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Abstract—In this experience report we present SAW-BOT, a
bot proposing fixes for static analysis warnings. The bot has been
evaluated with five professional software developers by means of
a Wizard of Oz experiment, semi-structured interviews and the
mTAM questionnaire. We have observed that developers prefer
GitHub suggestions to two baseline operation modes. Our study
indicates that GitHub suggestions are a viable mechanism for
implementing bots proposing fixes for static analysis warnings.

Index Terms—static analysis, bot, GitHub suggestions

I. INTRODUCTION

Static analysis tools can be used to detect potential code
smells, bugs, styling violations or even security issues solely
by analyzing the source code [1]. Although static analysis tools
are widely known for their benefits, these tools are still not
widely adopted, due to such limitations as lack of automated
fixes, displaying too many alarms at once and the high number
of false positives [2]. In fact, Vassalo et al. [1] have shown that
one of the most important factors considered by developers
when deciding which static analysis warnings to fix is the
estimated fixing time.

Several solutions have been proposed for automatic fixing of
static analysis warnings. SpongeBugs [3] provides automatic
detection and fixing for 11 static analysis violations that
are detected by both SonarQube and FindBugs. SpongeBugs
generates fixes for the entire project; the fixes are directly
introduced in the source code. Tricorder [4] provides primarily
indications of violations on a project-level, but for some
violations quick fixes could be proposed as well, at code
review time. Sonarqube-repair [5] provides automatic fixes
for certain SonarQube warnings via pull requests. Finally,
AVATAR [6] and Phoenix [7] generate fixes based on patch
mining and learning approaches. Similar to SpongeBugs, these
tools do not propose the fixes as suggestions, but they perform
the changes directly into the code base.

While directly changing the code base reduces the effort
developers need to spend addressing static analysis warning,
it can only be successful if developers trust an automatic tool.
Although in the long run such a trust relation is possible,
adoption of such a “direct fix” approach might be expected
to be slowed down by lack of trust. Hence, we believe that
an automatic tool should suggest changes to the developers
that can accept or reject them. Moreover, such an automatic
tool should not disrupt the developers’ workflow by presenting

with a “wall of warnings” (cf. [2]) and provide feedback as
soon as possible, i.e., when a pull request is submitted.

In this paper we present SAW-BOT (Static Analysis Warn-
ings Bot). SAW-BOT is based on SonarQube, a well-known
static analysis tool. It invokes SonarQube analysis for a pull
request submitted by a developer, generates suggestions for
fixes to the SonarQube warnings, and integrates these sugges-
tions directly in the pull request discussion.1

Remainder of the paper is structured as follows. We discuss
the design of SAW-BOT in Section II. To understand how
developers interact with SAW-BOT we design the evaluation
study in Section III and discuss its results in Section IV. In
Section V we review the threats to validity of our study and
conclude in Section VI.

II. DESIGN OF SAW-BOT

SAW-BOT operates on a Github repository. It is imple-
mented as a Github App2 using the Probot3 framework.
Whenever a new pull request is opened, SAW-BOT invokes
SonarQube to perform static analysis (Section II-A); generates
a fix to the static analysis warnings (Section II-B); and reports
the suggested fixes to the developer (Section II-C). As such
SAW-BOT belongs to a large group of code-improving bots
such as Refactoring-Bot [8] and Repairnator [9].

A. Static analysis

This project has been conducted in collaboration with
Philips Research, which determined our decision to target
Java applications. SonarQube4 is a light-weight [10] rule-based
static code analysis tool; for Java it has 612 rules [11]. We have
selected the rules for which syntactic fixes can be automati-
cally generated: (i) string literals should be on the left side
when checking for equality; (ii) Collection.isEmpty()
should be used to test for emptiness; (iii) code should not
be commented out; (iv) unused local variables should be
removed; and (v) “public static” fields should be constant.
We include (i), (iv) and (v) as violations of these rules have

1https://docs.github.com/en/free-pro-team@latest/
github/collaborating-with-issues-and-pull-requests/
incorporating-feedback-in-your-pull-request

2https://developer.github.com/apps/about-apps/
3https://probot.github.io/
4https://www.sonarqube.org/



Fig. 1. SAW-BOT in the GitHub Suggestions mode

been shown to be likely to induce bugs [12]; (ii) and (iii) since
violations of these rules have been frequently observed on the
investigated Philips Research code repositories.

B. Generating fixes

The fix generation algorithm has been implemented using
JavaParser,5 a library that provides methods for the analysis
and transformation of abstract syntax trees. We chose Java-
Parser since it can maintain the formatting and comments of
the original source code after code transformations are applied.

C. Operation modes

As explained in the Introduction, the intended mode of
operation of SAW-BOT involves analyzing the pull request
submitted by a developer and integrating the proposed fixes
in the code review, as illustrated in Figure 1. Developers can
commit each suggestion individually by pressing “Commit
suggestion”, accept multiple suggestions as a single commit by
clicking “Add suggestion to bulk” or “Resolve conversation”
if they disagree with one or more suggestions. We call this
mode the GitHub Suggestions mode.

To understand relative strengths and weaknesses of the
GitHub Suggestions mode, we have also implemented two
baseline operation modes: Pull Request mode and Legacy
mode. Similarly to the GitHub Suggestions mode, in the Pull
Request mode SAW-BOT proposes fixes only for warnings
introduced in the analyzed pull request. As opposed to the
GitHub Suggestions mode, in the Pull Request mode the
fixes are proposed to the developers via a pull request to
the branch created by the developer. Each individual fix is
proposed as a separate commit. In the Legacy mode SAW-
BOT is invoked at a predefined time. After performing the
analysis, the bot generates fixes for all warnings that can be
solved independently from when they have been introduced.
Similarly to the Pull Request mode, the fixes are proposed to
the developers via a pull request.

5https://javaparser.org/

III. EVALUATION

To understand the benefits and drawbacks of the proposed
approach we conducted an evaluation study with developers
from Philips Research.

A. Design of the study

The evaluation study consisted of a Wizard of Oz ex-
periment, augmented with a semi-structured interview. The
Wizard of Oz experiments [13], [14] are widely used to
evaluate systems before they are built. The method involves the
intentional deception of the participant regarding the system
that is being evaluated. In these experiments the participant
is asked to perform a number of activities with a system.
However, this system is in fact operated by a human, called
the Wizard. The participant is not informed about this fact, in
order to preserve the authentic behavior towards the system.

We opted for the Wizard of Oz experiment since it allowed
us to evaluate a partially implemented SAW-BOT, and deter-
mine whether the GitHub Suggestion mode is preferred by
developers compared to the baseline modes. The Wizard of
Oz experiment has been designed according to the iterative
methodology of Fraser et al. [15]. The experiment session was
designed to take place on Microsoft Teams.

The Wizard of Oz experiment session started with the first
author explaining the main features of SAW-BOT, as well as
the three operation modes that would be evaluated. Then the
participant is introduced to the GitHub repository6 and given
five minutes to familiarize themselves with the Java project
and with the issues highlighted by the SonarQube instance
connected to the repository.

Next the experimenter introduced the Legacy mode, i.e.,
informed the participant that SAW-BOT has been scheduled to
open a pull request at a specific time. Instead the pull request
was opened manually by the Wizard at the specified time. The
Wizard operated using a specially created GitHub account: the
name of this account was chosen to suggest that the account is
used by a bot. The commits containing the fixes and the branch
containing these commits were prepared before the start of the
experiment on the local machine of the Wizard. In order to
avoid compromising the illusion of realism, the authoring and
commit date for each of these commits were tweaked, such
that they all looked like they have been created at the specified
time. Furthermore, one of the proposed fixes was intentionally
wrong. After the Wizard pushed the commits containing the
fixes and opened the pull request, the participant was asked to
review the pull request. Special attention was paid to whether
the participant used the revert command to remove the wrong
fix. If the participant used this command, the Wizard manually
submitted a new pull request that excluded the wrong fix.

Then the experiment moved to the Pull Request mode.
The participant was requested to complete a simple coding
task, which contained very specific implementation require-
ments, such as using certain methods. These requirements
have been designed such that the produced code would trigger

6https://github.com/drgs/spring-boot-library-app-1



SonarQube warnings. When the coding task was finished,
the participant was asked to create a new branch, push the
created code to the remote GitHub repository and open a pull
request to the main branch. After opening the pull request, the
SAW-BOT invoked SonarQube and opened the pull request
with the corresponding fixes. Since this operation mode was
implemented in SAW-BOT at the time of the experiment, no
actions were required from the Wizard.

Finally, while the SonarQube analysis was performed as
part of the evaluation of the Pull Request mode, the Wizard
manually submitted fixes using GitHub suggestions. After the
bot successfully opened the pull request, the participant was
asked, again, to review the new pull request. After the review
was finished, the participant was informed that the evaluation
of the GitHub Suggestions mode would start and they would be
asked to review the suggestions proposed on the original pull
request that the participant opened. Similarly to the Legacy
mode, the Wizard intentionally proposed a faulty fix.

After the Wizard of Oz experiment, the first author con-
ducted a semi-structured interview. The interview aimed at
clarifying actions that the participant took during the Wizard
of Oz experiment, and gathering additional insights regarding
the overall user experience and the strengths/weaknesses of
the proposed bot design. We used open coding and card
sorting [16] to analyze the answers. To reduce the subjectivity
of these methods, two persons have been involved.

Next we asked the participants to score SAW-BOT based
on the modified Technology Acceptance Model (mTAM) [17]
to evaluate the perceived usability of the proposed bot design.
mTAM consists of a set of 12 statements on a 7-point scale,
ranging from extreme disagreement to extreme agreement.
This model quantifies usability based on two variables: per-
ceived usefulness and perceived ease of use. The interpretation
of perceived usability helps in understanding the acceptability
of SAW-BOT in an industrial context. We opt for mTAM rather
than the original Technology Acceptance Model (TAM) [18]
since mTAM focuses on assessing the current experience with
the system, rather than the expected experience.

At the end of the evaluation session, the participants were
debriefed about the deception and the nature of the experiment,
as recommended by Dahlback et al. [14]. In addition, the par-
ticipants were given the opportunity to have all the collected
data erased if they wished to do so.

B. Evaluating the study design
In order to test the study design, as recommended by Fraser

et al. [15], we conducted five pilot sessions. As the result
of the pilot studies we made several improvements to the
initial study protocol, e.g., removing repeated questions and
clarifying the coding task. The final study design has been
approved by both the Ethical Review Board of Eindhoven
University of Technology (ERB2020MCS12) and the Philips
Internal Committee for Biomedical Experiments.

IV. RESULTS

We have conducted the evaluation study with five pro-
fessional developers from Philips Research: the number of

participants is in line with previous studies [19] (albeit larger
Wizard of Oz experiments have also been reported [20]). We
used convenience sampling to recruit the participants.

A. Wizard of Oz

For the Legacy mode, the developers reviewed the proposed
changes either per commit or directly in the “Files changed”
view, which directly highlights all the changes that the bot
proposed. None of the participants read the pull request de-
scription and none realized that the bot had a revert command,
which allowed them to revert specific commits directly in
the pull request. In addition, only one participant managed
to identify the wrong fix in this operation mode, while others
immediately merged the pull request after having a quick look
at the proposed changes. Some participants claimed that the
bot is not transparent about why a certain change has been
made, even though the description of the fixed issues has
been added in the commit message containing the fix. All
participants ended up approving the pull request.

While the Legacy mode was considered acceptable, it did
not encourage developers to review the changes carefully,
which might lead to the introduction of bugs. Moreover, the
bot should support displaying a comment for each of the fixed
warnings, such that transparency is increased.

For the Pull Request mode, most developers started review-
ing the changes directly in the “Files changed” view. Some
developers read the description of the pull request and realized
that a revert command existed. This is due most likely to the
fact that the “Conversation” view of the pull request included a
small number of commits (2 vs. 11 in the Legacy mode), which
allowed developers to focus closer on what was displayed on
the screen. All participants decided to approve and merge
the pull request by squashing. Two participants mentioned
the transparency issue again. Developers also recommend
highlighting the warnings issued by SonarQube, but which
could not be fixed by the bot.

The GitHub Suggestions was preferred by 4 out of 5
participants. Participants appreciated that the suggestions are
made directly into their pull request and they can control
over the decision of accepting or rejecting the suggestions.
Furthermore, two participants that did not identify the wrong
fix in the Legacy mode actually discovered it in the GitHub
Suggestions mode. The participants explained that GitHub
Suggestions allow them to focus more on reviewing the
soundness of the fix, rather on understanding why the fix is
there. Developers also appreciated the transparency, i.e., that
the warning message was displayed in the suggestion box.

B. Interviews

Four participants described the experience with SAW-BOT
as positive. One participant disagreed due to presence of wrong
fixes: however, these fixes have been intentionally included
in the study. Participants suggest to further improve the bot
by displaying all SonarQube warnings as comments, even if
SAW-BOT cannot propose fixes for those, as well as extending
the list of warnings that can be fixed automatically.



While the clarity of Pull Request mode has been appre-
ciated, the interviewees recognized such shortcomings as the
large number of commits that might be created, or the lack of
transparency regarding what each fix represents. Participants
suggested to improve the bot by merging commits that refer
to the same warning and occurring next to each other: e.g. the
commented code violation is triggered for every three lines of
commented code, leading for many warnings being reported
for the same commented out fragment.

The GitHub Suggestions mode has been preferred by most
participants due to the ease of workflow integration, detecting
potentially wrong fixes and preventing new problems from
entering the code. One participant mentioned that the GitHub
Suggestions mode makes it easier for developers to understand
their mistakes and learn from them. Another participant, how-
ever, disliked this mode, claiming that the suggestions placed
next to the manually-written code might confuse developers.
One improvement has been suggested, i.e., adding the GitHub
Suggestions to solve legacy SonarQube issues (i.e. combining
the Legacy mode with GitHub Suggestions).

C. mTAM

mTAM evaluates perceived usefulness and perceived ease of
use [17]. Since one participant did not fill the questionnaire
and one participant did not score all the items, we score the
missing values as 4, following Lah et al. [17]. To ensure the
reliability of the measurement, we compute the Cronbach’s
α [21], which is a metric used for evaluating the internal
consistency of a set of items. The values of Chronbach’s
α range from 0 to 1. Values below 0.5 are interpreted as
unacceptable, while a minimum between 0.65 and 0.8 is
recommended [21]. The computed values are: for perceived
usefulness α is 0.85, while for perceived ease of use it is
0.89. In other words, the responses are highly consistent.

SAW-BOT scored 79 on perceived usefulness and 71 on
perceived ease of use, leading to the mTAM score 75. While
Lah et al. do not present a way to interpret the mTAM
scores, mTAM is meant to be similar to the System Usability
Scale [22], and we base our interpretation on the corre-
sponding guidelines [23]. This means that SAW-BOT ranks
acceptable on the acceptability scale, C on the grade scale
and excellent on the adjective rating scale [23].

V. THREATS TO VALIDITY

As any empirical study our work is subject to threats
to validity. Construct validity refers to relation between the
construct we would like to measure (developers’ perception
of SAW-BOT) and the measurements performed. To reduce
the mono-method bias we combined three complementary
approaches: the Wizard of Oz experiment, interviews and
mTAM questionnaire.

To reduce the threats to internal validity we adopted estab-
lished measurement instruments (mTAM), and followed best
analysis practices (e.g., coding has been done by two persons).
During the Wizard of Oz experiment, the first author did not
mute their microphone when performing the Wizard’s tasks.

This has been done intentionally as muted microphone might
have been perceived by the participants as a signal that the first
author was doing something special, breaking the illusion of
the existence of the bot. However, the very same illusion might
have been threatened by the typing noise. Moreover, during the
experiment the first author involuntarily disclosed that SAW-
BOT is their bot. This could have made the participants adopt
a more subjective stance, thus leading to a biased behavior.

Controlled environment of the Wizard of Oz experiment
induces several threats to external validity. Participants have
been working with a fairly simple Java project and the coding
task had very explicit instructions, both reducing realism of
the environment and potentially affecting generalizability of
our findings to the actual working environment of Philips
Research. Other factors that could potentially affect the gen-
eralizability of our findings include the small number of
participants and the use of convenience sampling. We believe
that evaluation of SAW-BOT in a more realistic environment
should be subject of a follow-up study.

VI. CONCLUSIONS

In this work we have advocated the use of GitHub sugges-
tions as a mechanism for bots proposing fixes for static analy-
sis warnings. We have implemented SAW-BOT and shown that
developers prefer GitHub suggestions to baseline operation
modes, Legacy and Pull Requests. This being said, GitHub
suggestions might not be uniformly beneficial for all kinds
of software engineering bots. Understanding when GitHub
suggestions are more and less beneficial, and what are the
limitations of this approach should be subject of future work.
Another direction for future work is the extension of SAW-
BOT based on the suggestions made by the study participants.
Moreover, since SAW-BOT could potentially benefit develop-
ers’ productivity, subsequent studies could investigate if using
SAW-BOT significantly impacts the development time. Finally,
future studies could study the correlation of the preferred
operation modes with the volume and criticality of the fixes.

VII. DATA AVAILABILITY

The anonymized card sorting results and mTAM ques-
tionnaire, as well as the detailed Wizard of Oz experiment
script and the post-experiment interview guide are publicly
available [24].

At the moment of writing, the source of SAW-BOT is
not public, but discussion about open-sourcing the project is
ongoing. If a favorable decision will be made, SAW-BOT will
be available on the Philips Software GitHub page.7
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