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Static analysis tools have showcased their importance and usefulness in automated detection of defects. However,
the tools are known to generate a large number of alarms which are warning messages to the user. The large
number of alarms and cost incurred by their manual inspection have been identified as two major reasons
for underuse of the tools in practice. To address these concerns plentitude of studies propose postprocessing
of alarms: processing the alarms after they are generated. These studies differ greatly in their approaches to
postprocess alarms. A comprehensive overview of the approaches and techniques to implement them is, however,
missing.

In this article, we review 130 primary studies that propose postprocessing of alarms. The studies are collected
by combining keywords-based database search and snowballing. We categorize approaches proposed by the
collected studies into six main categories: clustering, ranking, pruning, automated elimination of false positives,
combination of static and dynamic analyses, and simplification of manual inspection. We provide overview of the
categories and sub-categories identified for them, their merits and shortcomings, and different techniques used to
implement the approaches. Furthermore, we provide (1) guidelines for selection of the postprocessing techniques
by the users/designers of static analysis tools; and (2) directions that can be explored by the researchers.
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1 INTRODUCTION
Static analysis tools have showcased their importance and usefulness in automated detection of
common programming errors like division by zero and dereference of a null pointer [44, 153].
Furthermore, these tools are also useful to prove absence of errors in safety/security-critical systems
[19, 41, 89]. However, these tools are known to be underused in practice [16, 31, 73, 92, 96].
Indeed, these tools generate a large number of alarms warning the user about potential errors
[16, 45, 73, 95, 96]. In general there are 40 alarms for every thousand lines of code [16], and 35% to
91% of alarms are false positives [66]. Partitioning alarms into false positives and errors requires
manual inspection which is tedious, time-consuming [42, 123, 149, 160], and can be error-prone
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[42]. The large number of alarms reported by the tools and cost involved in their manual inspection
have been observed to be the major reasons for the underuse of static analysis tools in practice
[16, 31, 73, 92, 96].

Improving precision of static analysis tools has been extensively considered in the literature
[13, 60, 110]. However, given that verification problems are undecidable in general, reporting of
false alarms by these tools is inevitable [42, 149]. Therefore, since last two decades, postprocessing
of alarms—processing the alarms after they are generated—is being explored as an alternative to
address the problem of alarms and the cost associated with their manual inspection. We define
postprocessing of alarms as below.

We call processing of alarms after they are generated by a static analysis tool postprocessing, if
the processing relates to any of the following activities.

(1) Reducing number of alarms by before reporting them to users.
(2) Reducing manual inspection effort by enriching alarms with additional information.
(3) Simplifying manual inspection of alarms by providing assistance and tool support during the

inspection process.

Considering the benefits offered by postprocessing of alarms, a plentitude of approaches have
been proposed [45, 66], and techniques to implement those approaches differ greatly. However,
to the best of our knowledge, a comprehensive overview of these approaches and techniques to
implement them is missing. Indeed, existing surveys of static analysis techniques either focus on
specific postprocessing techniques [3, 45, 66] or discuss static analysis in general [39, 104]. The
only notable exception is our previous work [128] the current article builds on and extends. In
the absence of such an overview, (1) developers and users of static analysis tools have a hard time
choosing postprocessing techniques from the plentitude of existing ones, and (2) researchers might
be rediscovering existing approaches or miss opportunities to explore new directions.

Therefore, in this article we ask the following research question.

RQ: What approaches have been proposed for postprocessing of alarms?

To understand the current state of alarms postprocessing, we performed a systematic literature
search combining keywords-based database search [86, 113] and snowballing [11, 176]. We combine
the approaches to complement their strengths: the results of the former provided a start set required
in the latter, and the latter identified the relevant papers which were missed by the former. The
literature search was performed initially during the period of June 4 to June 14, 2016. We extended
the literature search to include the relevant studies that have been published after the initial search.
The extended search is performed during the period of Dec 24, 2019 to Jan 10, 2020. We call the first
search initial literature search and the extended one extended literature search.

Through the two literature searches, we identify 130 primary studies (research papers) that
propose postprocessing of alarms, and identify six main categories of approaches: clustering, ranking,
pruning, automated elimination of false positives, combination of static and dynamic analyses, and
simplification of manual inspection. Furthermore, we categorize five of those categories into two
or more sub-categories depending on techniques used to implement the approaches. We provide an
overview of the categories and sub-categories, their merits and shortcomings, and different techniques
used in their implementations. We observe that the approaches identified are complementary and
can be combined in different ways. We provide (1) guidelines for selection of the postprocessing
techniques by the users and designers of static analysis tools; and (2) directions that can be explored
by the researchers.
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The work in this article builds on our prior survey published in the proceedings of SCAM 2016
[128]. The prior survey has been conducted with a larger scope of handling of alarms. The survey is
based on the initial literature search that identified 79 primary studies as relevant. In Section 2 we
elaborate on the differences between the current work and the prior survey [128]. The work in this
article has also been included as a chapter in PhD dissertation of the first author [122].

The contributions of this article are threefold.
(1) The primary contribution of this work is the categorization of 130 research papers proposing

approaches for postprocessing of alarms.
(2) We identify six main categories of approaches: clustering, ranking, pruning, automated elim-

ination of false positives, combination of static and dynamic analyses, and simplification of
manual inspection.

(3) We observe that the approaches to postprocess alarms are complementary and can be combined
in different ways for better results.

Article Outline. Section 2 discusses related work highlighting differences between our survey and
other similar surveys in the area. Section 3 describes the methodology used to conduct the initial and
extended literature searches. Section 4 provides overview of data extracted from the relevant studies
collected from the two literature searches. Section 5 describes the identified categories of approaches
for postprocessing of alarms. Section 6 summarizes merits and shortcomings of the approaches,
presents guidelines for selection of the approaches, and provides directions for future work. Section
7 concludes.

2 RELATED WORK
In this section, we compare our work with recently published (1) literature reviews of techniques
for postprocessing of alarms, and (2) studies about evaluation or benchmarking of tools/techniques
that postprocess alarms. We start by comparing this work with our prior survey published in the
proceedings of SCAM 2016 [128]. The current survey is performed by limiting the scope to post-
processing of alarms, whereas the prior survey was conducted with a larger scope of handling of
alarms, that included design of light-weight static analysis tools also as an approach to handle alarms.
We do not consider this approach relevant to postprocessing of alarms. The prior survey is based
on the initial literature search that identified 79 primary studies as relevant. In the current survey,
wherever appropriate, based on the papers additionally identified as relevant during the extended
literature search, we have also updated the sub-categories of those six main categories. Thus, the
(sub)-categorization presented in this article is different from the (sub)-categorization in the prior
work [128] and also is as per our improved understanding of postprocessing of alarms (Section 3.1.3).

The systematic literature review conducted by Heckman and Williams [66] reviews techniques
for ranking and pruning of alarms. In this review, approaches proposed by 21 different studies for
postprocessing of alarms, are analyzed and categorized into two categories, ranking and pruning.
Among those 21 studies, 10 studies propose classification of alarms into actionable or non-actionable
classes, while the other 11 studies propose ranking of alarms. Compared to this review, our literature
survey is more comprehensive as it includes more studies (130) that propose a variety of approaches
for alarms postprocessing. For example, due to inclusion of those additional studies, we could identify
new categories like clustering, automated false positives elimination, and simplification of manual
inspection. Moreover, wherever suited, the studies in each category are further categorized into
multiple sub-categories. This categorization helps to understand the proposed approaches better and
comprehensively. Five of those 21 studies included in the review by Heckman and Williams [66]
were not included in our study: the excluded studies performed evaluations of static analysis tools
(e.g. [64] and [135]) rather than introducing new postprocessing techniques.
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In their mapping study, Mendonca et al. [39] have selected and analyzed 51 studies to identify state-
of-the-art static analysis techniques and tools, and main approaches developed for postprocessing of
alarms. In our study, as our focus was on different approaches through which alarms are postprocessed,
we did not include 39 of those 51 studies. The excluded studies dealt with improving analysis
precision, study of defects, and even evaluation and benchmarking of static analysis tools. In their
mapping study, Elberzhager et al. [45] have classified and provided analysis of approaches that
combine static analysis and dynamic quality assurance techniques. The static quality assurance
techniques deal with code reviews, inspections, walkthroughs, and usage of static analysis tools,
whereas our literature survey is with much broader scope of postprocessing of alarms: in our survey,
combination of static and dynamic analyses is one of the categories of approaches to postprocess
alarms.

Li et al. [104] have performed a systematic literature review to provide overview of state-of-
the-art works that statically analyze Android apps. From these works, they highlight the trends of
static analysis approaches, pinpoint where the focus has been put, and enumerate the key aspects
where future research is still needed. In this review, 124 research papers are studied. The review is
performed with much broader scope: the review is performed mainly in the following five dimensions
(1) problems targeted by the approach, (2) fundamental techniques used by authors, (3) static analysis
sensitivities considered, (4) Android characteristics taken into account, and (5) the scale of evaluation
performed. Unlike to this review, our study is focused on understanding the state of postprocessing
of alarms irrespective of domains of the applications being analyzed.

To the best our knowledge, there does not exist other literature survey or reviews studying alarms
postprocessing approaches. Several other studies, like [3, 106, 182] evaluate various techniques for
alarms postprocessing. Allier et al. [3] have proposed a framework to compare different alarms rank-
ing techniques and identify the best approach for ranking alarms. The various techniques proposed
for postprocessing of alarms are compared using a benchmark having programs in Java and Smalltalk,
and three static analysis tools: FindBugs, PMD, and SmallLint. Using this framework, algorithms
to rank alarms are compared. In another study, Liang et al. [106] have proposed an approach to
construct a training set automatically, required for effectively computing the learning weights for
different impact factors. These weights are used later to compute scores used in ranking/pruning of
alarms. As opposed to these studies, our literature survey studies approaches that have been proposed
for postprocessing of alarms.

As compared to the existing reviews and studies which aimed at understanding postprocessing
of alarms, our presented study is based on more papers and describes multi-level categorization of
the approaches. Therefore, it can help the users and designers/developers of static analysis tools to
choose the postprocessing approaches suited in their work.

3 METHODOLOGY
This section discusses the methodolgoy we used to (1) conduct the literature search and collect
studies that propose techniques for postprocessing of alarms, and (2) extract data from the relevant
studies.

The literature search is performed by combining keywords-based database search [86, 113]
and snowballing [11, 176]. Performing a literature search is a time consuming activity. Moreover,
it requires the searcher to be an expert in the area (postprocessing of alarms) and finding such a
searcher is a hard task. Therefore, the literature search is performed by the first author without
involving additional experts. The first author has 10 years of experience in (1) research in designing
and developing new techniques for postprocessing of alarms [121, 123, 125–127, 129, 130], and (2)
developing a commercial static analysis tool (TCS ECA [161]).
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Table 1. Keywords used during the keywords-based database search.

Cate-
gory

Main keywords identified
from the research question

Relevant keywords to be used literature search
(Search keywords)

I postprocessing goals
1) elimination, 2) reduction, 3) simplification,
4) ranking, 5) classification, 6) reviewing, 7) inspection

II static analysis
1) static analysis, 2) automated code analysis,
3) source code analysis, 4) automated defects detection

III alarms 1) alarm, 2) warning, 3) alert

Henceforth in the article, we use studies and (research) papers interchangeably. In postprocessing
of alarms, we consider alarms generated by both code proving tools (i.e., tools such as Astrée [33]
and Polyspace Code Prover [164] that can be used for proving absence of bugs of certain types), and
bug finding tools (i.e., tools such as FindBugs [9] and Lint [74] that are used for finding bugs).

3.1 The Initial Literature Search
The initial literature search was conducted during the period of June 4, 2016 to June 14, 2016.

3.1.1 Keywords-based Database Search. Inspired by systematic literature reviews [86, 113],
we conducted a keywords-based database search in Google Scholar1 to collect the papers that propose
techniques for postprocessing of alarms. We call these papers relevant papers. The keywords that we
used during the search are listed in Table 1, and are identified from the research question (Section 1).

The keywords identification is discussed next. Both the authors of the article working together
identified three main keywords from the research question (RQ): postprocessing, static analysis, and
alarm. These main keywords are shown in three categories I, II, and III respectively. Corresponding
to each of the main keywords, we then identified search keywords: the keywords to be used during
the keywords-based database search.

The search keywords in Category I, related to postprocessing goals, are identified referring to the
definition of postprocessing of alarms presented in Section 1. We identified reduction based on Cases
(1) and (2) in the definition, and elimination as its synonym. Keyword inspection is identified based
on Cases (2) and (3), and reviewing as its synonym. Keyword simplification is identified based on
Case (3). In addition, we consulted the recently published literature reviews and studies (discussed
in Section 2), and identified ranking and classification, mainly from the related work [66] which
identifies ranking and classification as two alarms postprocessing approaches.

The search keywords in Categories II and III are identified as synonyms to the main keywords
static analysis and alarms respectively.

The selection of keywords, shown in Table 1, results in 84 = 7× 4× 3 different search strings.
We manually searched each of the search strings in Google Scholar, and examined the first 150
results of every search. To avoid examining same paper multiple times, that appears in results of
multiple search strings, we enabled highlighting of the visited links in the browser. We ignored the
links (search results) that were marked as visited. Thus, during this process, we examined a total of
12600 results including the duplicates.2

For each paper in the results that were not identified as duplicates, we checked whether the paper
should be included in the collection of relevant papers. We identified a paper as relevant only if

1Google Scholar. https://scholar.google.com/
2Since the keywords-based search is performed manually, we did not explicitly measure the number of duplicates in the search
results.
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∙ it proposes a technique, method, or an approach to postprocess alarms; and
∙ it is a peer-reviewed paper.

We excluded a paper from the collection of relevant papers if it deals with

∙ improving precision of the underlying static analyses like value analysis and pointer analysis,
or refinements to the analyses (like [60, 77, 110]);

∙ an approach or methodology followed to reduce the number of alarms by designing light-weight
static analysis tools;

∙ fault prediction or error/bug report triaging;
∙ mining of bug repositories in the context of software maintenance/evolution;
∙ study of economics or benefits of usage of static analysis tools (like [92, 192]); or
∙ evaluation, comparison, or benchmarking of precision of various static analysis tools (such as

[24, 151, 162]).

While applying the inclusion/exclusion criteria for each paper, we considered the title, abstract,
introduction/motivation, conclusion, and sometimes evaluation section of the paper. In the case of a
paper satisfying both the inclusion and exclusion criteria, the paper was deemed to be relevant. This
keywords-based search led to identification of 46 relevant papers.

3.1.2 Snowballing. After the keywords-based search, we performed snowballing [11, 176] due
to the following reasons: (a) the search strings considered based on the keywords in Table 1, might
be incomplete, e.g., due to terminological differences among the papers; and (b) more importantly,
given a good start set, snowballing approach is found to be more effective and efficient in collecting
relevant papers as compared to the keywords-based searches [11, 176]. By conducting snowballing
after the keywords-based database search, we tried to identify and include as many relevant papers as
possible, which were missed by the database search [94].

Creation of Start Set. To begin with, a literature search using snowballing requires a start set
having diversity in the included papers to avoid bias towards any specific class of papers and thus
bias towards any specific approaches identified from them. Moreover, such a start set reduces the risk
of missing a paper from clusters of papers not referring to each other [176]. In our literature search,
we created the required start set by including all the relevant papers identified through the earlier
keywords-based search. Thus, the start set used to perform snowballing included 46 relevant papers.

Backward and Forward Snowballing. After the start set is created, we performed iterations of
forward and backward snowballing. In the backward snowballing, the papers in the reference list of
each relevant paper are examined to identify new papers to be included. In the forward snowballing,
papers citing an included paper are examined to identify new relevant papers (citations analysis). We
performed the citations analysis using Google Scholar. During the snowballing, we used the same
inclusion/exclusion criteria that were used during the earlier keywords-based search.

In snowballing, iterations of the backward and forward snowballing are performed till saturation
has been reached, i.e., next iteration of snowballing is not be performed when current iteration
does not identify a new relevant paper. In the snowballing we conducted, two iterations of the
backward and forward snowballing were sufficient: the second iteration of the forward and backward
snowballing did not identify any new paper as relevant. During the snowballing process ca. 5800
papers3 were examined for inclusion. With this search we identified 26 new relevant papers. This
activity demonstrates that the combination of the two search approaches helped each approach to
complement the other.

3The number includes duplicates in the search results.
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Table 2. Summary of results of the literature searches conducted.

Literature searches conducted
Number of
papers examined
including duplicates

Number of new
identified relevant

papers

Initial literature search
Keywords-based search 12600 46
Snowballing 5800 26

Extended literature search
Keywords-based search 12600 35
Snowballing 2345 23

Total 130

3.1.3 Relevant Papers Identified. Therefore, based on our initial literature search, performed
by combining the two search approaches, we identified 72 papers that propose techniques for
postprocessing of alarms.

In fact, the initial search has been published in the proceedings of SCAM 2016 [128]. This search
was performed with a larger scope of handling of alarms, which included designing of light-weight
static analysis tools also as an approach to handle alarms. This search identified 79 relevant papers.
The number of papers relevant to postprocessing of alarms, 72, is identified after (1) excluding five
papers that belonged to the additional approach (design of light-weight static analysis tools), and (2)
excluding two relevant papers based on our improved understanding of postprocessing of alarms.

3.2 The Extended Literature Search
We performed the extended literature search to include relevant papers that are published after the
initial literature search, i.e., after June 14, 2016. This extended search was performed between Dec
24, 2019 and Jan 10, 2020. To conduct the extended search, we followed the same methodology used
to conduct the initial literature search.

3.2.1 Keywords-based Database Search. Using the same keywords in Table 1, we performed
keywords-based search at Google Scholar. For each of the 84 search strings, we examined the papers
that are published after the initial literature search, because the papers published before 2016 are
already examined in the initial literature search. We used Google Scholar’s filter option (Since 2016)
to include in results only those papers that are published in 2016 or onwards. From the search results
(i.e., papers that are published in 2016 or onwards), we considered and examined the first 150 results
to identify relevant papers. During identification of the relevant papers, we used the same inclusion
and exclusion criteria (Section 3.1.1). This search led to identification of 35 new relevant papers.

3.2.2 Snowballing. We performed snowballing using 107 relevant papers as the required start set:
72 papers identified by the initial literature search, and 35 papers identified by the keywords-based
search of the extended search. During the forward snowballing we considered only the papers that
are published in 2016 or onwards using the Google Scholar’s filter option. During this search, two
iterations of the forward and backward snowballing got performed, in which we examined 2345
papers4. This search led to identification of 23 additional relevant papers.

3.2.3 Relevant Papers Identified. The two literature searches, the initial and extended searches,
together led to identification of 130 relevant papers.

Table 2 summarises the results of the literature searches conducted.
4The number includes duplicates in the search results.
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3.3 Data Extraction
This section describes extraction of data from those 130 relevant papers identified using the literature
search (Section 3).

We reviewed each of the relevant papers and extracted the following data: (1) the approach(es)
proposed in the paper for postprocessing of alarms, (2) techniques and artifacts used to implement
those approaches, (3) static analysis tools used for evaluating the approaches and techniques, and
(4) programming languages supported by the tools.

We used open tagging [159] to categorize approaches proposed by the papers. The tagging was
performed by the first author. The papers having similar approaches are grouped together, and a
broader level approach is identified describing the group. When a paper is found to propose multiple
approaches, i.e. the paper can belong to multiple categories, the most prominent approach mostly
suggested by the title of the paper is selected to determine the category. For example, for the study
by Kremenek et al. [90] that presents clustering and ranking of alarms and utilizes user-feedback
for ranking purposes, we have identified ranking as its primary approach. Moreover, we categorized
the identified categories further into sub-categories depending on the main characteristics of the
approaches or techniques used to implement the approaches.

We used open tagging [159] to categorize approaches proposed by the papers. The tagging was
performed by the first author. The papers having similar approaches are grouped together, and a
broader level approach is identified describing the group. When a paper is found to propose multiple
approaches, i.e. the paper can belong to multiple categories, the most prominent approach mostly
suggested by the title of the paper is selected to determine the category. For example, for the study
by Kremenek et al. [90] that presents clustering and ranking of alarms and utilizes user-feedback
for ranking purposes, we have identified ranking as its primary approach. Moreover, we categorized
the identified categories further into sub-categories depending on the main characteristics of the
approaches or techniques used to implement the approaches.

4 OVERVIEW OF THE EXTRACTED DATA
This section provides overview of the data extracted from the relevant papers.

As a result of the above categorization (discussed Section 3.3), the following six categories of
approaches are identified.

A. Clustering: Alarms are clustered into several groups based on similarity or correlations among
them.

B. Ranking: Alarms are ranked using various characteristics of the alarms, the source code, history
of bug/alarm fixes, code-commit history, and so on.

C. Pruning: Alarms are classified into two classes, actionable and non-actionable and the non-
actionable alarms are pruned.

D. Automated false positives elimination (AFPE): Alarms are processed further using more precise
techniques like model checking and symbolic execution to automatically identify and eliminate
false positives from the alarms.

E. Combination of static and dynamic analyses: Alarms are processed using dynamic analysis to
generate test cases that validate true errors.

F. Simplification of manual inspection: Manual inspection of alarms is simplified by enriching
alarms with additional information, providing tool support, and so on.

Figure 1 presents summary of the categorization of approaches for postprocessing of alarms, along
with the number of papers in each category. Moreover, it presents the identified sub-categories and
relevant papers belonging to them. In the figure, the sub-categories of approaches identified from
relevant papers obtained through the initial (resp. extended) literature search are shown in non-italics
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Postprocessing
of alarms

(130)

A. Clustering
(12)

Sound
[71, 99, 100, 123,

129, 130, 187]

Unsound
[52, 97, 142,

156, 188]

B. Ranking
(26)

Statistical analysis
[76, 91]

History-aware
[4, 22, 81, 82,

108, 175]

Feedback-based
[63, 90, 145,

155, 174]

Multiple tools
[51, 88, 111, 117,

134, 146, 147, 180]
Others
[17, 18,
43, 68,
107]

C. Pruning
(23)

Machine learning
[2, 61, 65, 67, 87,
98, 118, 141, 166,

183, 185, 191]

Delta alarms
[30,93,109,
158, 168

Others
[10, 26, 38,

75, 152, 172]

D. AFPE
(23)

Model checking

Scalability
[29, 37,

143, 150,
167, 184]

Efficiency
[28, 36,

125, 126, 173]

Symbolic Execution
[7, 49, 57, 59,

83, 101, 139, 186]

SMT solvers/
Ded. verification

[53, 131, 132, 177]

E. Combination of
static and

dynamic analyses
(14)

[1, 25, 27, 34, 35, 55,
58, 85, 102, 103, 105,

137, 157, 165]

F. Simplification
of manual
inspection

(32)

Semi-automic diagnosis
[14, 54, 148, 149, 189, 193]

Feedback-based
[114, 153]

Checklists
[8, 140]

UI & navigation
tools [5, 21,

33, 70, 79, 138]

Alarm-relevant queries
[42, 80, 127, 190]

Automated repair
[12, 15, 115, 116, 179]

Others
[6,

112, 119,
121,133,

136, 144]

Fig. 1. Summary of the (sub)-categories of approaches proposed for postprocessing of alarms and
the corresponding relevant papers.
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(resp. italics). The relevant papers collected through the extended literature search are shown by
marking them in bold. The presented categorization is described in detail in the next section (Section
5).

Figure 2 presents year-wise distribution of the relevant papers per category of the approaches.
It indicates that, there is continuous ongoing interest in the topic (postprocessing of alarms), and
comparatively a higher number of papers are published recently (in the last three years). Moreover,
simplification of manual inspection has been the more popular category comparatively, while ranking,
pruning, and AFPE have received nearly equal popularity.

In Table 4 we summarize the following data extracted from the relevant papers.

(1) The relevant papers (Column Relevant paper (Other sub-categories)).
(2) The main (sub)-category of the approach identified for the paper (column Categories). In

case a paper proposes multiple alarms postprocessing approaches belonging to two or more
sub-categories, the sub-categories other than the main sub-category identified for the paper are
presented in column Relevant paper (Other sub-categories).

(3) The year of its publication (column Year).
(4) Static analysis tools used to evaluate the proposed approaches, i.e., static analysis tools used

to generate alarms required in evaluation of the proposed approaches (column Tools used in
evaluation).

(5) Programming languages supported by the tools used in evaluation of the approaches (column
Lang.), i.e., the programming languages of programs on which the alarms used in the evaluation
are generated.

(6) Techniques used to implement the proposed approaches (column Techniques). Note that the
techniques in this column do not correspond to the techniques implemented in static analysis
tools (listed in Column Tools used in evaluation) that are used to generate alarms used in
evaluation of the proposed approaches.

(7) Artifacts used to implement the techniques listed in column Techniques (column Artifacts
used).

In the column Srch of Table 4, we denote the search method in which the corresponding paper
is identified as relevant. We use 𝐼𝐾 and 𝐼𝑆 respectively to denote the keywords-based search and
snowballing of the initial literature search, and 𝐸𝐾 and 𝐸𝑆 respectively to denote the keywords-based
search and snowballing of the extended literature search.

For example, the first row in Table 4 should be read as follows: The paper by Jiao et al. [71]
proposes sound clustering of alarms. The proposed postprocessing approach uses defect models
(artifacts) generated using feature functions. The approach is evaluated using alarms generated by
DTSC on C programs. The paper has been published in 2017 and included during the extended
literature search.

Following are a few observations made from the data summarized in Table 4.

∙ Out of 130 research papers, 15 research papers propose mulitple alarms postprocessing ap-
proaches belonging to two or more sub-categories.

∙ Static analysis tools that analyze C programs are used in 57% of the relevant studies for
evaluating the postprocessing approaches and techniques proposed, i.e., C is the most popular
programming language targeted by alarms postprocessing approaches. In total 65 different
tools supporting analysis of C programs have been used.

∙ Java has been the second most popular language during evaluations in 36% of the relevant
studies. In total these studies used 34 different static analysis tools to analyze Java programs.
Among these tools, FindBugs [9] has been found to be the most popular tool. PMD [4] and
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Fig. 2. Number of the relevant papers published year- and category-wise.

Jlint [72] have been other two commonly used tools for Java programs. This indicates that
usage of light-weight/shallow static analysis tools is common in analysis of Java programs.

5 DETAILS OF APPROACHES FOR POSTPROCESSING OF ALARMS
In this section, we describe the categories of approaches and their sub-categories (Figure 1), that
we identified based on the papers collected through the literature search. For each sub-category, we
briefly describe a few relevant papers as its representatives.

5.1 Clustering of Alarms
In this category of the approaches, alarms are clustered into several groups based on similarity or
correlation among them. Since alarms in a group are similar/correlated, generally only a few of them
need to be inspected [99, 100, 123, 187], or all of them get inspected together [52, 97]. In both cases,
clustering of alarms allows to reduce the overall inspection effort.

We categorize the approaches further into sound and unsound. The categorization depends on
whether the clustering approaches guarantee the following relationship among the alarms grouped
together: when one or more alarms in a cluster, identified as representative alarms of the cluster, are
false positives, all the other alarms in the same cluster are also false positives. We call approaches
that guarantee this relationship sound, otherwise unsound. In other words, we identify a clustering
approach as sound if the approach, in addition to grouping alarms, also selects a fewer alarms in
each group as representatives of the group, guaranteeing that when the representative alarms are
false positives, the other alarms in the same group are also false positives. We stress that the notion
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of soundness/unsoundness of clustering that we introduce for sub-categorization of clustering ap-
proaches is different from the soundness/unsoundness of the static analysis that ultimately generated
the alarms being grouped.

5.1.1 Sound Clustering. The approaches in this sub-category cluster alarms such that when one
or more representative alarms of a cluster are false positives, all the other alarms in the same cluster
are also false positives [99, 100, 123, 129, 130, 187]. The representative alarms of a cluster are
called dominant alarms of the cluster. The implementation of these approaches is based on analysis
techniques like data flow analysis [78] and abstract interpretation [32]. Due to the relationship
between dominant and the other alarms in each cluster, inspection of the other alarms is not required
when the dominant alarms are found to be false positives. Since there are no false negatives arising
due to skipping inspection of alarms other than the dominant alarms, this clustering approach is
suitable for both the types of static analysis tools, i.e., code proving tools as well as bug finding tools.

Merits and Shortcomings. In sound clustering, mostly dominant alarms need to be inspected while
skipping inspection of the other alarms. The techniques used to implement sound clustering of alarms
are generally efficient, and sound clustering techniques are suitable tools to reduce the number of
alarms reported by static analysis tools. Reduction in the number of alarms by sound clustering
depends on the percentage of alarms identified as dominant.

5.1.2 Unsound Clustering. This sub-category relates to clustering alarms using similarity in
syntactic or structural information, that is produced by static analysis tools or computed separately.
This information relates to the code, alarm, or both. Unlike sound clustering, there are no guarantees
on the relationship among alarms belonging to the same group. Due to this, skipping inspection of an
alarm in a group can result in a false negative.

The techniques implementing this approach use heuristics to group similar alarms together, and
propose to inspect those grouped alarms together. For example, Fry et al. [52] have used both
structural and syntactic information to partition alarms into groups of related/similar alarms. The
partitioning is based on the hypothesis that alarms on the same or similar execution paths may be
related and can be inspected together to reduce inspection time. On similar lines, Podelski et al. [142]
have proposed a semantics-based signature for an alarm and the signatures are used to group the
alarms.

Le and Soffa [97] have used cause relationships among the alarms—occurrence of one alarm
can cause another alarm to occur—to group the alarms. They first construct a correlation graph by
determining the error states of alarms and propagating the effects of the error states along the paths
(cause relationships). Then they use the correlation graph to reduce the number of alarms that need
to be inspected along a path. However, reducing the number of alarms this way may result in false
negatives, because at least one of the faults involved in correlation can be a false positive, and after
manual inspection of this false positive, skipping manual inspection of other correlated faults can
miss detecting a real fault.

Merits and Shortcomings. Unsound clustering of alarms, performed based on the alarms’ simil-
arility in syntactic or structural information, can help to reduce the inspection effort when they are
inspected group-wise. However, skipping inspection of some of the alarms in a cluster may result in
false negatives.

5.2 Ranking of Alarms
This category corresponds to prioritizing alarms such that the alarms that are more likely to be true
errors are ordered up in the list. This approach is of help when not all alarms can be inspected and
the inspection time should be spent in an effective way.

, Vol. 1, No. 1, Article . Publication date: October 2020.



Survey of Approaches for Postprocessing of Static Analysis Alarms 13

5.2.1 Statistical Analysis-based Ranking. The approaches in this sub-category are based on
statistical analysis to rank alarms. For example, Kremenek and Engler [91] have employed a simple
statistical model to rank alarms. It is based on the observation that, code containing many successful
checks (safe cases analyzed by the tool) and a small number of alarms, tends to contain a real error.
As another example, Jung et al. [76] have used a statistical method (Bayesian statistics) to compute
probability of an alarm being true, and the probabilities are then used to rank the alarms.

Merits and Shortcomings. The approaches in this sub-category are effective to rank alarms.
However, as a shortcoming of the ranking approaches, all the reported alarms need to be manually
inspected by the user.

5.2.2 History-aware Ranking. The approaches in this sub-category use history of alarm fixes as
a basis to rank the alarms. For example, Kim and Ernst [81, 82] have ranked alarms by analyzing the
software change history, where the categories of alarms that are quickly fixed by the programmers
are treated as being more important. On similar lines, Aman et al. [4] estimate lifetimes of alarms by
using survival analysis method, and assign higher priority to alarms which have shorter lifetimes: a
shorter-life alarm is considered to be more important since many programmers resolved it sooner.
Williams and Hollingsworth [175] have proposed a ranking scheme based on commonly fixed bugs
and information automatically mined from the source code repository.

Merits and Shortcomings. The approaches in this sub-category allow to identify alarms that are
more important to the user, and thus rank them with higher priority. However, implementing them
requires history of fixing of alarms and the importance given by the user to the alarms. Identifying
such fixes from code commit history can be difficult as commit can have a few other code changes
that are not related to alarm fixes. Therefore, identifying such alarm fixes history can be difficult.
Also, these approaches may not be applicable to initial versions of the code as fix history is not
available.

5.2.3 User Feedback-based Self-adaptive Ranking. In this sub-category, user feedback is
used to rank alarms. For example, Shen et al. [155] have first assigned a predefined defect likelihood
for each alarm pattern, and then ranked the alarms based on the defect likelihood. Later, the initial
ranking is self-adaptively optimized based on feedback from users. On similar lines, Kremenek et al.
[90] have used user-feedback to dynamically reorder ranked alarms after inspection of each alarm.
In their technique, Raghothaman et al. [145] first associate each alarm with a confidence value by
performing Bayesian inference on a probabilistic model derived from the analysis rules. Later in
subsequent iterations, user feedback is captured during inspection of the alarms with the highest
confidence, and the feedback is used to recompute the confidences of the remaining alarms. As
another example, Heckman [63] has utilized user feedback from analyzed alarms, by combining it
with alarm types and code locality, to rank the remaining alarms.

Merits and Shortcomings. The approaches in this sub-category allow to rank alarms based on user
feedback. Therefore, user involvement is a must for this postprocessing approach. Also, effectiveness
of these approaches mostly depends on how effectively the alarms are ranked initially (by assinging
predefined defect likelihood).

5.2.4 Multiple Tools Results-based Ranking. In this sub-category, results of multiple tools
employing different static analysis methods are merged and ranked. In these studies, the merging of
results enables results of different tools to validate each other, which in turn, greatly increases or
decreases confidence about false positives and false negatives [51, 88, 134, 180]. In this sub-category
we also include the studies that merge results of multiple static analysis tools to benefit from multiple
and diverse tools [111, 117, 146, 147], and rank the merged alarms using other techniques. We have
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included them in this category as all those techniques deal with postprocessing of alarms generated
by multiple static analysis tools.

Out of the eight primary studies in this sub-category, six studies are identified through the extended
literature search. This indicates that the topic of combining results of multiple static analysis tools
has recently (in the last three years) started attracting interest from the research community.

Merits and Shortcomings. The approaches in this sub-category allow results of different tools to
be validated and in turn rank alarms. However, they require analyzing the same code by multiple
tools, and this increases the code analysis time. Therefore, these approaches mostly are not applicable
when static analysis tools are part of an IDE: they are used to analyze code as it is being written.

5.2.5 Other Techniques. A few other techniques used to rank alarms include the following:
∙ Static computation of execution likelihood of the program points at which alarms are reported,

also has been used by Boogerd and Moonen [18] for ranking alarms.
∙ Liang et al. [107] have introduced a novel Expressive Defect Pattern Specification Notation

(EDPSN) to define a resource-leak defect pattern more precisely, and have used it to prioritize
resource leaks.

∙ Heo et al. [68] have proposed a technique to rank alarms generated on evolving code. They
compute a graph that concisely and precisely captures differences between the derivations of
alarms generated before and after the change. Later, they perform Bayesian inference, i.e.,
statistical inference in which Bayes’ theorem is used to update the probability for a hypothesis
as more evidence or information becomes available. The Bayesian inference is performed on
the graph, which enables to rank alarms by likelihood of relevance to the change.

5.3 Pruning of Alarms
This category of approaches corresponds to classifying alarms into two classes, actionable and
non-actionable. The classification of an alarm is based on the fact that alarms which are not acted
upon by the user are seen as false positives and pruned, i.e., not reported to the user. Therefore, these
approaches classify alarms depending on the likelihood of the user acting upon the alarms. As the
pruned alarms are not guaranteed to be false positives, are approach can result in false negatives.
This category is further organized based on the techniques employed to achieve pruning.

5.3.1 Machine Learning-based Pruning. Several studies, such as [2, 61, 65, 183, 185] have
employed machine learning to differentiate between actionable and non-actionable alarms. For
example, Hanam et al. [61] have achieved a binary classification by finding alarms with similar
patterns, where the patterns are identified based on the code surrounding the alarms. Machine learning
has been employed to account for semantic and syntactic differences during the identification of
patterns. Yüksel and Sözer [185] have evaluated 34 machine learning algorithms in their study using
10 different artifact characteristics. The plentitude of studies that use machine learning to prune
alarms [2, 61, 65, 67, 87, 98, 118, 141, 166, 183, 185, 191] suggests popularity of the approach
among researchers.

Merits and Shortcomings. Machine learning can help to identify the patterns of code in which
alarms are errors (or false positives). Thus, the ML-based alarms postprocessing approaches have
been found to be effective. However, training the needed ML models requires traning data having a
large number of samples and the appropriate code patterns present. Preparing such training data is a
challenge. Moreover, scalability of these ML models to very large code base is still a concern.

5.3.2 Computation of Delta Alarms. The approaches in this sub-category reduce alarms gener-
ated during analysis of evolving software by pruning alarms that repeat across versions. Techniques
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employing this approach apply various analyses to identify (1) alarms that are newly generated as
compared to alarms on the previous code version, and (2) repeated alarms which are impacted by the
code changes. Alarms reported after applying these techniques are called delta alarms.

The techniques proposed to compute delta alarms [30, 93, 109, 158, 168] vary in the methods they
use for computation. For example, Spacco et al. [158] have identified newly generated alarms as
compared to the previous version, by matching alarms through two approaches: pairing and alarm
signatures. Chimdyalwar and Kumar [30] have proposed an approach to prune repeated alarms
generated on evolving software systems. The pruning is achieved by performing an impact analysis—
analyzing the impact of changes made between the two successive versions on the alarms—and
suppressing alarms that are not impacted by the changes.

Logozzo et al. [109] have introduced a new static analysis technique, called verification modulo
mersions, to reduce the number of alarms while providing sound semantic guarantees. The proposed
technique first extracts semantic environment conditions—sufficient or necessary conditions—from
a base program (previous version) and alarms generated on it. Then, it uses the extracted conditions
to instrument a new version. Later, it verifies the instrumented code, which reduces alarms generated
on the new version.

Merits and Shortcomings. The approaches in this sub-category help by reporting only the alarms
that are impacted by code changes between two subsequent versions. Therefore, these approaches are
suitable to analyze the code after each code commit. However, these approaches are not applicable
when the code to be analyzed is first/initial version or the static analysis tools are part of an IDE.

5.3.3 Other Techniques. Following are a few other techniques proposed to prune alarms.
∙ Statistical models are used by Ruthruff et al. [152] to identify and prune non-actionable alarms.
∙ Das et al. [38] have constrained the analysis verifier to report alarms only when no acceptable

environment specification (specified through a vocabulary) exists to prove the assertion.
∙ Chen et al. [26] have pruned alarms corresponding to data-races through thread specialization:

distinguishing the threads statically by assigning IDs to threads and fixing their number.

5.4 Automated False Positives Elimination
In this approach, more precise analysis techniques like model checking and symbolic execution are
used to identify and eliminate false positives from alarms. An assertion is generated corresponding to
each alarm and it is verified using tools based on model checking [29, 37, 143, 167, 184] or symbolic
execution [7, 49, 57, 59, 83, 101]. The approaches in this category are more precise as compared
to the other approaches, as they precisely eliminate false positives from alarms without any user
intervention. However, the postprocessing of alarms in this approach generally faces the issues of
non-scalability and poor performance due to the state space problem associated with the more precise
analysis techniques.

We organize this category into sub-categories based on the techniques used in AFPE: model
checking, symbolic execution, and deductive verification. As the approaches in these sub-categories
share merits and shortcomings, we discuss them jointly in Section 5.4.4.

5.4.1 Model Checking-based AFPE. In this approach, model checkers such as CBMC [23] are
used to eliminate false positives. We partition the approaches in this sub-category into two parts
depending on whether they address the non-scalability or poor-efficiency issues related to the AFPE
process.

Note that other combinations of static analysis and model checking have been proposed in
the literature [20, 48, 77], where these two techniques iteratively exchange information. We treat
this approach differently from false positives elimination, because the aim of this combination
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is to improve precision of static analysis and improving the analysis precision is out of scope of
postprocessing of alarms (Section 3.1.1).

Achieving Scalability. Post et al. [143] have proposed an incremental approach, called context
expansion, to use a model checker in a more scalable way. In this approach, verification of assertion(s)
starts from the function containing the assertions, and then the verification context is gradually
incremented to the direct and indirect callers of the function. That is, the verification is started with
the minimal context and the context is expanded later on a need basis. This approach also has been
observed to be beneficial by other studies [37, 126].

Program slicing [163] also has been another commonly used technique to reduce the state space,
and in turn, achieve scalability [29, 37]. On similar lines, a notion of abstract programs has been
proposed by Valdiviezo et al. [167] to achieve scalability of model checkers.

Improving Efficiency. The model checking-based AFPE has been found to have poor efficiency
due to (1) a large number of alarms that need to be processed, (2) multiple model checking calls for
a single assertion due to the context expansion [143], and (3) considerable amount of time (on an
average 3 to 5 minutes5) that model checking usually takes. To address this issue, i.e., to improve
efficiency of AFPE, different techniques have been proposed. For example, Muske et al. [125, 126]
have proposed static analysis-based techniques to predict outcome of a given model checking call.
The predictions are used to reduce the number of model checking calls and thus, improve AFPE
efficiency. Darke et al. [28] partition the generated assertions into disjoint groups based on the data
and control flow characteristics, and verify assertions in one group at a time. Wang et al. [173] have
used program slicing to improve efficiency of model checking-based AFPE.

5.4.2 Symbolic Execution-based AFPE. In this sub-category, symbolic execution is used to
eliminate false positives [83, 101, 186]. In symbolic execution, instead of supplying the concrete
inputs to a program (e.g. numbers), symbols representing arbitrary values are supplied, and the values
of program variables are represented with symbolic expressions [84]. To address the issue of too
many execution paths during symbolic execution, several studies use a variant of symbolic execution,
called dynamic symbolic execution (or concolic execution) [7, 49, 57, 59, 139]. This variant involves
running a symbolic execution along with a concrete one.

5.4.3 SMT Solvers/Deductive Verification-based AFPE. In this sub-category, SMT solvers
[40, 120] or deductive verification (also called theorem proving) [50] are used to eliminate false
positives [53, 131, 132, 177]. For example, Nguyen et al. [131, 132] use deductive verification to
eliminate false positives. In the studies that use SMT solvers for AFPE [53, 177], for each alarm,
constraints are generated that represent the conditions under which the alarm is an error. Then, the
constraints are checked using a SMT solver to determine their satisfiability. When the constraints are
found to be unsatisfiable, the alarm is identified as a false positive and eliminated.

5.4.4 Merits and Shortcomings of AFPE Approaches. The AFPE approaches, discussed in the
three sub-categories—model checking-based AFPE, symobolic execution-based AFPE, and SMT
Solvers-based AFPE—are automatic and more precise as compared to the other approaches to reduce
the number of alarms. However, these approaches usually do not scale to very large systems and
have poor efficiency. Other techniques, like program slicing, used for AFPE scalability increase the
overall time taken. These approaches are not suitable when the static analysis tools are a part of an
IDE, which analyze the code being written/updated on the fly and report alarms instantaneously.

5This time taken includes the time taken to generate program slices before the assertion is verified by a model checker.
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5.5 Combination of Static and Dynamic Analyses
As a general theme of approaches in this category, static analysis alarms are checked using dynamic
analysis if they are true errors and the test cases witnessing failures are reported as error scenarios to
the user. This combination requires executing the programs, which is usually absent in static analysis.
A few of these studies adopting this combination approach are described below.

Csallner et al. [34] have combined static analysis and concrete test-case generation (Check-n-
Crash tool), where a constraint solver is used to derive specific instances of abstract error conditions
identified by a static checker (ESC/Java). Later, actual test cases exhibiting error scenarios uncovered
by true alarms are presented to the users. As an advancement to this approach, Csallner et al. [35]
have used a three step approach, consisting of dynamic inference, static analysis, and dynamic
verification (DSD-Crasher tool). The processing in the approach includes (a) inferring likely program
invariants using dynamic analysis, (b) using the invariants as assumptions during the static analysis
step, and (c) generating test cases that validate true alarms.

Program slicing also has been used for the efficiency of techniques employing this approach:
confirming/rejecting more number of alarms in a given time [25]. The efficiency is achieved by
reporting more precise error information on simpler programs having shorter program paths and
showing values for useful variables only. This reporting reduces the alarms analysis and correction
time by the tool users.

Li et al. [103] have proposed a concept of residual investigation—a dynamic analysis serving as
the runtime agent of a static analysis—for checking if an alarm is likely to be true. The novelty of
the proposed approach lies in predicting errors in executions, which are not actually observed. This
predictive nature of their approach is of significant advantage when generation of test cases is hard
for very large and complex programs [103].

Merits and Shortcomings. As compared to the other approaches, the approaches in this category
present actual error scenarios for true alarms. However, as opposed to static analysis, these approaches
require support for executing the programs (e.g., test cases, and run-time environment).

5.6 Simplification of Manual Inspection
The approaches in this category aim to simplify manual inspection of alarms by supporting users
during the inspection process. Based on the methods used for the simplification, we organize the
approaches into the seven sub-categories described below.

5.6.1 Semi-automatic Alarm Inspection. This sub-category relates to supporting semi-automatic
inspection of alarms. For example, to help the user in inspection of alarms by making the inspection
more automatic, Rival [148] has enhanced semantic slicing (i.e., computation of precise abstract
invariants for a set of erroneous traces) with information about abstract dependences. An abstract
dependence is a dependence that can be observed by looking at abstractions of the values of the
variables only. In another study, Rival [149] has proposed a framework for semi-automatic inspection
of alarms. In this framework, an initial static analysis is refined into an approximation of a subset of
traces that actually lead to an error. Later, a combination of forward and backward analyses is used
to prove whether this set is empty. If this set is proved to be empty, the alarm is concluded as a false
positive.

As another example, Zhu et al. [193] have proposed a novel approach that combines demand-driven
analysis and inter-procedural data flow analysis. Using the combined analyses inter-procedural paths
are generated to help the user inspect alarms automatically.

Merits and Shortcomings. The approaches in this sub-category provide support for semi-automatic
inspection of alarms and simplify the inspection process. However, implementing these approaches
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requires implementing data flow analyses, and the degree of simplification achieved depends on the
precision and scalability of those analyses.

5.6.2 Feedback-based Manual Inspection. A few studies have been found to capture user-
feedback to simplify manual inspection of alarms. For example, Mangal et al. [114] have formulated
user-guided program analysis to shift decisions about the kind and degree of approximations to apply
in an analysis from the analysis writer to the analysis user. In the proposed analysis approach, user
feedback about which analysis results are liked or disliked is captured and the analysis is re-run
[114]. This approach uses soft rules to capture the user preferences and allows users to control both
the precision and scalability of the analysis.

Sadowski et al. [153] have proposed a program analysis platform to build a data-driven ecosystem
around static analysis. The platform is based on a feedback loop between the users of static analysis
tool(s) and writers of those tool(s). The feedback loop is towards simplifying inspection of alarms
reported by the tools.

Merits and Shortcomings. These approaches allow users to control the reporting of alarms based
on the feedback and report only the alarms that are identified as important by the user. However, user
involvement is a must during postprocessing of alarms using these approaches.

5.6.3 Checklists-based Manual Inspection. In these approaches, checklists are used to sys-
tematically guide users during manual inspection of alarms. Ayewah et al. [8] have proposed use
of checklists to enable more detailed review of static analysis alarms. On similar lines, Phang et al.
[140] have used triaging checklists to provide systematic guidance to users during manual inspection
of alarms. The users follow the instructions on the checklist to answer each question and determine
conclusions about the alarms. They also propose that the checklists are designed by tool developers
so that, (a) known sources of imprecision in their tools are pointed out, and (b) users are instructed
on how to look for those sources of imprecision. Additionally, the checklists are customized to
individual alarms so that a minimum number of questions are answered during inspection of an
alarm.

Merits and Shortcomings. These approaches provide systematic guidance to users during manual
inspection of alarms, and help locate the causes for generation of the alarms and the remediation
required. Applying these approaches to all types of alarms, including the ones that are obvious to
inspect, may slow down the inspection process.

5.6.4 Alarms-relevant Queries. In the approaches in this sub-category, alarm-specific queries
are presented to the user for achieving effective and efficient manual inspection of alarms. For
example, Dillig et al. [42] have proposed an approach to semi-automatically classify alarms into
errors and false positives by presenting alarm-specific queries to the users. Abductive inference is
used to compute small and relevant queries that capture exactly the information needed from user to
discharge or validate an alarm. Two types of queries, proof obligation and failure witness queries, are
framed, and they are ranked using a cost function so that easy-to-answer queries are presented first to
the users.

Zhang et al. [190] have combined a sound but imprecise analysis with precise but unsound
heuristics, through user interaction. This combined approach poses questions to the user about the
root causes that are targeted by the heuristic. If the user confirms them, only then is the heuristic
applied to eliminate the false alarms. Muske and Khedker [127] have proposed cause points analysis.
In this analysis, root causes of alarms are identified, and queries generated specific to the causes are
presented to the user for reducing the manual inspection effort.
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Merits and Shortcomings. The approaches in sub-category help significantly reduce the inspection
effort, because the alarm-specific queries avoid user’s redundant effort in locating the cause points
and constraints to be checked on them. In these approaches, user is mostly required to answer the
queries as yes or no. The techniques used to automatically generate the queries may not scale to very
large systems.

5.6.5 Automated Repair. Recent studies have also been aiming at automated repair of alarms.
For example, Bavishi et al. [15] have proposed a technique for automatically generating patches for
static analysis violations by learning from examples. Aiming at improving usability of static analysis
tools, Marcilio et al. [115] automatically provide fix suggestions, that is modifications to the source
code that make it compliant with the rules checked by the tools. As another example of this approach,
Xue et al. [179] propose a history-driven approach to automatically fix code quality issues detected
by static analysis tools, by utilizing the fixing knowledge mined from the change history in the code
repositories.

Merits and Shortcomings. These approaches reduce user’s effot required to fix alarms when they
are identified as errors. The effort reduction is because, instead of identifying the fixes for alarms, the
user is required only to accept or reject the automatically generated fixes. However, these approaches
do not help in identifying alarms that are false positives or can be safely eliminated.

5.6.6 Usage of Novel User-interfaces/Visualization Tools. This sub-category deals with usage
of code navigation/visualization tools that simplify the code traversals performed by the user while
inspecting alarms manually [5, 33, 70]. For example, Phang et al. [79] have presented a novel user
interface toolkit, called path projection, to help users to visualize, navigate, and understand program
paths during the inspection. Parnin et al. [138] have used a catalogue of lightweight visualizations
to help users during inspection of alarms. In their study, a simple light-weight visualization is
designed for each alarm. Buckers et al. [21] have proposed UAV (Unified ASAT Visualizer) that
provides an intuitive visualization, enabling developers, researchers, and tool creators to compare the
complementary strengths and overlaps of different static analysis tools applicable for Java programs.
The UAV’s enriched treemap and source code views provide its users with a seamless exploration of
the alarm distribution from a high-level overview down to the source code.

Merits and Shortcomings. The approaches in this sub-category help user when the code that the
user should inspect manually, is large and complex. However, user involvment is a must.

5.6.7 Other Techniques. Following are a few other techniques proposed to simplify inspection
of alarms.

∙ Arai et al. [6] have explored a gamification approach and proposed a novel gamified tool for
motivating developers to inspect alarms. The tool proposed calculates scores based on the
alarms inspected by each developer or team. On similar lines, Nguyen Quang Do et al. [133]
have proposed to leverage the knowledge of game designers, and to integrate gaming elements
into analysis tools to improve their user experience.

∙ The overflow of information and decisions to be made during manual inspection of alarms can
be tiring and cause stress symptoms to the users. To fight the stress, Ostberg and Wagner [136]
have proposed to use salutogenesis model that has been used in health care.

∙ Aiming to evaluate and improve quality of reports of static analysis tools, Menshchikov and
Lepikhin [119] generalize the tool output messages and explore ways to improve reliability
of comparison results. To this end, they introduce informational value as a measure of report
quality with respect to 5Ws (What, When, Where, Who, Why) and 1H (How To Fix) questions.
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6 DISCUSSION
In this section, we discuss merits and shortcomings of the approaches identified, present guidelines
for selection of the approaches, and provide directions for future work. We then discuss the threats to
validity.

6.1 Summary of Merits and Shortcomings of the Approaches
In Table 3 we summarize merits and shortcomings of the identified approaches for postprocessing of
alarms. Clustering of alarms (Section 5.1) helps to reduce effort required to manually inspect alarms.
Unlike sound clustering, unsound clustering may result in false negatives. When alarms are ranked
(Section 5.2), the alarms that are more likely to be errors than other alarms get inspected early during
manual inspection. However, all the ranked alarms need to be inspected, otherwise the inspection
can result in false negatives. Pruning of alarms, i.e., classification of alarms into actionable and
non-actionable alarms and suppressing the non-actionable alarms (Section 5.3), reduces the number
of alarms shown to the user, however the suppression of alarms can result in false negatives. Among
the approaches that prune alarms based on relative correctness (Section 5.3.2), computation of delta
alarms based on impact analysis [30] and verification modulo versions [109] can be used to prune
alarms without resulting in false negatives.

Approaches that eliminate false positives automatically (Section 5.4) are more precise as compared
to the other approaches aiming at reducing the number of alarms. However non-scalability and poor
efficiency are two major concerns associated with those approaches. Approaches that combine static
analysis with dynamic analysis (Section 5.5) help to present error scenarios for true alarms. However,
these approaches require the code to be executable and ensuring that test cases will execute the
statements associated with alarms. Moreover, it is very hard to identify an alarm as a false positive
using these approaches. The approaches that simplify manual inspection of alarms (Section 5.6)
can provide significant aid to users during manual inspection, however user involvement is required
during postprocessing of alarms.

Table 3 shows that the categories of approaches are complementary: shortcomings of one approach
are merits of some other approaches and they can complement each other. Thus, their combinations
are possible to obtain better postprocessing results (Section 6.3).

6.2 Guidelines for Selection of Approaches
Postprocessing of alarms differs greatly depending on whether the purpose of the analysis is to
find bugs (bug finding) or to prove absence of bugs of certain types (code proving). For example,
approaches to postprocess alarms generated by code proving tools on safety-critical applications
would be different from approaches applicable for postprocessing alarms generated by bug finding
tools on applications that are not safety-critical. Approaches applicable for postprocessing of alarms
generated by code proving tools can be applied to alarms generated by bug finding tools, but the
converse is not true. If the aim of the analysis is code proving, alarms can be postprocessed using
sound clustering (Section 5.1.1), ranking (Section 5.2), AFPE (Section 5.4), and simplification of
manual inspection (Section 5.6), because postprocessing alarms using approaches in these categories
does not result in false negatives6. Moreover, if an application being analyzed is evolving and code
proving is the analysis purpose, approaches that prune alarms based on impact analysis [30] and
verification modulo versions [109] also can be used. If the analysis purpose is bug finding, alarms
can be postprocessed using approaches from all categories and sub-categories.

We observe that, for effective postprocessing of alarms, the postprocessing needs to take into
account the type of applications being analyzed. For example, techniques which are suitable to process

6No alarm is removed/pruned unless it is guaranteed be false either automatically or by the tool-user.

, Vol. 1, No. 1, Article . Publication date: October 2020.



Survey of Approaches for Postprocessing of Static Analysis Alarms 21

No. Category Merits Shortcomings

A. Clustering In sound clustering, mostly dominant
alarms need to be inspected while skip-
ping inspection of the other alarms,
whereas in unsound clustering, the group-
wise inspection of alarms reduces inspec-
tion effort.

Unsound clustering may result in false
negatives. Reduction in the number of
alarms (by sound clustering) depends
on the percentage of alarms identified
as dominant.

B. Ranking During manual inspection of alarms, the
alarms that are more likely to be errors get
inspected early, and this approach does
not result in false negatives.

It requires inspecting all the reported
alarms.

C. Pruning Only the actionable alarms are to be in-
spected, while the other alarms being
identified as non-actionable are not repor-
ted to the user.

This pruning approach may result in
false negatives as a pruned alarm can-
not be guaranteed to be a false positive
(except the reliable techniques that com-
pute delta alarms [30, 109]).

D. AFPE It is automatic and more precise as com-
pared to the other approaches to reduce
the number of alarms.

Techniques employing this approach
usually face issues related to non-
scalability and poor efficiency.

E. Combination
of static and
dynamic analyses

It presents error scenarios for true alarms. It requires support for executing the pro-
grams (e.g., test cases, and run-time en-
vironment) which is usually absent dur-
ing static analysis process.

F. Simplification of
manual inspection

It provides significant aid to the users dur-
ing manual inspection.

User involvement is a must.

Table 3. Merits and shortcomings of the categories of approaches for postprocessing of alarms.

alarms generated on evolving code are not suitable to process alarms generated on partitioned-code
or family of products, and vice versa. When an application to be analyzed belongs to multiple types,
it would be more beneficial if more than one approach is applied, because combination of different
approaches will help to reduce more alarms or simplify inspection of alarms further. For example,
analyzing partitioned-code of an evolving application would require combining techniques that take
into account the nature of multiple versions (pruning based on relative correctness [30, 109]) and
multiple partitions (clustering based on common points of interest [121]).

The diversity of applications in terms of programming languages and coding practices induce
different requirements when it comes to postprocessing of alarms and make the postprocessing
much more challenging. For example, precise analysis of C programs suffers from imprecision due
to pointers and programmatic means of accessing hardware (memory) registers. Precise analysis
of C++/Java programs requires considering such features as aliases, virtual functions, (multiple)
inheritance, reflection and templates. Postprocessing of alarms in general requires re-analysis of the
program, and hence, all those characteristics of the language need to be considered in the selection
of postprocessing approaches. These characteristics can affect the postprocessing results.

From the evaluations of the postprocessing approaches, e.g., clustering approaches [99, 100, 123,
129, 130, 187], we find that the postprocessing results on applications vary considerably even if the
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applications are written in the same programming language and belong to the same domain. For
example, the number of alarms that are similar to and get identified by sound clustering techniques
as followers of other alarms is found to vary considerably among the C applications. This indicates
that some applications have more follower alarms, so that the clustering approaches achieve higher
reduction as compared to the other applications. Thus, instead of postprocessing alarms using a
single chosen approach for all applications, more appropriate approach(es) should be selected based
on occurrences of patterns of alarms present in the application being analyzed.

6.3 Directions of Future Work
As discussed in Section 6.1, the approaches identified are orthogonal, and hence they can be combined
to obtain better postprocessing results. We observe that possible combinations of the approaches are
not widely studied or evaluated. A few studies [90, 125] consider the combinations of the approaches
and find the combinations to be promising. Thus, exploring the possible combinations of these various
approaches can be a future research direction to postprocess alarms more effectively. For example,
only the dominant alarms identified through sound clustering (Section 5.1.1) can be ranked (Section
5.2) or pruned (Section 5.3). In another example, pruning of alarms followed by AFPE (Section
5.4) can help each other: AFPE eliminates false positives from the actionable alarms resulting after
pruning, and processing only the actionable alarms (a subset of alarms generated) reduces the number
of alarms to be processed by the AFPE techniques.

Moreover, combinations of the approaches can be implemented with two strategies: sequencing
the approaches one after the other (pipelining), and running them in parallel. The positioning of
approaches in the combinations with pipelining can vary depending on the requirements in practice.
For example, choice for the first approach to be implemented, between pruning and AFPE when they
are to be combined, can be made based on total time available for processing the alarms. The other
strategy, parallelization of the approaches can help in enhancing confidence about false positives
and errors. For example, the results obtained in isolation from approaches like ranking, pruning, and
combination of static and dynamic analyses, can be merged together to increase confidence about
alarms that are more likely to be false positives or errors. More research needs to be conducted to
identify effective sequential and parallel combinations of approaches.

Since an approach to postprocess alarms can be implemented using several orthogonal techniques,
e.g., the techniques to implement pruning of alarms are orthogonal, multiple techniques can be
implemented and run in parallel to process alarms as per the chosen approach. We believe imple-
menting such combinations of approaches and techniques in practice however will increase the
analysis time multi-fold. Hence, reducing the analysis time is equally important, and performance
of such combinations also needs to be studied while studying advantages and disadvantages of the
combinations. One approach to address this problem of the increased analysis time can be to quickly
predict the improvement that a time-consuming technique can provide before the technique is applied.
To this end, further research needs to be conducted to identify criteria for those techniques, that
will help to predict postprocessing results on a given application. Based on time availability and
prediction results of the applicable techniques, a subset of techniques can be selected from a set of
applicable techniques.

Considering the advancement in machine-learning based techniques and their application to
process alarms (Section 5.3.1), we believe that machine learning can be used to select a subset
of techniques from a set of applicable techniques, which are more suitable on a given application
compared to the other techniques. To this end, applicability of machine learning needs to be studied
to learn the types (structures) of applications on which each of the techniques provides better results,
and then to select the most suitable technique(s) for a given new application.
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We observe that complexity of the problem of alarms’ postprocessing varies as per factors like
diversity of goals static analysis can be applied for, applications being analyzed, and programming
languages. For example, suppression of an alarm that is an error, is not allowed when the goal of static
analysis is code proving whereas this restriction generally is not applicable when the purpose is bug
finding. Therefore, these goals impact how the alarms are to be processed. Moreover, a programming
language also impacts complexity of postprocessing of alarms, e.g., as JavaScript is an untyped
language (unlike C, C++, or Java), postprocessing of alarms generated on JavaScript applications will
be more complex as compared to postprocessing of alarms on C applications. Therefore, to improve
postprocessing of alarms, research needs to be continued along multiple lines to support different
factors like the analysis purposes, different programming paradigms, and types of applications.

6.4 Threats to Validity
6.4.1 Construct Validity. Our literature study has focused on understanding what techniques
have been proposed in scientific literature for postprocessing of alarms. Threats to construct validity
concern how accurately we operationalize the notion of scientific papers discussing postprocessing
of alarms, i.e. how we collect research papers that propose approaches for postprocessing of alarms.

In a keywords-based literature search, the selection of keywords (i.e., search strings used) affects
the papers identified through the search [66, 86]. The keywords selected in our study are based on the
author’s experience in reading and writing research papers on the topic of postprocessing of alarms
[123–127]. This list of search strings used may not be complete, and hence a relevant paper might
be missed. Moreover, since reviewing all the results for each search string may not be practically
possible, for each search string we reviewed only the first 150 search results. As a result, we might
have missed relevant papers which appeared later in the results list. To mitigate these two issues,
we performed snowballing by creating the start set from the relevant papers collected through the
keywords-based search. The snowballing helped to identify relevant papers which were missed by
the search.

Ideally, a literature search is to be performed by multiple researchers who have expertise in
the topic under study: postprocessing of alarms. Getting such multiple experts is difficult because
such experts are found to be rare, and the experts require to spend considerable amount of time in
the search and reviewing the relevant papers. Therefore, the complete search, extraction of data,
and categorization of approaches is performed solely by the author without involving additional
experts. This might lead to subjective bias in the identification of relevant papers and data extraction.
Moreover, the selected inclusion and exclusion criteria may introduce attrition bias [66]. To reduce
subjectivity threats inherent in application of inclusion and exclusion criteria in literature studies we
have performed an additional quality assurance step. As shown in 2, 46/12600 of the papers found by
the keywords-based search have been deemed relevant, i.e., less than 1%. Hence, the second author
has manually labeled (relevant/not relevant) 16 papers randomly selected out of 12600 corresponding
to the commonly used confidence level (95%) and confidence interval (5%). In all cases the results
of the labeling of the second author agreed with the labeling of the first author.

6.4.2 Internal Validity. Threats to internal validity concern the extent to which the observations are
grounded in the data collected from the papers identified. Since the data extraction and categorization
of the approaches are performed by the author without involving additional experts, the categorization
of the approaches (Figure 1) and the observations made from them (Table 3 and Section 6) might
have been affected by the subjectivity bias. Comparing findings from our study with the similar
studies is one way to validate the findings. However, no such studies exist. The existing studies about
static analysis tools and alarms [39, 45, 66] have different goals and are not immediately comparable
to our study.
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6.4.3 External Validity. Threats to external validity concern the extent to which results of the
study generalize beyond the sample studied to the entire population. In our study, since the sample
studied (i.e., 130 papers we have studied) is the same as the population (i.e., all papers ever published
about postprocessing of alarms), threats to external validity are not applicable.

7 CONCLUSION AND FUTURE WORK
In this article, we have studied approaches proposed in the literature to postprocess alarms generated
by static analysis tools. We conducted systematic literature search, by combining keywords-based
database search and snowballing, to collect research papers that propose techniques for postprocessing
of alarms. Through the literature search, we identified 130 papers relevant to the topic. We reviewed
the papers, and extracted and categorized the approaches proposed by them. Our categorization shows
that, six main categories of the approaches, namely clustering, ranking, pruning, AFPE, combination
of static and dynamic analyses, and simplification of manual inspection, have been proposed for
postprocessing of alarms.

During the categorization, wherever appropriate, we have further categorized the main categories
into multiple sub-categories depending on the techniques used to implement those approaches. We
have summarized the merits and shortcomings of these categories (Section 6) to assist users and
designers/developers of static analysis tools to make informed choices. Several of the identified
categories—sound clustering, ranking, AFPE, simplification of manual inspection—can help static
analysis tools that are used for code proving.

The categorized postprocessing approaches, being complementary, provide an opportunity to com-
bine them. We observe that, the identified (sub)-categories of approaches can be combined together
in several ways, and feasibility of the different combinations, their advantages and disadvantages,
however, need to be studied. Moreover, more research needs to be conducted to quickly predict
results of the applicable postprocessing approaches on a given application, so that alarms on that
application can be processed by the most suitable approaches. On similar lines, research needs to be
conducted for selecting technique(s) that are more suitable to implement an approach chosen for a
given application.
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APPENDIX

Table 4. Summary of data extracted from the relevant papers collected through the initial and extended
literature searches. Column Categories presents the (sub)-category of the approach identified for the
papers listed in Relevant paper (Other sub-categories) column. In case a paper proposes multiple
alarms postprocessing approaches belonging to two or more sub-categories, the sub-categories other
than the main sub-category identified for the paper are presented in column Relevant paper (Other
sub-categories). Column Srch presents the literature search type that identified the relevant paper:
𝐼𝐾 and 𝐼𝑆 respectively denote the keywords-based search and snowballing of the initial literature
search, and 𝐸𝐾 and 𝐸𝑆 respectively to denote the keywords-based search and snowballing of the
extended literature search. The publication year of the paper is given in column Year. Column Tools
used in evaluation presents static analysis tools used to generate alarms required in evaluation of the
proposed approaches. Column Lang. presents programming languages supported by the tools listed
in column Tools used in evaluation, i.e., the programming languages of programs that are analyzed
to generate alarms used in the evaluations of the approaches. Columns Techniques and Artifacts
used respectively present techniques and artifacts used to implement the proposed approaches. In
column Tools used in evaluation, a footnote/biblographic reference is added for a tool only if the tool is
referenced for the first time in the table. All the urls in the footnote have been last accessed on August
27, 2021.

Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

A. Clustering of alarms

Sound

1 Jiao et al. [71] 𝐸𝐾 2017 C DTSC [71] feature functions defect model

2 Lee et al. [99] 𝐸𝐾 2017 C SPARROW7 abstract interpretation -

3 Lee et al. [100] 𝐼𝐾 2012 C Airac8 abstract interpretation,

trace partitioning
-

4 Muske et al. [123] 𝐼𝐾 2013 C TECA9 data flow analysis -

5 Muske et al. [129] 𝐸𝐾 2018 C TCS ECA10 data flow analysis -

6 Muske et al. [130] 𝐸𝐾 2019 C TCS ECA data flow analysis -

7 Zhang et al. [187] 𝐼𝐾 2013 C DTSGCC [187]
semantic slicing,

error state slicing
-

Unsound

8 Fry et al. [52] 𝐼𝐾 2013
C,

Java

Coverity11,

FindBugs12
graph theory

syntactic and

structural info

9 Le and Soffa [97] 𝐼𝐾 2010 C Phoenix13 fault correlation graphs

(graph theory)
modeled error states

10 Podelski et al. [142] 𝐼𝐾 2016 Java Bucketeer [142] Craig interpolation
semantics-based

signatures

Continued on next page

7https://github.com/ropas/sparrow
8http://ropas.snu.ac.kr/2005/airac5/
9https://www.tcs.com/tcs-embedded-code-analyzer
10https://www.tcs.com/tcs-embedded-code-analyzer
11https://scan.coverity.com/
12http://findbugs.sourceforge.net/
13https://archive.org/details/phoenixsdkjune2008rc1
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Table 4 – continued from previous page

Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

11 Sherriff et al. [156] 𝐼𝐾 2007
C,

C++
Matlab14 singular value

decomposition
alarm signatures

12 Zhang et al. [188] 𝐼𝐾 2013 C DTSGCC data mining execution traces

B. Ranking of alarms

Stati-

stical

analysis

13 Jung et al. [76] 𝐼𝐾 2005 C Airac [76]
statistical analysis

(Bayesian networks)

syntactic alarm

contexts

14
Kremenek and

Engler [91]
𝐼𝑆 2003 C MC [46]

statistical analysis

(hypothesis testing)
number of alarms

History-

aware

15 Aman et al. [4] 𝐸𝑆 2020 Java PMD15 survival analysis history of alarms

16
Burhandenny

et al. [22]
𝐸𝑆 2017 Java PMD

authorship of

source files
history of alarms

17 Kim and Ernst [81] 𝐼𝐾 2007 Java
FindBugs,

PMD, Jlint16
statistical analysis

source code

repository metrics

18 Kim and Ernst [82] 𝐼𝐾 2007 Java
FindBugs,

PMD, Jlint
statistical analysis

source code

repository metrics

19

Liu et al. [108]

(Clustering - Unsound

Simplification of

manual inspection -

Automated repair)

𝐸𝐾 2018 Java FindBugs CNNs alarm fix patterns

20
Williams and

Hollingsworth [175]
𝐼𝑆 2005 Java FindBugs repository mining

bug repository

metrics,

alarm fix history

Feed-

back

-based

21 Heckman [63] 𝐼𝐾 2007 Java FindBugs statistical analysis

alarm types,

code locality,

alarm fix hitory

22

Kremenek et al.

[90]

(Clustering - Unsound)

𝐼𝑆 2004 C MC machine learning
code locality,

user-feedback

23
Raghothaman

et al. [145]
𝐸𝐾 2018 Java Bingo [145] Bayesian inference probabilistic model

24 Shen et al. [155] 𝐼𝐾 2011 Java FindBugs - alarm patterns

25
Wei et al. [174]

(Clustering - Unsound)
𝐸𝐾 2017 Java Android Lint17 NLP techniques user reviews

Continued on next page

14https://www.mathworks.com/products/matlab.html
15https://pmd.github.io/
16http://artho.com/jlint/.
17https://developer.android.com/studio/write/lint.html
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Table 4 – continued from previous page

Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

Multiple

tools

26 Flynn et al. [51] 𝐸𝐾 2018

C, C++,

Java,

Perl

SCALe18 classification models
code base metrics,

alarms fix history

27

Kong et al. [88]

(Ranking -

feedback-based)

𝐼𝑆 2007 C

RATS19,

ITS4 [169],

FLAW-

FINDER20

data fusion alarm metrics

28 Lu et al. [111] 𝐸𝐾 2018 C/C++

Cppcheck21,

CBMC22,

Frama-C23,

Clang Static

Analyzer24

machine learning
defect types,

code structures

29 Meng et al. [117] 𝐼𝑆 2008 Java
FindBugs,

PMD, Jlint
policy prioritization defect patterns

30 Nunes et al. [134] 𝐸𝐾 2019 PHP

Pixy25, WAP26,

RIPS27,

phpSAFE28,

WeVerca29

1-out-of-N strategy
(Non-) Vulnerable

LOCs

31 Ribeiro et al. [146] 𝐸𝐾 2018 C, C++

Clang static

analyzer,

Cppcheck,

Frama-C

ensemble learning labeled alarms

32 Ribeiro et al.[147] 𝐸𝑆 2019 C, C++

Cppcheck,

Frama-C,

Clang Static

Analyzer

ensemble learning labeled alarms

33
Xypolytos et al.

[180]
𝐸𝐾 2017 C - - test suites

Others
34

Blackshear and

Lahiri [17]
𝐼𝐾 2013 C ACSPEC [17] semantic reasoning

predicates and

specifications

Continued on next page

18https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=473847
19https://security.web.cern.ch/recommendations/en/codetools/rats.shtml
20https://dwheeler.com/flawfinder/
21http://cppcheck.sourceforge.net/
22https://www.cprover.org/cbmc/
23https://frama-c.com/
24https://clang-analyzer.llvm.org/
25https://github.com/oliverklee/pixy
26https://analysis-tools.dev/tool/wap
27http://rips-scanner.sourceforge.net/
28https://github.com/JoseCarlosFonseca/phpSAFE
29https://d3s.mff.cuni.cz/software/weverca/
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Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

35
Boogerd and

Moonen [18]
𝐼𝐾 2006 C Codesurfer30 graph theory code metrics

36

Nguyen Quang Do

et al. [43]

(Simplification of

manual inspection -

Feedback-based)

𝐸𝐾 2017 Java CHEETAH31 layered analysis -

37 Heo et al. [68] 𝐸𝑆 2019 C SPARROW
differential

Bayesian inference

differential derivation

graph, user feedback

38 Liang et al. [107] 𝐼𝐾 2012 Java -

expressive defect

pattern specification

notation (EDPSN)

defect patterns

C. Pruning of alarms

ML

39
Alikhashashneh

et al. [2]
𝐸𝐾 2018 C++ -

SVM, KNN, RIPPER

Random forests
source code metrics

40 Hanam et al. [61] 𝐼𝐾 2014 Java FindBugs machine learning alarm patterns

41
Heckman and

Williams [65]
𝐼𝑆 2009 Java - machine learning

alarm

characteristics

42 Heo et al. [67] 𝐸𝐾 2017 C - One-class SVM codebase with bugs

43 Koc et al. [87] 𝐸𝐾 2017 Java FindSecBugs32 Bayes and LSTM

models
code patterns

44 Lee et al. [98] 𝐸𝐾 2019 C,C++ - CNNs lexical patterns

45 Meng et al. [118] 𝐸𝑆 2017 C - machine learning code property graph

46 Pistoia et al. [141] 𝐸𝐾 2017 Java

Phoenix,

IBM Security

AppScan

Source33

machine learning
syntactic properties

of alarms

47

Tripp et al. [166]

(Simplification of

manual inspection -

Feedback-based)

𝐸𝑆 2014
Java-

Script
- machine learning user feedback

48
Yüksel and

Sözer [185]
𝐼𝐾 2013

C,

C++
- machine learning

alarm and code

characteristics

49 Yoon et al. [183] 𝐼𝐾 2014 Java SPARROW machine learning
structural

characteristics

Continued on next page

30https://github.com/pomber/code-surfer
31https://blogs.uni-paderborn.de/sse/tools/cheetah-just-in-time-analysis/
32https://find-sec-bugs.github.io/
33www.ndm.net/sast/ibm-appscan-source
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Table 4 – continued from previous page

Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

50 Zhang et al. [191] 𝐸𝐾 2019 C DTS [181] machine learning
characteristics

of variables

Delta

alarms

51
Chimdyalwar

and Kumar [30]
𝐼𝐾 2011 C TECA impact analysis assertions

52 Lahiri et al. [93] 𝐸𝑆 2013 C SymDiff34 differential analysis -

53 Logozzo et al. [109] 𝐼𝐾 2014 C# cccheck [47]
relative

correctness

necessary/

sufficient

conditions

54 Spacco et al. [158] 𝐼𝑆 2006 Java FindBugs
fuzzier matching

algorithms
warning signatures

55

Venkatasubra-

manyam and

Gupta [168]

(Pruning - ML)

𝐼𝐾 2014 C++ - learning system
alarm and

error patterns

Others

56 Ayewah et al. [10] 𝐼𝐾 2007 Java FindBugs patterns identification
alarm types

and patterns

57 Chen et al. [26] 𝐼𝐾 2013 C RELAY [170] thread specialization code regions

58 Das et al. [38] 𝐼𝐾 2015 C
Angelic-

Verifier [38]
abductive inference

angelic assertions,

vocabulary

59 Joshi et al. [75] 𝐸𝑆 2012 C
CBUGS [75],

POIROT35
differential analysis -

60 Ruthruff et al. [152] 𝐼𝐾 2008 Java FindBugs statistical models
code characteristics

/metrics

61 Wang et al. [172] 𝐸𝐾 2018 C Scan-build36 -
fixed defects,

critical functions

D. Automated False positives elimination (AFPE)

Model

checking

-

scala-

bility

62
Chimdyalwar et al.

[29]
𝐼𝑆 2015 C

Polyspace37,

TCS ECA

BMC,

loop abstraction
program slices

63 Darke et al. [37] 𝐼𝐾 2012 C
TECA,

CBMC

BMC,

loop abstraction
-

64 Post et al. [143] 𝐼𝐾 2008 C

Polyspace,

CBMC,

SATABS38

BMC -

65
Rungta and

Mercer [150]
𝐼𝑆 2009 Java Jlint, JPF39 greedy depth

first search
-

Continued on next page

34https://www.microsoft.com/en-us/research/project/symdiff-differential-program-verifier/
35http://research.microsoft.com/en-us/projects/poirot/.
36https://clang-analyzer.llvm.org/scan-build.html
37https://www.mathworks.com/products/polyspace-code-prover.html
38https://www.cprover.org/satabs/
39https://github.com/javapathfinder/jpf-core
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Table 4 – continued from previous page

Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

66
Valdiviezo et al.

[167]
𝐼𝐾 2014 C++

Parfait40,

SPIN41

model checking,

program slicing

abstract programs,

program slices

67 Yu et al. [184] 𝐼𝑆 2009 Java -
fuzzy inference,

model checking

code

characteristics

Model

checking

-

Effici-

ency

68
Chimdyalwar

and Darke [28]
𝐸𝑆 2018 C

multiple

tools
- program slices

69 Darke et al. [36] 𝐸𝑆 2017 C
ELABMC [36],

CBMC

loop abstraction,

bounded model

checking

program slices

70 Muske et al. [125] 𝐼𝑆 2013 C
TECA,

CBMC

model

checking
-

71
Muske and

Khedker [126]
𝐼𝐾 2015 C

TCS ECA,

CBMC

model checking,

data flow analysis
-

72 Wang et al. [173] 𝐼𝑆 2008 C

Code-

Auditor [173],

BLAST42

constraint-based

analysis,

model checking

constraints,

program slices

Sym-

bolic

exe-

cution

73 Arzt et al. [7] 𝐸𝑆 2015 Java FlowDroid43 symoblic execution -

74 Feist et al. [49] 𝐸𝑆 2016 C BINSEC/SE44 dynamic symbolic

execution
weighted slices

75 Gerasimov [57] 𝐸𝐾 2018 C
Svace45,

Anxiety [56]

dynamic symbolic

execution
-

76
Gerasimov et al.

[59]
𝐸𝑆 2018 C Avalanche [69]

dynamic symbolic

execution
-

77 Kim et al. [83] 𝐼𝐾 2010 C
Raccoon46,

Yices47

abstract

interpretation,

symbolic execution

-

78 Li et al. [101] 𝐼𝑆 2013
C,

C++

Flawfinder48,

SPLINT49

trace analysis,

symbolic execution
data flow tree

79 Parvez et al. [139] 𝐸𝑆 2016 C
WatSym [139],

KLEE50
symoblic execution -

Continued on next page

40https://llvm.org/pubs/2008-06-SAW-Parfait.html
41http://spinroot.com/spin/whatispin.html
42http://goto.ucsd.edu/ rjhala/blast.html
43https://github.com/secure-software-engineering/FlowDroid
44https://binsec.github.io/
45https://www.ispras.ru/en/technologies/svace/
46https://github.com/evyatarmeged/Raccoon
47https://yices.csl.sri.com/
48https://dwheeler.com/flawfinder/
49https://splint.org/
50https://klee.github.io/
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Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

80 Zhang et al. [186] 𝐸𝐾 2016 binaries
IDA pro51,

KLEE

dynamic symbolic

execution
-

SMT/

Dedu-

ctive

veri-

fication

81 Gadelha et al. [53] 𝐸𝑆 2019 C,C++
multiple

tools

path-satisfiability

analysis
-

82 Nguyen et al. [131] 𝐸𝑆 2019 C

Rose-

checkers52,

Frama-C/WP,

CBMC,

Cobra53

deductive verification,

model checking,

pattern matching

-

83
Nguyen et al.

[132]
𝐸𝐾 2019 C

Rose-

checkers,

Frama-C/WP,

CBMC,

Cobra

deductive verification -

84 Xu et al. [177] 𝐸𝑆 2019 C
LAID [177],

Boolector54

path-satisfiability

analysis
-

E. Combination of static and dynamic analyses

All

85
Aggarwal and

Jalote [1]
𝐼𝑆 2006 C

BOON [171],

STOBO [62]
- -

86 Chebaro et al. [25] 𝐼𝐾 2012 C

Frama-C,

Path-

Crawler55

program slicing -

87 Chen et al. [27] 𝐼𝑆 2009
x86

binary

IntFinder

[27]
taint analysis

suspect

instruction set

88 Csallner et al. [34] 𝐼𝐾 2005 Java CnC [34] constraint solving
abstract/specific

error conditions

89 Csallner et al. [35] 𝐼𝐾 2006 Java
DSD-

Crasher [35]

dynamic inference,

dynamic verification

program invariants,

test cases

90 Ge et al. [55] 𝐼𝑆 2011 C# DyTa [55]
dynamic test

generation
-

91
Gerasimov and

Kruglov [58]
𝐸𝐾 2018 C Avalanche dynamic analysis -

92 Kiss et al. [85] 𝐼𝐾 2015

C,

C++,

Java

FLINDER-

SCA [85]
white-box fuzzing -

Continued on next page

51https://hex-rays.com/
52https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508017
53http://spinroot.com/cobra/manual.html
54https://github.com/Boolector/boolector
55http://pathcrawler-online.com:8080/
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Cate-

gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

93 Li et al. [102] 𝐼𝐾 2011 C,C++

Polyflow [102],

Coverity,

Clockwork56

-
data flow

graphs

94 Li et al. [103] 𝐼𝑆 2014 Java RFBI[103]
predictive dynamic

analysis

programmer

objections

95 Li et al. [105] 𝐼𝐾 2013
C,

C++
HP Fortify57 concolic testing -

96

Padmanabhuni

and Tan [137]

(Pruning - ML)

𝐸𝐾 2016 C
CodeSurfer,

WEKA58

dynamic analysis,

machine learning
code characteristics

97 Sözer [157] 𝐼𝐾 2015 Java FindBugs Runtime monitoring -

98 Tomb et al. [165] 𝐼𝑆 2007 Java
Check‘nŠ-

Crash [165]
symbolic execution -

F. Simplification of manual inspection

Semi-

auto-

matic

diag-

nosis

99 Barik et al. [14] 𝐸𝐾 2016 Java FIXBUGS59 slow fixes -

100

Gao et al. [54]

(Simplification of

manual inspection -

Automated repair,

AFPE - Symbolic

execution)

𝐸𝐾 2016 C
Fortify60,

KLEE
reachability -

101 Rival [148] 𝐼𝐾 2005 - Astree61 dependence

analysis

abstract

dependances

102 Rival [149] 𝐼𝑆 2005 C Astree semantic slicing alarm contexts

103

Zhang and

Myers [189]

(Ranking - Statistical

analysis)

𝐼𝑆 2014 OCaml -
expressive constraint

language
constraints

104 Zhu et al. [193] 𝐸𝐾 2019 C DTS
section-whole path

generation strategy

inter-procedural

diagnosis paths

Feed-

back

-based

105 Mangal et al. [114] 𝐼𝐾 2015 Java Eugene [114] probabilistic analysis user-feedback

106
Sadowski et al.

[153]
𝐼𝑆 2015

Multi-

ple

Tricorder

[153]

data-driven

ecosystem
user-feedback

Check-

lists

107
Ayewah and

Pugh [8]
𝐼𝐾 2009 Java FindBugs

systematic

reviewing
review checklist

Continued on next page

56https://www.perforce.com/products/klocwork
57https://www.esecforte.com/products/hp-fortify/
58https://www.cs.waikato.ac.nz/ml/weka/
59http://go.barik.net/fixbugs
60https://www.esecforte.com/products/hp-fortify/
61https://www.absint.com/astree/index.htm
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Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

108 Phang et al. [140] 𝐼𝑆 2009 - -
checklists-based

review
triaging checklists

alarms-

relevant

queries

109 Dillig et al. [42] 𝐼𝐾 2012 C
Compass [42],

Mistral62
abductive inference

alarm-specific

queries

110 Kim et al. [80] 𝐸𝐾 2016 Java

Java Path

Finder63,

FindBugs

symoblic execution -

111

Muske and

Khedker [127]

(Ranking - Others)

𝐸𝐾 2016 C TCS ECA data flow analysis alarm root causes

112
Zhang et al. [190]

(Ranking - Others)
𝐸𝐾 2017 Java URSA [190]

integer linear

programming
alarm root causes

Auto-

mated

repair

113 Bader et al. [12] 𝐸𝑆 2019 Java
Infer64,

Error Prone65
fix-patterns mining alarms fix history

114 Bavishi et al. [15] 𝐸𝑆 2019 Java
FindBugs,

PHOENIX [15]

learning from

examples
alarms fix history

115
Marcilio et al.

[115]
𝐸𝐾 2019 Java

SPONGE-

BUGS66,

SonarQube67,

SpotBugs68

program

transformation

alarms fixing

templates

116

Medeiros et al.

[116]

(Pruning - ML)

𝐸𝑆 2014 PHP

WAP, Pixy,

PhpMinerII

[154]

machine learning labeled alarms

117 Xue et al. [179] 𝐸𝑆 2019 Java SonarQube fix-patterns mining alarms fix history

UI &

navi-

gation

tools

118 Anderson et al. [5] 𝐼𝑆 2003
C,

C++
CodeSurfer code navigation

program

dependence graph

119 Buckers et al. [21] 𝐸𝐾 2017 Java

PMD,

FindBugs,

Checkstyle69

user-interactive

exploration

treemap code

structure

120 Cousot et al. [33] 𝐼𝐾 2005 C Astree code navigation -

121 Jetley et al. [70] 𝐼𝐾 2008
C,

C++
CodeSonar70 code navigation -

Continued on next page

62https://www.cs.utexas.edu/ tdillig/mistral/index.html
63https://github.com/javapathfinder/jpf-core
64https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
65https://errorprone.info/
66https://github.com/dvmarcilio/SpongeBugs
67https://www.sonarqube.org/
68https://spotbugs.github.io/
69https://checkstyle.sourceforge.io/
70https://www.grammatech.com/codesonar-cc
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gories

Sr.

No.

Relevant paper

(Other sub-categories)
Srch Year Lang.

Tools used

in evaluation
Techniques Artifacts used

122 Phang et al. [79] 𝐼𝐾 2008 C Locksmith71 user interfaces program paths

123 Parnin et al. [138] 𝐼𝑆 2008 Java
NOSE-

PRINTS [138]
code visualization -

Others

124 Arai et al. [6] 𝐼𝑆 2014 Java GBC [6] gamification points/scores

125 Ma et al. [112] 𝐸𝑆 2019 C Canalyze [178] constraint solving program paths

126
Menshchikov

and Lepikhin [119]
𝐸𝐾 2018 C,C++

multiple

tools

report verbosity

and generalization
-

127
Muske [121]

(Clustering - Unsound)
𝐼𝐾 2014 C TCS ECA review scope chains call graphs

128
Nguyen Quang Do

et al. [133]
𝐸𝐾 2018 - -

video gaming

principles
-

129
Ostberg and

Wagner [136]
𝐼𝑆 2016 Java

HaST [136],

FindBugs
salutogenesis model

various metrics,

developer

comments

130

Querel and Rigby

[144]

(Pruning - Others)

𝐸𝑆 2018 Java
JLint,

FindBugs
statistical models code commits

71https://github.com/polyvios/locksmith
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