of Spurious Error Detection by the Repositioned Alarms
As discussed in Section [4.3] a repositioned alarm obtained through repositioning
based on the approximated NCDs can be a spurious error. A repositioned alarm
is a spurious error when a NCD computed with our approach is actually an
ICD. To measure the spurious error detection rate, we manually analyzed 150
repositioned alarms that were created due to merging of two or more similar
alarms: each repositioned alarm has two or more original alarms corresponding
to it. The analyzed alarms are randomly selected from the repositioned alarms
generated on the first nine open source applications (Table and two industry
applications (C applications 4 and 7 in Table. These selected 150 repositioned



Table 3: Distribution of similar alarms in alarms reported after state-of-the-art
clustering and repositioning techniques (left side) and NCD-based repositioning
(right side). The column Total Alarms shows the number of total alarms gen-
erated by the techniques for the selected five properties. The column % Similar
Alarms presents percentage of similar alarms in the total alarms. The column
% Same DDs (resp. % Different DDs) presents percentage of the similar alarms
that have same data dependencies (resp. different data dependencies).

After state-of-the-art e
Application clustering and repositioning After NCD-based repositioning
% % % % % %
’icl);jins Similar| Same |Different X(l);ins Similar| Same |Different
Alarms| DDs DDs Alarms| DDs DDs

archimedes-0.7.0| 2275 51.60| 34.24| 65.76|| 2035| 43.29| 11.80 88.20
polymorph-0.4.0 25 28.00/100.00 0.00 22| 13.64(100.00 0.00
acpid-1.0.8 25 44.00| 45.45 54.55 23| 39.13| 22.22 77.78
spell-1.0 71| 25.35| 44.44| 55.56 67| 17.91| 16.67 83.33
nlkain-1.3 319| 53.92| 36.63| 63.37 314| 52.87| 34.34 65.66
stripcc-0.2.0 229| 66.81| 84.31 15.69 210| 60.95| 82.81 17.19
ncompress-4.2.4 92| 51.09| 53.19| 46.81 89| 48.31| 48.84 51.16
barcode-0.96 1064| 47.09| 61.68| 38.32 968| 38.84| 52.66 47.34
barcode-0.98 1310| 46.64| 60.72| 39.28 1191 38.29| 49.56 50.44
combine-0.3.3 819| 66.42| 71.14 28.86 626| 47.76| 44.82 55.18
gnuchess-5.05 1783| 51.65| 55.27 44.73 1514 40.55| 31.76 68.24
antiword-0.37 613| 32.79| 60.70| 39.30 552| 26.45| 45.89 54.11
sudo-1.8.6 7433 43.72| 54.18 45.82 6787 35.72| 39.44 60.56
uucp-1.07 2068| 51.50| 70.23| 29.77 1932| 45.91| 63.59 36.41
ffmpeg-0.4.8 45137 51.99| 82.33 17.67|| 40439| 44.34| 72.98 27.02
sphinxbase-0.3 1516 54.68| 49.70 50.30 1430{ 50.42| 38.70 61.30
Total 64779 50.89|74.55| 25.45|| 58199| 43.12|63.76 36.24

alarms have in total 482 original alarms corresponding to them. In our manual
analysis, we checked each of the selected alarms whether it is a spurious error.
We found three repositioned alarms to be spurious errors, and thus, the spurious
error detection rate to be 2%. This indicates that our approach to compute
NCDs/ICDs of similar alarms is effective, and for the analyzed cases, NCD-
based repositioning technique reduced the number of alarms by 70% but at the
cost of detecting a few spurious errors (2%).

7 Related Work

Heckman and Williams [14], and Muske and Serebrenik [26] have recently sur-
veyed literature on postprocessing static analysis alarms. Among the techniques
surveyed, our approach to reposition alarms belongs to the category of cluster-
ing of alarms together with the work of Lee et al. [20], Muske et al. [24,27] and
Zhang et al. [34]. However, those techniques are unable to group some of the



similar alarms which could be grouped/merged together (discussed in Section
. Among those techniques, as the state-of-the-art repositioning technique [27]
overcomes the limitations of the other alarms-clustering techniques [20}24}34],
we compared and evaluated our NCD-based repositioning against it.

On the similar lines to alarms repositioning, Cousot et al. |[8] have proposed
hoisting necessary preconditions for providing the preconditions required by the
Design by Contract [23]. Furthermore, Muske et al. |25] have proposed grouping
the related/similar alarms based on similarity of modification points. In their
approach [24], as the grouped alarms are inspected using values at the modifica-
tion points of alarm variables, the inspection often finds spurious errors when the
alarms are actually false positives solely due to their transitive control dependen-
cies (ICDs). However, none of these techniques [8,24125] identifies the conditional
statements (control dependencies) that are non-impacting to the similar alarms.

Kumar et al. [18] identify the conditional statements that are value-impacting
to the alarms. However, the notion of wvalue-impacting conditional statements
(resp. non value impacting conditional statements) is different from the ICDs
(resp. NCDs) of the alarms. That is, a transitive control dependency identified
as non value-impacting to an alarm can actually be an ICD of the alarm, and a
control dependency identified as value-impacting can be an NCD. For example, in
Figure[2] the control dependency ng — mgof Agis ICD, whereas the technique by
Kumar et al. identifies the same dependency is non-value impacting. To the best
of our knowledge, no other static analysis technique or alarms postprocessing
technique has formally proposed the notion of NCDs/ICDs of alarms or used
them in alarms postprocessing.

As the NCD-based clustering of alarms is orthogonal to other alarms post-
processing techniques, it can be applied in conjunction with those. We believe
that the combinations will provide more benefits as compared to the benefits
obtained by applying them individually.

8 Conclusion

We have proposed the notion of NCDs of alarms, and NCD-based repositioning
to reduce the number of alarms. Our approach to compute approximated NCDs
of similar alarms is observation-based, and the computation is based on whether
conditions in the enclosing conditional statements of a group of similar alarms
are equivalent. This approximated approach is required, because the existing
alarms clustering and repositioning techniques, being conservative, still report
high percentage of similar alarms. The reported large number of alarms increases
the cost to postprocess them manually or automatically.

We performed an evaluation of NCD-based repositioning using a large set of
alarms on three kinds of applications, 16 open source C applications, 11 indus-
try C applications, and 5 industry COBOL applications. The evaluation results
indicate that, compared to the state-of-the-art repositioning technique, NCD-
based repositioning reduces the number of alarms respectively by up to 23.57%,
29.77%, and 36.09%. The median reductions are 9.02%, 17.18%, and 28.61%,



respectively. Our manual analysis showed that our approach to approximately
compute NCDs of similar alarms is effective: the approximation helped to re-
duce the alarms in the analyzed cases by 70%, however it resulted in 2% of the
repositioned alarms detecting a spurious error.

We believe that NCD-based repositioning, being orthogonal to many of the
existing approaches to postprocess alarms, can be applied in conjunction with
those approaches. We plan to (i) explore a few more techniques to compute NCDs
for alarms (similar as well as non-similar alarms); and (2) use the NCDs to im-
prove the other alarms-postprocessing techniques like automated false positives
elimination and version-aware static analysis.
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