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Abstract—Continuous Integration (CI) has become a disrup-
tive innovation in software development: with proper tool support
and adoption, positive effects have been demonstrated for pull
request throughput and scaling up of project sizes. As any other
innovation, adopting CI implies adapting existing practices in
order to take full advantage of its potential, and “best practices”
to that end have been proposed. Here we study the adaptation
and evolution of code writing and submission, issue and pull
request closing, and testing practices as TRAVIS CI is adopted
by hundreds of established projects on GITHUB. Qualitatively,
to help essentialize the quantitative results, we survey a sample
of GITHUB developers about their experiences with adopting
TRAVIS CI. Our findings suggest a more nuanced picture of how
GITHUB teams are adapting to, and benefiting from, continuous
integration technology than suggested by prior work.

I. INTRODUCTION

The DEVOPS movement, made popular in recent years, is a
paradigm shift [1]–[4]. It aims to get changes into production
as quickly as possible, without compromising software quality.
While no standard definitions exist (the term is often over-
loaded), here we refer to DEVOPS as a culture that emphasizes
automation of the processes of building, testing, and deploying
software. In practice, DEVOPS is supported by a multitude
of tools for configuration management, cloud-based contin-
uous integration, and automated deployment, which enjoy
widespread open-source [5] and industrial adoption [6], [7].

In this study we focus on Continuous Integration (CI),
the key enabler of DEVOPS. CI is a well known concept in
Extreme Programming, promulgated in Martin Fowler’s 2000
blog post [8]. As a practice, CI is seeing broad adoption
with the increasing popularity of the GITHUB pull-based
development model [9] and the plethora of open-source,
GITHUB-compatible, cloud-based CI tools, such as TRAVIS
CI, CLOUDBEES, and CIRCLECI. In a decentralized, social
coding context such as GITHUB, CI is particularly relevant.
By automatically building and testing a project’s code base, in
isolation, with each incoming code change (i.e., push commit,
pull request), CI has the potential to: (i) speed up development
(code change throughput) [5], [10], [11]; (ii) help maintain
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code quality [12], [13]. Clearly, CI promises to be a disruptive
technology in distributed software development.

For it to be effective, CI must allow for a seamless back
and forth between development, testing (e.g., unit, integration,
code review), and deployment. However, the road to efficiency
is riddled with choices and trade-offs. For example, working
in large increments may lead to more meaningful change
sets, but it may also complicate synchronization between team
members and, if necessary, reverting changes. Conversely,
more frequent changes facilitate merging, but they also require
more computing infrastructure for CI, since by default the
code is built and all tests are executed with every change.
Moreover, while CI runs on smaller, more frequent changes
would provide earlier feedback on potential problems, they
may also lead to process “noise”, where developers start
to ignore the CI build status due to information overload,
irrespective of whether the build is clean or broken [14].

Several CI “best practices” have been proposed, e.g., by
Fowler in his influential blog post [8], such as Everyone
Commits To the Mainline Every Day, Fix Broken Builds
Immediately, and Keep the Build Fast. However, despite the
large scale adoption of CI, we know relatively little about
the state of the practice in using this technology and whether
developers are aligning their practices with Fowler’s proposed
“best practices”. Such knowledge can help developers to
optimize their practices, project maintainers to make informed
decisions about adopting CI, and researchers and tool builders
to identify areas in need of attention.

In this paper we report on a study of a large sample of
GITHUB open-source projects that adopted TRAVIS CI, by
far the most popular CI infrastructure used on GITHUB [5].
In particular, we focus on the transition to using TRAVIS CI, and
investigate how development practices changed following this
shift. To this end, we introduce regression discontinuity design
analyses to quantitatively evaluate the effect of an intervention,
in our case adoption of TRAVIS CI, on the transition toward
expected behaviors in the above three practices (measured
from trace data in a large sample of GITHUB projects,
appropriately selected). Qualitatively, to help essentialize the
quantitative results, we survey a sample of GITHUB developers



about their experiences with adopting TRAVIS CI. Applying
this mixed methodology, we find that:

• the increasing number of merge commits aligns with the
“commit often” guideline of Fowler, but is likely to be
further encouraged by the shift to a more distributed
workflow with multiple branches and pull requests;

• the “commit small” guideline, however, is followed only
to some extent, with large differences between projects
in terms of adherence to this guideline;

• the expected increasing trend in the number of closed pull
requests manifests itself after the introduction of TRAVIS
CI, and even then only after the initial plateau period;

• the pull request latency increases despite the code
changes becoming smaller;

• while the number of issues closed increases, this trend is
unexpectedly slowed down by TRAVIS CI;

• after initial adjustments when adopting TRAVIS CI, test
suite sizes seem to increase.

II. DEVELOPMENT OF RESEARCH QUESTIONS

Transitioning to an integrated CI platform, like TRAVIS, in-
volves adaptation of established processes to the new environ-
ment. During this transition, some developers will experience
a more streamlined process evolution trajectory than others.
Studying those trajectories can provide lessons learned.

Continuous integration encourages developers to “break
down their work into small chunks of a few hours each”, as
smaller and more frequent commits helps them keep track
of their progress and reduces the debugging effort [15], [16].
Miller has observed that, on average, Microsoft developers
committed once a day, while off-shore developers committed
less frequently due to network latencies [17]; Stolberg expects
everyone to commit every day [10] and Yüksel reports 33
commits per day after introduction of CI [18]. On a related
note, the interviewees in the study of Leppanen et al. [19]
saw higher release frequency as an advantage and reported
that the CI “radically decreased time-to-market”. Hence, we
ask in RQ1: Are developers committing code more frequently?

Frequent commits can be expected to be smaller in size:
indeed, the quote from Fowler’s blog post refers to “small
chunks” [15], [16]. Hence, we formulate RQ2: Are developers
reducing the size of code changes in each commit post CI
adoption? Do they continue to do so over time?

In the GITHUB-common pull-based development model,
wherein project outsiders (and sometimes insiders too) sub-
mit changes in the form of pull requests (PRs), evaluation
throughput is key. Indeed, popular GITHUB projects receive
increasingly many PRs, all of which need to be tested and
reviewed pre-merge. One of the most commonly advocated
benefits of TRAVIS CI is the ability to “scale up” development,
by automating PR testing and delegating the workload to
cloud-based infrastructure; in this sense, Vasilescu et al. [12]
report that GITHUB teams are able to process (i.e., close) more
PRs per unit time after adopting TRAVIS CI. This high level of
automation should also impact the speed, not just the volume,

of PR evaluations. Hence, we ask in RQ3: Are pull requests
closed more quickly post CI adoption?

For CI, and DEVOPS in general, to have the stated bene-
fits, effective coordination between all project contributors is
important; a common mechanism for this are issue reports.
Similarly to the pull requests, the number of closed issues
per time period may change after CI adoption, in response to
increased project activity or efficiency. Hence, we ask in RQ4:
Are more issues being closed after adopting CI?

Finally, CI is closely related to the presence of automated
tests [15]. Duvall even claims that CI without such tests should
not be considered CI at all [16], while Cannizzo et al. deem an
extensive suite of unit and acceptance tests to be an essential
first step [20]. Moreover, CI is frequently introduced together
with test automation [18]. However, developing tests suited
for automation requires a change in developers’ mindset, and
presence of a comprehensive set of tests incurs additional
maintenance costs [21]. Naturally, more automated testing will
expose more errors, and CI makes it possible to track and
react to different error types differently [22]. Therefore, we
formulate RQ5: How does the usage of automated testing
change over time after CI adoption?

III. METHODS

We collected and statistically analyzed data from a large
sample of open-source projects on GITHUB, that adopted
TRAVIS CI at some point during their history. We further
surveyed a sample of those projects’ TRAVIS CI adopters.

A. Data Gathering

Data collection involved mining multiple sources: GHTOR-
RENT [23], the GITHUB API, project version control (git)
logs, and the TRAVIS CI API. The goal was to select non-
trivial projects that adopted TRAVIS CI, and had sufficient
activity both before and after adoption, in order to observe
potential transition effects. Note that for the purpose of this
study we don’t distinguish between “project” and “repository”;
the term “project” has also been used to refer to a collection
of interrelated repositories in the literature [24].

Candidate Projects: We started by identifying GITHUB
projects that use TRAVIS. To our knowledge, no such list
exists (TRAVISTORRENT [25] is restricted to Java and Ruby
projects), so we wrote a script to iterate over non-fork
GHTORRENT projects (oldest to newest) and poke the TRAVIS
CI API (cf. [26]) to determine if the project used TRAVIS; we
ran and stopped the script after identifying approximately half
(165,549) of all GITHUB projects that ever used TRAVIS CI.1

Next, we cloned the GITHUB repositories of all these
projects locally, and extracted their main-branch commit his-
tories using PERCEVAL, an open-source repository mining
tool part of the GRIMOIRELAB tool suite. Then, we traversed
each project’s commit history to determine when maintainers
introduced TRAVIS CI, by identifying the earliest commit

1At the time of writing, TRAVIS self reports being used in over 318,000
open source GITHUB projects, see https://travis-ci.org.

https://travis-ci.org
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Fig. 1. Overview of our time series assembly method.

to the .travis.yml configuration file, and recorded its
authored timestamp as the timestamp of the TRAVIS adoption.

Time Series: We proceeded to aggregate data about the differ-
ent practices considered in 30-day windows, 12 on each side
around the TRAVIS CI adoption event (Figure 1).

During initial exploration, we saw several occasions of
TRAVIS being adopted as part of a larger restructuring ef-
fort, which lasted several days. Examples include changing
the build system from Ant to Gradle and, consequently,
reorganizing project folders; updated library dependencies;
and restructured tests. Based on this anecdotal evidence, we
concluded that the activity immediately prior to and imme-
diately following the introduction of TRAVIS CI might not
be representative of the project’s overall trends. Therefore, to
limit the risk of bias due to extraordinary project activity in
the transition period, we excluded one month of data centered
around the adoption event in our quantitative analyses below.

Measures: We collected global and time-window measures:
• total number of commits in a project’s history, as a

proxy for project size / activity.
• total number of commit authors, as a proxy for the size

of a project’s community; commit authors include both
core developers, who are also committers, and external
contributors, without “write” access, whose commits are
merged in by the core developers. Since it is common
for open-source developers to contribute under different
aliases (name-email tuples), e.g., as a result of using
different machines and changes in git settings over time,
we first performed identity merging. We used heuristics
that match first and last names, email prefixes, and email
domains, cf. prior work [27], [28], and found an average
of 1.15 (max 7) aliases per person in our dataset.

• project age at the time of adopting TRAVIS CI, in
months, computed since the earliest recorded commit.

• main programming language, automatically computed
by GITHUB based on the contents of each repository and
extensions of file names therein.

• number of non-merge commits, number of merge
commits per time window. Since git is a distributed
version control system, developers can work locally, in
increments, before pushing their changes to GITHUB or
opening a pull request. E.g., a developer can choose to
partition a large change into many smaller ones, and
make multiple local commits to better manage the work.
This would have no effect on CI runs, since CI is only
triggered by GITHUB push events, and events happening
after (and including when) a pull request is opened.

Consequently, to study Commits To the Mainline Every
Day (Fowler’s best practice), as opposed to potentially
local git commits, we distinguish between non-merge
commits and merge commits as a proxy. We recognize
non-merge commits as those having at most one parent,
and merge commits otherwise.

• mean commit churn per time window. Churn is the total
number of lines added plus the total number of lines
removed per commit (in git modified lines appear as first
removed, then added), extracted from git logs. The mean
is computed over all commits in that time window.

• number of issues opened / closed, number of pull
requests opened / closed per time window, extracted
using the GITHUB API.

• mean pull request latency per time window, in hours,
computed as the difference between the timestamp when
the PR was closed and that when it was opened. The
mean is computed over all PRs in that time window.

• number of tests executed per build. Each TRAVIS
build runs at least one job, corresponding to a particular
build/test environment (e.g., jdk version). Once the job
starts, a log is generated, recording the detailed infor-
mation of the build lifecycle, including installation steps
and output produced by the build managers. On a sample
of Java projects that used Maven, Ant, or Gradle as
their build systems, for which we could make reasonable
assumptions about the structure of their build log files, we
parsed the TRAVIS build logs and extracted information
about the number of tests executed (we take the maximum
number of tests across jobs as the test count for a build),
and the reasons causing builds to break (similar to [29]).

Filtering: As a large fraction of projects on GITHUB are small
and not highly active [9], we filtered out projects inconsistently
active during our 24-month observation period, to avoid bias-
ing our conclusions due to an inflation of zero values in our
data. Depending on the research question, this means either
requiring at least one merge and one non-merge commit on the
main branch / closed pull request / closed issue in each of the
24 time windows of observation. Furthermore, our multivariate
regression analysis below requires enough variance along each
of the dimensions being modeled, thus we additionally filter
out programming languages not represented by many projects
each. The resulting dataset spans seven popular programming
languages: C, Java, Ruby, PHP, JavaScript, C++, and Python.
Table I contains an overview.

B. Time Series Analysis Method

We use data visualization and statistical modeling to dis-
cover longitudinal patterns indicative of CI adoption effects.
As one of our contributions, we introduce the statistical
modeling framework of regression discontinuity design [30]
to assess the existence and extent of a longitudinal effect,
associated with the TRAVIS CI adoption.

To evaluate the effect of a treatment, e.g., a new drug,
on a disease progression, randomized experimental trials are



TABLE I
PROJECTS PER LANGUAGE, FOR DIFFERENT FILTERS.

24 active periods with
Language Commits Pull reqs Issues All
C 30 13 13 6
Java 57 26 30 6
Ruby 54 26 37 5
PHP 71 32 33 14
JavaScript 75 38 69 18
C++ 80 40 36 13
Python 100 55 44 15
Total 467 230 262 77

usually conducted: the experimental cohort is randomly split
into a treatment group, i.e., those given the treatment, and a
control group, i.e., those not given the treatment; then, the
effect is evaluated based on the difference in disease progres-
sion between the two groups. In the absence of randomized
trials, as is often the case with software engineering trace data,
weaker techniques such as quasi-experiments are employed.

Among quasi-experimental designs to evaluate longitudinal
effects of an intervention, regression discontinuity designs
(RDDs) [31] are the most powerful. RDD is used to model
the extent of a discontinuity of a function between its values
at points just before/after an intervention. It is based on
the assumption that in the absence of the intervention, the
trend of the function would be continuous in the same way
as prior to the intervention. Therefore, one can statistically
assess how much an intervention (in our case the TRAVIS
adoption) changed an outcome of interest, immediately and
over time; and, if implemented using multiple regression, also
evaluate whether the change could be attributed to other factors
than the intervention. Figure 2 illustrates a discontinuity; the
RDD approach, in a nutshell, aims to uncover the different
regression lines before and after the discontinuity.

There are different formalizations of RDD, most promi-
nently sharp RDD and fuzzy RDD [30]. To model the effect
of CI adoption on developer practices, here we chose one im-
plementation of the simpler, sharp RDD approach: segmented
regression analysis of interrupted time series data [32]. We
summarize our approach next, following the description by
Wagner et al. [32], and refer to Figure 2. Let Y be the outcome
variable in which we are looking for a discontinuity, e.g.,
commit churn per month. We can specify the following linear
regression model to estimate the level and trend in Y before CI
adoption, and the changes in level and trend after CI adoption:

yi =α+ β · timei + γ · interventioni
+ δ · time after interventioni + εi,

where time indicates time in months at time i from the start of
the observation period; intervention is an indicator for time i
occurring before (intervention = 0) or after (intervention = 1)
CI adoption, which was at month 0 based on our encoding
in Figure 1; and time after intervention counts the number
of months at time i after the intervention, coded 0 before CI
adoption and (time− 12) after CI adoption.

This model encapsulates two separate regressions. For
points before the treatment, the resulting regression line has a
slope of β, and after the treatment β+δ. The size of the effect

Fig. 2. RDD: the treatment effect (γ) is negative, and there is an interaction
effect (δ 6= 0) which changes the slope of the regression after the treatment.

of the treatment is the difference between the two regression
values of yi at the intervention time, and is equal to γ.

Our goal is to capture, using the RDD model above, changes
in trends after CI adoption across our sample of projects, while
controlling for confounding variables (e.g., project size, age,
and programming language). Our data is centered at the time
of CI adoption, and has an equal number of points, 12, on
each side. Since the data is inherently nested (each project
contributes multiple observations; similarly for programming
language), we implement the RDD model as a mixed-effects
linear regression (functions lmer and lmer.test in R) with
a random-effects term for project and another random effects
term for programming language; this way, we can capture
project-to-project and language-to-language variability in the
response. All other variables were modeled as fixed effects.

Solving the regression gives us the coefficients, which, if
significant, can help us reason about the treatment and its
effects, if any. We report on the models having significant
coefficients in the regressions (p < 0.05) as well as their effect
sizes, obtained from ANOVA analyses. Model fit was evalu-
ated using a marginal (R2

m) and a conditional (R2
c) coefficient

of determination for generalized mixed-effects models [33],
[34]; R2

m describes the proportion of variance explained by
the fixed effects alone; R2

c describes the proportion of variance
explained by the fixed and random effects together. To improve
robustness, the top 1% of the data was filtered out as outliers.
Finally, we check for multicolinearity using VIF (below 3).

C. Survey

To obtain additional insights into the adoption of TRAVIS
CI we conducted a survey with a sample of the maintainers
responsible for introducing TRAVIS. We randomly selected
335 projects from our dataset, stratified by how much of
a discontinuity in commit activity we detected at TRAVIS
adoption time. For each project we identified the developer
responsible for introducing TRAVIS, i.e., committing the first
version of .travis.yml, and removed duplicates (same de-
veloper in different projects). In the invitation email (delivery
of 23 messages failed; we received 55 responses, or 17.63%
response rate) we explicitly stated the name of the project. We
asked three questions: what made developers decide to start
using CI and TRAVIS CI; whether they had to change anything
in their development process to accommodate CI/TRAVIS; and
how did their development process change with time, if at all,
to use CI/TRAVIS CI efficiently. No question was mandatory.
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Fig. 3. Commit frequency before and after the TRAVIS CI adoption.

IV. RESULTS AND DISCUSSION

We discuss changes in development practices after CI adop-
tion along four dimensions: commit frequency, code churn,
pull requests resolution efficiency, issue tracking, and testing.

A. RQ1: Trends in Commit Frequency

The first practice we examine is commit frequency. As we
investigate the “Commits to the Mainline Every Day” practice,
it is important to distinguish non-merge from merge commits.
Indeed, local git commits, in a developer’s offline repository,
happen in isolation and can be seen as simply a mechanism to
partition the work. However, what matters for TRAVIS CI are
pushes and pull requests to the blessed GITHUB repository,
i.e., the “main” repository of the project as only then TRAVIS
would be triggered. Push events are not readily accessible
in our data, hence we analyze merge commits on the main
development branch as a proxy for work that would have
been subjected to CI by TRAVIS. Since not all our projects
have recorded merge commits in all 24 periods, we restrict
this analysis to only 575 projects that had at least one merge
commit in each time window.

Exploratory Study: Figure 3 shows the boxplots of per-project
number of non-merge commits (top) and number of merge
commits (bottom), respectively, for each of twelve consecutive
30-day time intervals before and after the TRAVIS CI adoption.
Note the log scale. Recall that due to instability, we omit
the 30-day time interval centered around t = 0, when the
earliest commit to the TRAVIS configuration file, which signals
adoption, was recorded (Figure 1). The horizontal line in each
boxplot is the median value across all projects.

First, we observe relative stability in the number of non-
merge commits prior to the TRAVIS CI adoption (Figure 3,
top), with the across-projects medians around 78 commits, and
a slight decreasing trend after the adoption, with the across-
projects median dropping to 67 commits in period 12. Second,
after an initial dip in periods -12 to -10, the merge commits
(Figure 3, bottom) appear to display a slight increasing trend
prior to the TRAVIS CI adoption, with the across-projects
median reaching 18 commits immediately prior to the adoption
period, followed by apparent stabilization after that. We also

TABLE II
COMMIT FREQUENCY MODEL. THE RESPONSE IS LOG(NUMBER OF

MERGE COMMITS) PER MONTH. R2
m = 0.58. R2

c = 0.83.

Coeffs (Errors) Sum Sq.
(Intercept) −0.958 (0.232)∗∗∗

log(TotalCommits) −0.016 (0.032) 0.07
log(NumNonMergeCommits) 0.777 (0.007)∗∗∗ 3095.91∗∗∗

AgeAtTravis −0.001 (0.001) 0.96
log(NumAuthors) 0.120 (0.026)∗∗∗ 5.67∗∗∗

time 0.019 (0.002)∗∗∗ 30.39∗∗∗

interventionTRUE −0.024 (0.027) 0.21
time after intervention −0.016 (0.003)∗∗∗ 10.96∗∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

observe a discontinuity at t = 0: the across-projects median
is 21 commits right after the adoption period. Note, in both
plots, the large variance in the data.
Statistical Modeling Study: We fitted a mixed-effects RDD
model, as described before, to model trends in the number of
merge commits per project, over time, as a function of TRAVIS
CI adoption, and while controlling for confounds; most no-
tably, we control for the number of non-merge commits, as
these may have not all been subjected to CI, since they appear
to display a decreasing trend with time.

We modeled a random intercept for programming language,
to allow for language-to-language variability in the response
(i.e., code in some languages being naturally more verbose
than in others, resulting in different ways to split the work
across commits; or community-level norms for committing);
we also modeled a random intervention slope and intercept
for project, to allow for project-to-project variability in the
response and the possibility that, on average, projects with
lower initial activity may be less strongly affected by adopting
TRAVIS CI than high-frequency projects. Recall also that the
coefficient for time is the slope before adoption, the coefficient
for intervention is the size of the effect of CI introduction, the
coefficient for time after intervention is the divergence in the
slopes before and after TRAVIS CI adoption, and the sum of
the coefficients for time and time after intervention is the slope
of the linear trend after TRAVIS CI adoption.

Table II summarizes the results. In addition to the model
coefficients and corresponding standard errors, the table shows
the sum of squares, a measure of variance explained, for each
variable. The statistical significance is indicated by stars. The
fixed-effects part of the model fits the data well (R2

m = 0.58).
There is also a considerable amount of variability explained
by the random effects, i.e., project-to-project and language-
to-language differences, not explicitly modeled by our fixed
effects (R2

c = 0.83). Among the fixed effects, we observe that
the number of non-merge commits, our main control, explains
most of the variability in the response. The coefficient is
positive, i.e., the direction of the correlation is expected: other
things constant, the more non-merge commits there are, the
more merge commits there will be as well. Neither project size
(total number of commits over the entire history) nor project
age at adoption time have any statistically significant effects.

Next we turn to our TRAVIS-related variables. The model
confirms a statistically significant, positive, baseline trend in
the response with time (with a small effect), as suggested by
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Fig. 4. Mean code churn per commit per project, before and after TRAVIS.

our exploratory study. The model does not detect any disconti-
nuity at adoption time, since the coefficient for intervention is
not statistically significant. Post adoption, there is a decrease
in the slope of the time trend, but the overall trend remains
ascending (the sum of the coefficients for time and time after
intervention is positive): more merge-commits as time passes.

Discussion: The exploratory study suggests a slight decreasing
trend in the number of non-merge commits with time. Sepa-
rately modeling the trend in number of non-merge commits
(not shown) using a similar approach as above confirmed this
overall decreasing trend. This is consistent with the common
observation that, as projects move past the initial development
hurdle and age, development generally slows down, and the
focus shifts to bug-fixing rather than adding new features,
noted, e.g., by Brindescu et al. [35].

In contrast, the statistical modeling study above revealed
a consistent increase in merge commits with time, including
post-CI adoption, albeit with a slowdown. This overall trend
aligns with the expected increase in commit frequency after
switching to CI, as expressed and encouraged by Fowler.
Given the overall decreasing trend with time in the number
of non-merge commits, the increase in merge commits is
noteworthy. One explanation is that projects are switching to
more distributed development workflows, using branches and
pull requests. Indeed, in our survey, R38 has indicated that
their project “shifted towards pull-request - merge develop-
ment strategy as it made the distributed development more
manageable.” The development process change reported by
R38 is not exceptional. Indeed, the idea of a shift towards more
focused development in separated branches has been voiced
by R32 (“shorter lived (and generally single contributor)
branches”) and R49 (“feature branches”), R6, and R47.

B. RQ2: Trends in Code Churn

Next we examine code churn. As before, we distinguish
between merge and non-merge commits.

TABLE III
COMMIT CHURN MODEL 1. THE RESPONSE IS LOG(MEAN NON-MERGE

COMMIT CHURN). R2
m = 0.09. R2

c = 0.48.

Coeffs (Errors) Sum Sq.
(Intercept) 1.336 (0.386)∗∗∗

log(TotalCommits) 0.529 (0.049)∗∗∗ 68.03∗∗∗

AgeAtTravis −0.003 (0.001)∗ 0.03
log(NumAuthors) −0.233 (0.041)∗∗∗ 14.42∗∗∗

time −0.007 (0.004) 1.57
interventionTRUE 0.071 (0.047) 1.92
time after intervention −0.009 (0.006) 7.86∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

TABLE IV
COMMIT CHURN MODEL 2. THE RESPONSE IS LOG(MEAN

MERGE-COMMIT CHURN). R2
m = 0.20. R2

c = 0.51.

Coeffs (Errors) Sum Sq.
(Intercept) −1.297 (0.484)∗∗

log(TotalCommits) 1.113 (0.062)∗∗∗ 625.20∗∗∗

AgeAtTravis −0.005 (0.001)∗∗ 18.43∗∗

log(NumAuthors) −0.522 (0.052)∗∗∗ 196.48∗∗∗

time −0.012 (0.005)∗ 8.86∗

interventionTRUE 0.220 (0.066)∗∗∗ 21.75∗∗∗

time after intervention −0.022 (0.008)∗∗ 15.51∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Exploratory Study: Figure 4 shows boxplots of per-project per-
commit mean code churn (medians behave similarly) for each
of twelve consecutive 30-day time intervals before, and after,
the TRAVIS CI adoption. The horizontal line in each boxplot
is the median value over all projects.

In the non-merge commits, the medians are quite stable
across the entire interval, from before to after the TRAVIS CI
adoption, dancing around 100 lines of code churn per commit
on average, with large variance. In comparison, in the merge-
commits, we observe more than usual variance in the two
months preceding the adoption, as well as a slight downward
trend in the medians following adoption, which drop to about
263 lines of code churn per commit on average in the last
period (12), compared to about 405 right after adoption (period
1). The variance around the medians is still large in all periods.

In conclusion, non-merge commits seem mostly unaffected
by time passing and the TRAVIS CI adoption, while merge
commits seem to be getting smaller with time.
Statistical Modeling Study: Guided by our exploratory obser-
vations above, we proceed to quantify the trends we observed
using two mixed-effects RDD models, for non-merge and
merge commits, respectively, as described before.

Table III summarizes the RDD model for non-merge com-
mits. First, we observe that only the combined fixed-and-
random effects model fits the data well (R2

c = 0.48 compared
to R2

m = 0.09), i.e., most of the explained variability in
the data is attributed to project-to-project and language-to-
language variability, rather than any of the fixed effects.

Next, we turn to the fixed effects. From among the controls,
we note that overall bigger projects (TotalCommits) tend to
churn more, other things held constant; and projects with a
larger contributor base (NumAuthors), which typically indicate
many occasional contributors, also tend to churn less. None
of the TRAVIS-related predictors have statistically significant
effects, i.e., the churn trend in non-merge commits is stationary
over time, and remains unaffected by the TRAVIS CI adoption.



Table IV summarizes the RDD model for merge commits.
Similarly as with the previous model of churn in non-merge
commits, most of the explained variability in the data is
attributed to project-to-project and language-to-language vari-
ability, rather than any of the fixed effects variables. The
controls also behave similarly as before: older projects tend
to churn less, perhaps as they have reached maturity and a
more stationary stage in their evolution; projects with a larger
contributor base also tend to churn less, which is in line with
the expectation that occasional contributors to open source
projects are generally less active than core developers; small
pull request contributions would be reflected here.

After controlling for confounds, we move on to the main
time series predictors, all of which now have statistically sig-
nificant effects. The coefficient for time is negative, suggesting
a small decreasing baseline trend in commit churn before CI
adoption; the intervention coefficient signals a discontinuity
in the time series at the time of the TRAVIS CI adoption; the
negative coefficient time after intervention signals an accel-
eration in the baseline trend. Together, this confirms a change
in merge commit churn at the time of adoption, followed by
an accelerated decreasing trend after adoption.

Discussion: Our modeling study revealed a statistically signifi-
cant discontinuity in the merge commit churn time series when
adopting TRAVIS CI; and a statistically significant decreasing
linear trend with time in merge commit churn after adopting
TRAVIS CI. However, churn in non-merge commits remains
unaffected by either time or switching to TRAVIS CI.

The discontinuity is not unexpected, as one can reasonably
expect more maintenance work in preparation for transitioning
to TRAVIS CI, and some adjustment/cleanup period right after.
The relative instability in code churn on both sides near the
CI adoption time is also indication of this, as are the survey
results. Indeed, when asked about the introduction of TRAVIS
CI, respondents frequently refer to test automation being
introduced around the same time as TRAVIS “as contributors
couldn’t be trusted to run test suite on their own” (R25).
Furthermore, respondents indicate that TRAVIS has been intro-
duced as “a part of automated package/release effort” (R38)
and to “deploy artifacts to S3 on each commit, as part of our
deployment process using Amazon CodeDeploy” (R34).

The decreasing trend in code churn post TRAVIS is visible
only among merge commits, which are more likely to be
affected by switching to a fast-paced CI workflow than non-
merge commits, which may live on local, isolated developer
branches for some time before being merged to the remote.
This finding is consistent with Fowler’s recommended good
practices of CI, of committing smaller changes to the code.
The expected decrease in the size of the commits is also
echoed by one of the survey respondents: “commits became
smaller and more frequent, to check the build; pull requests
became easier to check” (R4). However, the decreasing trend
we observed is not particularly steep. Survey responses provide
a possible explanation: several developers referred to pull
request integration as the reason for introducing TRAVIS CI,

●●●●●●

●
●

●●
● ●

● ●

1

5

10

20

50

100

200

500

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

Month index w.r.t. Travis CI adoption

N
um

 c
lo

se
d 

P
R

s

Fig. 5. Closed pull requests before and after the TRAVIS CI adoption.

TABLE V
PULL REQUEST MODEL. THE RESPONSE IS LOG(NUMBER OF PULL

REQUESTS CLOSED) PER MONTH. R2
m = 0.32. R2

c = 0.65.

Coeffs (Errors) Sum Sq.
(Intercept) −3.132 (0.356)∗∗∗

log(TotalCommits) 0.605 (0.049)∗∗∗ 71.17∗∗∗

AgeAtTravis −0.008 (0.001)∗∗∗ 14.17∗∗∗

log(NumAuthors) 0.136 (0.043)∗∗ 4.64∗∗

time 0.032 (0.004)∗∗∗ 32.98∗∗∗

interventionTRUE 0.005 (0.055) 0.00
time after intervention −0.033 (0.005)∗∗∗ 18.06∗∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

and while R31 and R50 state that TRAVIS CI is used both for
commits and for pull requests, R11, R21, and R37 explicitly
state that in their projects push commits are outside the scope
of TRAVIS CI. In other words, if in a project not all commits
are subjected to TRAVIS CI, then there may be less incentive
to follow Fowler’s recommendations related to commit churn.

At the same time, a different respondent indicated that
TRAVIS CI discourages him/her from making trivial commits
(R11), suggesting instead that the commits he/she makes are
likely to be larger; therefore, our global decreasing trend
may be weakened by local trends in the opposite direction.
Our model found evidence for strong project-specific effects:
project-to-project and language-to-language differences, as
captured by our random effects, contribute substantially to
explaining the overall data variability. This suggests that any
phenomena giving rise to pressures to increase or reduce code
churn are perhaps subordinate in magnitude to other, more
pressing phenomena of local, i.e., project-specific, character.

Alternatively, the decreasing trend in commit churn is also
consistent with the observation that as projects age, bug-fixing
commits, which on average are smaller, become more common
than new-feature commits, which on average are larger [35].

Our results suggest that while Fowler’s good practice of
small commits is followed to some extent, the project-to-
project and language-to-language differences are more impor-
tant and might overshadow the overall trend.

C. RQ3: Trends in Pull Request Closing

Next we consider pull request closing, which we analyze
along two dimensions: the number of pull requests closed, and
the average pull request latency (i.e., time to close) per time
window. Since TRAVIS CI runs every time a pull request is
submitted, the developers are rapidly notified whether their
pull requests pass the TRAVIS quality gate, and can then
rapidly react by correcting the pull request source code. Hence,
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Fig. 6. Mean pull request latency before and after the TRAVIS CI adoption.

TABLE VI
PULL REQUEST LATENCY MODEL. THE RESPONSE IS LOG(MEAN PULL
REQUEST LATENCY) PER MONTH, IN HOURS. R2

m = 0.05. R2
c = 0.31.

Coeffs (Errors) Sum Sq.
(Intercept) 0.052 (0.519)
log(TotalCommits) 0.157 (0.068)∗ 7.89∗

AgeAtTravis −0.002 (0.002) 1.00
log(NumAuthors) 0.225 (0.062)∗∗∗ 19.72∗∗∗

time 0.030 (0.012)∗ 8.60∗

interventionTRUE −0.160 (0.153) 1.65
time after intervention −0.022 (0.019) 2.03
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

we expect that TRAVIS CI shortens the pull request latency and
increases the number of closed pull requests.

Exploratory Study: Figure 5 shows boxplots of per-project
number of closed pull requests. We observe that the median
number of closed pull requests per months fluctuates between
11 and 15 before TRAVIS introduction, and between 14 and
20 after. We note an apparent increasing trend pre-TRAVIS,
which also seems to continue post-TRAVIS. Both pre-TRAVIS
and post-TRAVIS we see large variance around the medians.

Figure 6 provides a complementary perspective on the
efficiency of pull request resolution, namely the pull request
latency. The median latency seems to increase prior to intro-
duction of TRAVIS CI, and continues to do so afterwards.

Statistical Modeling Study: We apply RDD as above. The
statistical models for the number of pull requests closed and
the mean pull request latency are summarized in Tables V and
VI. As above, the combined fixed-and-random effects models
fit the data much better than the basic fixed-effect models,
indicating that the project-to-project and language-to-language
variability are responsible for most of the variability explained.

Regarding closed pull requests (Table V), we note an
increasing time baseline trend pre-adoption; no statistically
significant discontinuity at the adoption time; and an apparent
neutralization of the aforementioned time trend post-adoption,
as β (time) + γ (time after intervention) ' 0. Turning to the
pull request latency model (Table VI), we note a statistically
significant, increasing baseline time trend, unaffected by the
TRAVIS CI adoption, as neither coefficient for discontinuity
and change in trend has statistically significant effects.

Discussion: The statistical modeling study generated two note-
worthy findings. First, despite a visually apparent increasing
trend in the number of pull requests closed per time pe-
riod, across the entire interval under observation, our model
suggests that, after controlling for project size, project age,
and size of developer community, as well as local project-to-
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Fig. 7. Number of closed issues before and after the TRAVIS CI adoption.

TABLE VII
ISSUES MODEL. THE RESPONSE IS LOG(NUMBER OF ISSUES CLOSED)

PER MONTH. R2
m = 0.17. R2

c = 0.53.

Coeffs (Errors) Sum Sq.
(Intercept) −1.680 (0.364)∗∗∗

log(TotalCommits) 0.443 (0.049)∗∗∗ 42.54∗∗∗

AgeAtTravis −0.006 (0.001)∗∗∗ 8.83∗∗∗

log(NumAuthors) 0.119 (0.039)∗∗ 4.72∗∗

time 0.021 (0.004)∗∗∗ 16.00∗∗∗

interventionTRUE 0.030 (0.049) 0.19
time after intervention −0.019 (0.005)∗∗∗ 5.99∗∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

project and language-to-language differences, the increasing
trend manifests itself, in aggregate, only pre-TRAVIS. More-
over, surprisingly, we find that the initial trend is flattened post-
TRAVIS, resulting in relatively stationary behavior, on average.
This paints a more nuanced picture of how GITHUB teams
are adapting to, and benefiting from, continuous integration
technology than suggested by prior work [12], and speaks to
the strength of time-series-based analysis methods, such as the
RDD we use here, at detecting fine resolution effects.

Second, our model finds that, on average, pull requests are
taking longer to close over time, and this trend is unaffected by
the switch to TRAVIS CI. This, again, is quite surprising, as we
have seen in RQ2 above that the size of code changes becomes,
on average, smaller over time; in turn, this would imply that
changes are also easier (quicker) to evaluate. One possible
explanation for the increased latency is the TRAVIS’ slowness,
reported by some survey participants (R1, R27, R53).

D. RQ4: Trends in Issue Closing

Next, we examine issue closing trends.
Exploratory Study: We follow the same approach as above and
compare the medians in the number of issues per time period,
in the months before and after CI adoption. Fig. 7 shows the
boxplots of the number of issues per unit time period for 12
consecutive 30-day time intervals, before and after TRAVIS CI
adoption. We note that the month immediately preceding and
the two following the adoption exhibit the highest number of
issues. Besides those, before CI adoption the median number
of issues per period seems to vary between 10 and 13, with
most of them being in between. Following CI adoption, we
note a slight increasing trend in the median of the number of
issues closed, with the median between 12 and 14.
Statistical Modeling Study: We apply RDD as above. The
statistical model for the number of issues closed is summarized
in Table VII. As above, the combined fixed-and-random effects
models fit the data much better than the basic fixed-effect
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Fig. 8. Unit tests per build following CI adoption.

models, indicating that the project-to-project and language-
to-language variability are responsible for most of the vari-
ability explained. We note an increasing time baseline trend
pre-adoption; no statistically significant discontinuity at the
adoption time; and a slight positive trend post-adoption, as β
(time) + γ (time after intervention) > 0.

Discussion: The statistical modeling study confirmed the visu-
ally apparent increasing trend in the number of issues closed
per time period, across the entire interval under observation,
although the trend slows down following TRAVIS CI adoption,
and is smaller than expected from the visual study, indicating
the moderating influence of the control variables. Thus, our
model finds that, on average, more issues are being closed
over time, but this trend slows with the switch to TRAVIS CI.

Survey participants experience TRAVIS as beneficial for bug
detection: “I think we produce less bugs” (R45), “there was an
immediately noticeable improvement in terms of the number
of serious bugs in production” (R51). An interesting insight
into this matter is provided by R16: while several survey
respondents have indicated that TRAVIS CI is not consistent in
terms of performance and relatively slow, those performance
aspects provided R16 with means to detect “more flaky issues”
“which where only visible on TRAVIS”.

E. RQ5: Trends in Testing

The last development practice we examine is testing. Here
we only consider a sample of Java projects, for which we could
confidently identify their build system and, consequently, parse
their TRAVIS log files. The sample consists of 250 projects,
each with at least 100 builds, 90+% of builds executing tests.

Exploratory Study: As before, we first look for general trends.
Fig. 8 shows a boxplot of per-project median number of tests
per build, for each of five consecutive 60-day time intervals
before CI adoption. We aggregated the data here in 60 day
intervals to make it easier to visualize the trend, since the
differences are small. The horizontal line in each boxplot is
the median value of all per-project medians, and the black dot
is their average value. We observe a monotonically increasing
trend in both the medians, from 140 to 160 tests per build,
and the means, from 205 to 245, i.e., 15% to 20% increase.

To ascertain if the complexity of builds increases over time,
we also calculated the average number of jobs per build. The
median is 1 for all five time intervals. These two findings
suggest strongly that there is an increase in the number of
unit tests per build over time. This, coupled with our finding
that builds are not getting more complex over time indicates

that developers are likely spending more time on automated
testing since CI adoption. This is consistent with Fowler’s
“good practices” proposal.

Error Types Study: We also looked at the evolution of the
error types in builds over time after CI adoption. For all
250 projects above, we looked at the builds that resulted in
errors, and deconvolved the errors into 8 types after open
coding. We did this over 3 intervals: 0-60 days, 61-180 days,
and 181-300 days (i.e., corresponding to the first, third, and
fifth interval in Figure 8). We find an apparent upward trend
over time in most error type categories, most notably compile
errors, execution errors, failed tests, and skipped test (median
remained 2). All these are consistent with an increase in the
amount of code being built and tested per build, as well as an
increasing management of errors by skipping tests, likely to
aid in debugging. On the other hand, we find a decreasing trend
among errors related to missing files/dependencies, and time-
outs, both consistent with those errors being less of an issue
over time, as developers are acculturating to the CI mediated
processes. Thus, overall we find an expected adjustment to the
automated testing and error handling, with an indication that
debugging complexity grows over time.

Improving software quality through test automation has
been repeatedly mentioned by the survey respondents as a
reason to switch to TRAVIS CI. By using TRAVIS CI they
became more aware of testing-related aspects of their devel-
opment process (R32, R52), spent more time and effort on
designing testing strategies (R5, R53), and encourage other
projects to embrace TRAVIS (R26). The efficiency of TRAVIS
CI for long-running tests is, however, a concern (R10).

V. RELATED WORK

Impact of CI has attracted quite some attention from the
research community. The earlier studies [36], [37] interpret
CI as distributed development and obligation to integrate
one’s own contributions. Under this definition no commit size
reduction has been observed in 5,122 Ohloh projects [37].

More recently, the ease of use of the TRAVIS CI [38] system
led to its popularity on GITHUB, and triggered a series of
research studies [5], [12], [22], [26], [39], [40]. This line of
research is closer to the current work as it performs empirical
analysis of TRAVIS CI data. Moreover, similarly to Vasilescu
et al. [26] and Hilton et al. [5] our work can be seen as related
to adoption of TRAVIS CI, and similarly to Beller et al. [22]
we study build failures. Closest in spirit to ours is probably
the work of Vasilescu et al. [12], who report, using different
methodology, increases in a project team’s ability to integrate
outside contributions following adoption of TRAVIS CI. In our
work we adopt a similar evolutionary perspective, focusing on
changes in development practices in the projects before and
after adoption of TRAVIS CI; most prior work has compared
projects that adopt CI with others that do not.

Gousious et al. studied work practices and challenges in
pull-based development on GITHUB [13], [41]. They report
that 75% of the projects surveyed use CI tools to evaluate



code quality [13] and that more than 60% of the surveyed con-
tributors employ automatic testing [41]. Importance of tooling
facilitating the testing tasks has been already recognized by
Pham et al. [11]: back in 2012 when the authors conducted the
interviews, TRAVIS CI has only started to support mainstream
languages such as Java and lack of such tooling has been
reported as an important challenge. These findings further
emphasize importance of CI in modern software development.

A March 2016 survey of 1,060 IT professionals indicated
that 81% of the enterprises and 70% small and midsize
businesses implement DEVOPS [6]. Not surprisingly, industrial
adoption of CI has attracted substantial research attention [7],
[19], [42]–[46] and is a subject of recent literature survey
by Eck et al. [47]. However, this line of work is based on
interviews or surveys rather than on analysis of repository data
and, as such, is to a larger extent susceptible to perception bias:
e.g., Leppanen et al. report that CI introduction is beneficial
for productivity [19], Eck et al. stress that productivity is likely
to decrease before positive effects can be observed [47], and
Ståhl and Bosch validated this hypothesis only partially [46].

Automated testing is an important factor that affects the
cost-effectiveness of CI and much effort has been devoted to
improve the quality and efficiency of automated testing in CI.
Campos et al. [48] enhanced CI with automated test genera-
tion. Elbaum et al. [49] and Hu et al. [50] applied test case
selection and test case prioritization to test suites. Dösinger
et al. [51] proposed the continuous change impact analysis
technique to improve the effectiveness of automated testing.
Long et al. [52] designed tools to support collaborative testing
between testers. Nilsson et al. [53] developed a technique to
visualize end-to-end testing activities in CI processes. All these
efforts aim at improving the cost-effectiveness of CI.

VI. THREATS TO VALIDITY

We focus on construct and internal validity [54], as we do
not claim generalizability.

Construct Validity: One of our constructs is a project’s “CI
adoption time,” which we operationalize as “first commit to
.travis.yml”. A more precise operationalization would
have involved reconciling two additional timestamps: registra-
tion of the repository with TRAVIS CI, and first build. Indeed,
the three timestamps do not necessarily coincide due e.g.,, to
the fact that TRAVIS CI can also start a build using some
default environment settings (Ruby) without .travis.yml
being present. Hence, validity of the “CI adoption time” con-
struct might have been threatened by our operationalization.
We reduce this threat by excluding the period immediately
before and after our t = 0 from all analyses.

Another construct is “size of a code change”. We oper-
ationalize this as the number of churned lines, customarily
interpreted as the sum of the number of added and removed
lines [55]. In this way, moved lines are counted twice, as being
added and as being removed. Moreover, we do not distinguish
between lines of source code and other lines, since it is non-
trivial when dealing with many languages.

Internal Validity: To reduce these threats we have opted
for RDD [30], a sound approach to statistical modeling of
discontinuity in time series. Application of RDD to SE data
has been recently advocated by Wieringa [56].

Multiple data filtering steps have been applied above. We
tested the robustness of our models by varying the data filtering
criteria (e.g., 9 month windows instead of 12), and observed
similar phenomena. We encourage independent replications to
further assess the robustness of our results.

VII. CONCLUSION

This paper focused on the switch to continuous integration
(CI): while several guidelines exist, relatively little has been
done to evaluate the state of practice. We empirically studied
the impact of adopting TRAVIS CI on development practices in
a collection of GITHUB projects, and surveyed the developers
responsible for introducing TRAVIS in those projects.

We find that the reality of adopting TRAVIS CI is much
more complex than suggested by previous work. The increas-
ing number of merge commits aligns with the “commit often”
guideline, but is likely to be further encouraged by the shift
to a more distributed workflow with multiple branches and
pull requests (RQ1). The “commit small” guideline, however,
is followed only to some extent, with large variation between
projects (RQ2). As expected, we observe a general increasing
trend in the number of issues closed over time; however, it
was surprising that this trend slows down after TRAVIS CI is
introduced (RQ4). In terms of testing, we find that after some
(expected) initial adjustments, the amount (and potentially the
quality) of automated tests seems to increase (RQ5).

The most interesting observations relate to pull request
(PR) evaluations: While we also find that, in aggregate, more
PRs are being closed after adopting TRAVIS, as did prior
work [12], our time-series-based analysis suggests that the
expected increasing trend in PRs closed over time manifests
itself only before adopting TRAVIS; after, the number of
closed PRs remains relatively stable (RQ3). At the same time,
PR latencies increase steadily over time, despite the code
changes getting relatively smaller. Future work should employ
qualitative methods to understand potential causes for this
effect. We can only speculate here that even with the high level
of automation provided by CI, the ability of teams to scale up
distributed development is limited by the availability of human
resources for manual code review (i.e., the project integrators).
This calls for a more profound investigation of how GITHUB
teams change their PR review practices in response to the
introduction of TRAVIS CI, as well as additional tool support,
e.g., for automatic prioritization and automatic post-merge
defect prediction, which may help. Future work should also
explicitly consider the design decisions and trade-offs between
seemingly equivalent CI pipeline implementations. Project
specific concerns may drive individual implementations, us-
age, and practices, as the high amount of variance explained
by our project random effects suggest.
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