
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Empowering OCL Research: A Large-Scale Corpus
of Open-Source Data from GitHub

Josh G.M. Mengerink · Jeroen Noten ·
Alexander Serebrenik

Received: date / Accepted: date

Abstract Model-driven engineering (MDE) enables the rise in abstraction
during development in software and system design. In particular, meta-models
become a central artifact in the process, and are supported by various other
artifacts such as editors and transformation.

In order to define constraints, invariants, and queries on model-driven ar-
tifacts, a generic language has been developed: the Object Constraint Lan-
guage (OCL). In literature, many studies into OCL have been performed on
small collections of data, mostly originating from a single source (e.g., OMG
standards). As such, generalization of results beyond the data studied is often
mentioned as a threat to validity. Creation of a benchmark dataset has already
been identified as a key enabler to address the generalization threat.

To facilitate further empirical studies in the field of OCL, we present the
first large-scale dataset of 103262 OCL expression, systematically extracted
from 671 GitHub repositories. In particular, our dataset has extracted these
expressions from various types of files (a.o. metamodels and model-to-text
transformations).

In this work we showcase a variety of different studies performed using our
dataset, and describe several other types that could be performed. We extend
previous work with data and experiments regarding OCL in model-to-text
(mtl) transformations.

Keywords Dataset · Model-driven Engineering · OCL · EMF · Acceleo ·
Replication studies

J.G.M. Mengerink, J. Noten, A. Serebrenik
Eindhoven University of Technology
The Netherlands
E-mail: {j.g.m.mengerink, a.serebrenik}@tue.nl

2 Josh G.M. Mengerink et al.

1 Introduction

Model driven engineering (MDE) is being used in industry to drive increase in
productivity (Hutchinson et al, 2011b). One such driver is the use of domain
specific languages (DSLs) to allow engineers to specify systems in terms rele-
vant to their domain, rather than encoding them into general purpose concepts
like those of UML. These DSLs are underpinned by metamodels (Cuadrado
and Molina, 2007), which express the concepts and structure of possible mod-
els (i.e., abstract syntax). However, as DSLs grow in complexity, the expres-
sivity of meta-models alone is often not sufficient to accurately specify the
domain (Richters and Gogolla, 1998). To address this problem, more complex
mechanisms have been proposed, such as the Object Constraint Language
(OCL) (Warmer and Kleppe, 2003).

While empirical studies of domain specific languages and meta-models have
been conducted in the past (Hermans et al, 2009; Hutchinson et al, 2011a,b;
Mohagheghi et al, 2013; Petre, 2013; Whittle et al, 2014), relatively little at-
tention of the research community has been spent on empirical evaluation of
OCL (Cadavid et al, 2015; Correa et al, 2007; Reynoso et al, 2006). A core
reason for this is that OCL data is scarce. So far empirical studies have been
solely conducted either on synthetic models (rather than real-world ones) or
on smaller datasets: Reynoso et al (2006) and Correa et al (2007) conducted
controlled experiments on synthetic models, and Cadavid et al (2015) have
studied a relatively small collection of 840 OCL expressions derived from 34
publicly available and three commercial meta-models. Attempts at creating
larger datasets have been made by Cabot1, and Basciani et al (2014). De-
spite these efforts, a need for a more diverse and thorough dataset has been
recognized in the literature (Gogolla et al, 2013; Gogolla and Cabot, 2016).

This work builds on our previously published dataset (Noten et al, 2017a)
of 9173 OCL expressions derived from 504 open-source meta-models, and ear-
lier experimentation by Mengerink et al (2017a). We build upon both works
by extending the dataset with model-to-text transformations and feature sev-
eral experiments that use the 94089 expressions derived from 2634 open-source
model-to-text transformations available on GitHub. The extended dataset, in
addition to the scripts written to compose it, is publicly available on GitHub2.
To ensure persistence and permanent identification of the data we have regis-
tered it with the 4TU federation through DataCite Netherlands (Noten et al,
2017b). We show that, using the extended dataset, one is able to:

1. replicate earlier studies such as the one by Cadavid et al (2015) on larger
and more diverse data sets;

2. evaluate practical limitations of techniques proposed to analyze (Anas-
tasakis et al, 2008; Kuhlmann et al, 2011) and visualize OCL (Bottoni
et al, 2001);

1 https://github.com/jcabot/ocl-repository
2 https://github.com/tue-mdse/ocl-dataset

Title Suppressed Due to Excessive Length 3

3. compare characteristics of the OCL expressions from open source projects
with the previously published characteristics of the limited number of
closed-source projects (cf. Cadavid et al (2015); Mengerink et al (2017a,b)),
validating open source OCL as a vehicle for further studies.

Moreover, we expect the dataset to be applicable in other ways, e.g., to:

1. provide a complementary perspective on the earlier results obtained through
controlled experiments (Correa et al, 2007; Reynoso et al, 2006);

2. replicate corpus-based studies conducted in the context of traditional soft-
ware engineering, in a MDE context;

Our dataset (Noten et al, 2017b) will also allow companies specializing in
software quality to benchmark OCL expressions from systems under investiga-
tion against a larger collection of OCL expressions, and thus derive conclusions
about the system quality (cf. similar work for non-MDE software (Heitlager
et al, 2007; Oliveira et al, 2014)).

The remainder of this paper is organized as follows. After introducing MDE
and OCL in Section 2, in Section 3, we discuss how our dataset was composed,
followed by the dataset description in Section 4. In Section 5 we illustrate
applications of the dataset by showing several studies that can be performed.
Next we review the related work in Section 6 and possible threats to validity in
Section 7. Finally, we conclude with discussing future work and summarizing
our contribution in Section 8.

2 A Brief Introduction to MDE and OCL

2.1 Model-Driven Engineering

Model-driven engineering (MDE) (Kleppe et al, 2003) puts models central in
the development process. Based on such a model, engineers can perform sim-
ulation and verification early in the design process. Based on this early verifi-
cations, designs can be adapted, even before implementation. When satisfied
that a model describes the system as desired, generators allow the automatic
creation of traditional design artifacts from these models. This way of working
raises the level of abstraction, relieving the engineer from thinking about im-
plementation issues. For instance, an engineer can specify that a queue should
be present whilst refraining from deciding what type of mutual-exclusion pro-
tocol should be used for that queue.

2.2 Domain Specific Language

However, using MDE still does not fully exploit the raise of abstraction: the
engineer still has to encode their specific problem into a generic modeling lan-
guage (e.g., UML (1997) or SysML (2001)). As such, the engineer is still faced
with unnecessary design decisions (e.g., encoding their Element as Class or

4 Josh G.M. Mengerink et al.

Queue-Model 1

canQueu() : Boolean
enqueu(e : Element)
dequeue() : Element

data : Element[]
Queue

produce()

Producer

consume()

Consumer

data : String

Element

input

output

(a) A queue-pattern where the data is a sep-
arate datatype

Queue-Model 2

canQueu() : Boolean
enqueu(e : Element)
dequeue() : Element

Queue

produce()

Producer

consume()

Consumer

data : String

Element

input

output

data

(b) A queue-pattern where the data is a
child of the queue

Fig. 1: Two different ways to encode a producer-queue-consumer in a general
purpose modeling language

as a DataType as illustrated in Figure 1). To mitigate this, domain-specific lan-
guages (DSLs) aim at enabling specification of a problem in terms of relevance
to the engineers domain. For instance, not having the engineer reason in terms
of classes and references, but in terms of queues, producers, and consumers.

2.3 (Meta)Modeling

A way to easily create domain-specific languages using MDE is through the
use of metamodels. Metamodels describe, for a DSL, what constitutes a valid
model. In essence, they are a model of all models (i.e., a metamodel) contained
“in the language”. The Eclipse Modeling Framework (EMF) is a commonly
used framework for creating metamodels. It uses Ecore (2004) as central for-
malism, which implements the Meta-Object Facility ((MOF, 1996)) standard
described by the object management group (OMG, 1989). Ecore, in turn, de-
scribes what constitutes a valid metamodel. Being a model of metamodels, it
is what is referred to as a meta-metamodel. A fragment of the Ecore meta-
metamodel is illustrated in Figure 2.

As an example, consider a simple DSL describing the movement of a robot,
as illustrated in Figure 4a. The movement of this robot is described in a
Specification, which is comprised of a sequence of Commands. Command,
as an abstract class, cannot be instantiated itself, but its two subclasses can.
There, Forward represents telling the robot to move forward, and Turn rep-
resents telling the robot to make a 90◦ clockwise turn. The metamodel for
our example DSL is illustrated in Figure 4a. As the relation between such a
metamodel (in its concrete syntax) and the meta-metamodel in Figure 2 are
hard to read, we provide the same metamodel, in abstract syntax, in Figure 3.

Using the metamodel and the infrastructure EMF provides for it, we are
now able to specify models, which are “instances of” (cf. Bézivin (2006)) their
metamodel. An example model for the metamodel in Figure 3/Figure 4a is
illustrated in Figure 4b. This model corresponds to the robot moving forward,
turning 90◦ clockwise and moving forward again.

Title Suppressed Due to Excessive Length 5

tbh

Fig. 2: A fragment of the Ecore meta-meta-model taken from the Eclipse Juno
documentation Eclipse Juno (2012).

name = “Specification”
abstract = false

:EClass

name = “commands”
containment = true
ordered = true
lowerBound = 0
upperBound = *

:EReference

 name = “turtle”
nsURI = “http://mdse.tue.nl/josh/turtle”

:EPackage

name = “Command”
abstract = true

:EClass

eReferenceType

name = “Forward”
abstract = false

:EClass
name = “Turn”
abstract = false

:EClass

eSuperTypes
eSuperTypes

eClassifiers

Fig. 3: The metamodel from Figure 4a, in its abstract syntax. The notation
used is similar to instance diagrams (also known as object diagrams). Note
that such abstract syntax is seldom used, as its verbosity makes it illegible.

2.4 The Object Constraint Language

Although Ecore provides a great deal of expressive power, there are times
when an even more expressive formalism is needed. Consider again our model
and metamodel example in Figure 4. Say we want to prohibit our robot from
making four consecutive turns. Ecore itself does not have ways to specify

6 Josh G.M. Mengerink et al.

Specification

[A] Command

Turn

Forward

commands

0..*

(a) A small DSL for describing move-
ments of a robot

:Specification

:Forward

:Forward

:Turn

(b) Example of a model created using the
metamodel from Figure 4a/Figure 3

Fig. 4: An example of a model and its corresponding metamodel.

this. To mitigate this deficiency, dedicated formalisms have been created. The
Object Constraint Language (OCL) is an OMG (1989) standard for specifying
constraints on, amongst others, metamodels. One can use OCL to express,
for example, requirement that a specification should contain an even number
of commands (Example 2.1), or prohibition to make four consecutive turns
(Example 2.2). In general, an OCL constraint can be usually subdivided into
three main parts (Warmer and Kleppe, 2003):

1. The concepts on which the constraint operates, described by the context
keyword. In Examples 2.1 and 2.2 below, the context is the Specification
concept from the metamodel in Figure 4a;

2. A property of the context on which the constraint is defined. In Exam-
ple 2.1 this property is “commands” (cf. Figure 4a). More commonly one
writes “self.commands”, as in Example 2.2;

3. The predicate to be evaluated on this property, e.g., “→size()→mod(2)
== 0” in Example 2.1, describing that the size of that property is even.

� Example 2.1

contex Specification:
commands→size()→mod(2) == 0

� Example 2.2

contex Specification:
self.commands→not exists(c1, c2, c3, c4 |

c1.oclIsTypeOf(Turn) &&
c2.oclIsTypeOf(Turn) &&
c3.oclIsTypeOf(Turn) &&
c4.oclIsTypeOf(Turn) &&

Title Suppressed Due to Excessive Length 7

indexOf(c1) + 1 = indexOf(c2) &&
indexOf(c2) + 1 = indexOf(c3) &&
indexOf(c3) + 1 = indexOf(c4)

)

In OCL, it is also possible to define and call ad-hoc functions to assist in
the specification of such constraints.

2.5 OCL in Transformations

The expressivity of OCL allows for a broader spectrum of applications than
just specifying constraints. OCL can, for instance, also be used to specify model
queries (Habela et al, 2008). Consider a hypothetical metamodel of a company
and employees. We could use OCL to write a query to find all employees with
the name Alice, as illustrated in Example 2.3. Such a query is little more than
a constraint on the object we wish to find. By subsequently iterating every
object in our “database” and evaluating the query against it, we can return
every object for which that query evaluates to true.

� Example 2.3

context Person
self.name = “Alice”

This application of OCL makes it well-suited both for model-to-model trans-
formations (Section 2.5.1) and model-to-text transformations (Section 2.5.2).

2.5.1 Model-to-Model Transformations (m2m)

Model-to-model transformations (QVT, 2015; QVTo, 2015; Jouault and Kurtev,
2006; Rose et al, 2010; Kolovos et al, 2008), are artifacts that transform mod-
els to other models, potentially instances of different metamodels. Model-to-
model transformations can therefore be used to define the semantics of a DSL
in terms of another DSL.

Let Figure 5 present a metamodel SpecificationV2 intended to replace
the metamodel in Figure 4a (SpecificationV1). Consider that a plethora of
infrastructure is in place for defining (and potentially executing) models con-
forming to SpecificationV1. Redefining or reworking said infrastructure to
conform to SpecificationV2 would be time-consuming and costly. By trans-
forming SpecificationV2-models into SpecificationV1-models, the infras-
tructure need not be adapted, whilst still adding all the benefits of such in-
frastructure for the SpecificationV2 language. An example of such a trans-
formation, called Spec2toSpec1, is given in Example 2.4.

The main method of Spec2toSpec1 provides all root objects of models con-
forming to SpecificationV1 (i.e., SpecificationV1::Specifications) are
piped as inputs to mapping spec2spec. For every SpecificationV2 Command

8 Josh G.M. Mengerink et al.

(Up, Right, Down and Left) this transformation creates a number of corre-
sponding SpecificationV1 Commands (Forward, Turn). Such a mapping is in
essence a transformation, not between models, but between objects. As part
of implementation of spec2spec the helper method desiredTurns is used to
determine the number of turns corresponding to Left, Right, Up, and Down.
Another helper method, numTurns, given the current orientation of the robot
determines the number of turns it has to perform to achieve the desired ori-
entation. Helpers are similar to mappings, but do not have to return objects.

In the spec2spec mapping, every Command from the SpecificationV2::Specification
is iterated using the OCL iterate construct. For each such Command, a num-
ber of SpecificationV1::Turns are appended to the “commands” reference
of the implicitly defined SpecificationV1. Inside the desiredTurns helper,
OCL is further used to for determining the type of the passed Command.

An example of an original model and transformed model obtained by ap-
plying Spec2toSpec1 is illustrated in Figure 6.

� Example 2.4

transformation Spec2toSpec1(in src : SpecificationV2, out dst : Specifi-
cationV1);
main() { src.rootObjects()[Specification] → map spec2spec(); }

//Map a SpecificationV2 Specification to a SpecificationV1 Specifica-
tion
Mapping SpecificationV2::Specification:spec2spec() :
SpecificationV1::Specification {

//Start direction is facing North.
var direction = 0;
self.commands → iterate (c —

forEach(1 .. numTurns(direction, desiredTurns(c))) {

Specification

[A] Command

Up

Down

commands

0..*

Left

Right

Fig. 5: A new version for the metamodel in Figure 4a, which now works with
absolute directions rather than relative ones.

Title Suppressed Due to Excessive Length 9

commands += Turn;
}
commands += Forward;

);
}

//Determine how many right-turns to take
helper numTurns(currentDirection : Integer, desiredDirection : Integer) : In-

teger {
return (4 + desired - current) % 4;

}

helper desiredTurns(desiredDirection : SpecificationV2::Command) : In-
teger {

if (c.oclIsTypeOf(Up)) {
return 0;

} else if (c.oclIsTypeOf(Right)) {
return 1;

} else if (c.oclIsTypeOf(Down)) {
return = 2;

} else if (c.oclIsTypeOf(Left)) {
return 3;

}
}

:Specification

:Right

:Right

(a) A model for SpecificationV2

:Specification

:Turn

:Forward

:Forward

(b) The result of transforming the Model
in Figure 6a using the transformation in
Example 2.4.

Fig. 6: Applying a model-to-model transformation to models

10 Josh G.M. Mengerink et al.

2.5.2 Model-to-Text Transformations (m2t)

A second type of transformation that OCL is used in is model-to-text (also
referred to as code-generation) (MTL, 2016). As suggested by the name model-
to-text transform models to “flat” text. Although the generated text usually
has some form of semantics and required structure, the transformation is not
explicitly aware of these. As such, a model-to-text transformation can generate
partial, or even invalid pieces of code if used incorrectly. As an example we
could define a model-to-text transformation to transform a Specification

into a small Logo (Muller, 1998) program, without having knowledge of the
underlying metamodel. Such a model-to-text transformation is illustrated in
Example 2.5.

In Example 2.5 we use Acceleo-like syntax and wrap control structures
in square brackets ([]). Execution of such a template is, similar to regular
imperative programs, performed top-to-bottom. The template keyword asso-
ciate the function generate with SpecificationV2::Specification. If such
a Specification is passed as an argument to the template for generation, the
instance is bound to the specification variable throughout the template.
The for-loop then iterates over the elements in the commands reference of
specification. For each such element the if-statements determine the type
of the command and generate the corresponding Logo fragment. Whenever
a non-control line (i.e., one without square brackets) is encountered, that
line is added to the output file. The result of application of the model-to-
text transformation in Example 2.5 on Figure 6a yields the Logo program in
Example 2.6.

� Example 2.5

A model-to-text example using Acceleo-like Syntax

[template public generate(specification : SpecificationV2::Specification)]
[for (c : Command | specification.commands)]

[if c.oclIsType(Up)]
setheading(0);
forward(100);

[/if]
[if c.oclIsType(Right)]

setheading(90);
forward(100);

[/if]
[if c.oclIsType(Down)]

setheading(180);
forward(100);

[/if]
[if c.oclIsType(Left)]

setheading(270);

Title Suppressed Due to Excessive Length 11

forward(100);
[/if]

[/for]
[/template]

� Example 2.6

Result of a model-to-text transformation
setheading(90);
forward(100);
setheading(90);
forward(100);

3 Data Collection

In this section we start by describing the source of our data (Section 3.1) and
its scope (Section 3.2) and then discuss the ways the data has been obtained
and processed (Section 3.3–3.4).

3.1 Data Source

To create a more representative, and up-to-date data set of OCL expressions we
mine public GitHub repositories. We chose GitHub, as it is the largest source
of open-source in-development software systems. Moreover, previous studies
into the usage of modeling-related technologies (Hebig et al, 2016; Kolovos
et al, 2015) have also used the GitHub data. Finally, by focusing on GitHub
we ensure that our data set includes the aforementioned OCL repository of
Jordi Cabot that is also hosted on GitHub.

An alternative way of collecting data might have been using the Google
search. Indeed, Google can provide access to meta-models stored on smaller
sites, e.g., personal sites of researchers or their projects. However, we have
observed that the indexing of GitHub files by Google is far from complete.

Lastly, Google BigQuery is a paid alternative for performing “analytics at
scale” (i.e., large-corpus code searches). Unfortunately, the platform is paid.
We believe that the process of constructing the dataset should be reproducible
by every researcher interested in doing so. Therefore, when making choices
pertaining to the design of our data collection approach we have explicitly
excluded techniques that might incur costs.

3.2 Dataset Scope

The OCL expressions in our dataset are derived from metamodels and model-
to-text transformations. OCL expressions belonging to metamodels can be

12 Josh G.M. Mengerink et al.

stored either in a separate file or as part of a file containing the metamodel to
which the OCL code refers. The naming convention of Eclipse, the most active
open-source MDE community (Kolovos et al, 2015), requires extensions .ocl

for OCL-only files and .ecore for meta-models. OCL expressions belonging
to model transformations are always stored in the “model-to-text template”
itself. These files have a .mtl file extension.

In this work we focus on files with .ecore, .ocl, and .mtl extensions.
We exclude .uml from our scope as a large-scale dataset of UML models has
already been made available by Robles et al (2017). Furthermore, we exclude
metamodels persisted with other extensions than .ecore (e.g., .xmi), as this
is not the de facto standard for persistence.

3.3 GitHub Search

GitHub provides advanced search features, allowing one to look for different
artifacts (e.g., commits, code files or wiki entries) that (1) match a given
search string, (2) created during a given time period, and (3) owned by given
users. Intuitively, to find OCL expressions from the meta-models we would
like to search GitHub for all .ocl files, and .ecore files containing OCL code.
However, GitHub requires at least one search term to be included in addition
to the requirement that a file has a given extension. i.e., one cannot identify
every file with a particular extension.

Kolovos et al (2015) also faced this limitation. To mitigate this problem
the authors constructed search terms that provided the largest number of
relevant results. For .ocl they, e.g., included the term context. However, this
query does not match .ocl files without the term context. Using the query
extension:ocl NOT context, we conclude that 999 code results would have been
missed using the method of Kolovos et al (2015).

Hebig et al (2016) used GHTorrent Gousios and Spinellis (2012), to select
10% of GitHub repositories that are not forks and have a branch that can
be downloaded (totaling 1240000 repositories). They then use a sequence of
GitHub API calls to extract file lists for all these repositories to subsequently
filter out relevant files. While this approach is very thorough, the sheer amount
of API calls required, combined with the rate limit of GitHub makes the pro-
cess very lengthy. In the case of Hebig et al (2016), two weeks were required
to gather all required data on only 10% of all GitHub repositories.

Therefore, we suggest an alternative approach to mining. To reduce the
time required for data gathering, we seek to improve upon the method of
Kolovos et al (2015), but construct a query that does not suffer their limita-
tions. Our solutions is to construct the search string by taking the negation
of a search term that matches no .ocl files. This negated term, by definition,
matches all .ocl files. In our case the search term “foofoo” returned no results
for files with the .ocl extension. (i.e., the query extension:ocl foofoo returned
no results). Hence, the query extension:ocl NOT foofoo yields all files with the

Title Suppressed Due to Excessive Length 13

.ocl extension. By a similar argument extension:mtl NOT foofoo yields all
files with the .mtl extension.

Next, we create a query that matches .ecore files containing OCL con-
straints. To enable the use of embedded OCL constraints in a .ecore file,
the .ecore file should contain an annotation with the value “http://www.
eclipse.org/emf/2002/Ecore/OCL”3. This value is persisted verbatim, and
we use it to search for .ecore files containing OCL.

Thus, to identify OCL expressions we search on GithHub for the “code”
using the following queries: (1) extension:ocl NOT foofoo; (2) extension:ecore
“http://www.eclipse.org/emf/2002/Ecore/OCL”; (3) extension:mtl NOT foofoo.

In March 2017 the queries produced 6237, 1045, and 348677 hits, respec-
tively. The extreme number of .mtl files is due to the .mtl extension also
being used in 3D modeling (Material files) rather than model transformations.
To reduce the sheer amount of false positives, we adopt the methodology of
Kolovos et al (2015), and add the keyword “module” (marking the start of a
model-to-text segment) when searching for .mtl files. This addition reduces
the number of .mtl hits to 15379.

An .ocl file requires one or more corresponding .ecore files to be parsed.
To ensure that all our data is processable, we need to also obtain all related
.ecore files. On GitHub, every code match belongs to a file in a repository.
Rather than identifying single files, we download the entire repository contain-
ing files identified by our queries, and identify the files required for parsing
OCL off-line.

The next limitation of GitHub search is that only 1000 results are re-
trieved. We circumvent this by incrementally modifying our search query:
we exclude repositories that have already been found in previous iterations
(using -repo:[user]/[repo]). For example, if in the first iteration we find only
code results from the repositories eclipse/ocl and eclipse/ecore, the query for
the next iteration will be extension:ecore http: // www. eclipse. org/ emf/

2002/ Ecore/ OCL -repo:eclipse/ocl -repo:eclipse/ecore. We repeat this proce-
dure as long as results are retrieved. Finally, all excluded repositories form the
list of relevant repositories.

The last limitation that we encountered during our search process is the
limitation of the search query length. However, this did not lead to problems,
because when the query length reached this limit, the number of code results
was less than 1000 (the maximum number of search results shown by GitHub),
so instead of excluding more repositories from the search, all repositories that
occurred in the results are added to the list of relevant repositories.

As a result of this search process, we have three lists of repositories, one
for each of the search queries. We merge the lists and eliminate duplicates.
This process yields a list of 671 relevant repositories.

3 See Complete OCL tutorial in Eclipse Neon documentation: https://help.eclipse.

org/neon/index.jsp?topic=/org.eclipse.ocl.doc/help/CompleteOCLTutorial.html

14 Josh G.M. Mengerink et al.

3.4 Downloading and Stripping the Repositories

Using a Python script, we download the 671 relevant repositories. This step
was performed on the July 31, 2017. As such, only revisions from before that
date are included in the dataset. Next, we remove all files other than files
ending in .ocl, .ecore, and .mtl as we only want to keep those for our data
set, as well as directories that became empty as the result of this process. This
results in a collection of of 6258 .ocl files, 21188 .ecore files, and 6783.mtl
files. In order to keep the files parsable we preserve the original file names and
the directory structure.

3.5 Parsing

We have observed that there are many duplicate files both in the same repos-
itory as well as across repositories. This happens, for example, when files or
directories are copied or when dependencies are included. To prevent bias in
the usage statistics, we only want to include unique files. For this uniqueness,
we consider only the contents of the file, and exclude metadata and file names.
The python script for performing this step is included in the dataset.

In the Ecore-based collection of 27446 (6258 + 21188) files, only 10894 files
are unique.

Using the Eclipse Modeling Framework, we parse all unique files and store
them as abstract syntax trees (ASTs) in XMI format conforming to the OCL
Pivot Meta Model (Willink, 2011). We successfully parse 8947 files (82%)
resulting in 8947 AST files. The remaining 2759 files resulted in parse errors,
due to e.g., the extension .ocl being used for technologies not related to
the Object Constraint Language, missing references, or syntax errors. 274 of
the 519 repositories contained no parsable OCL constraints at all. Since we
are only interested in files with (parsable) OCL expressions, we exclude AST
files with no parsable OCL expressions. This step resulted in 504 AST files
containing 9173 OCL expressions, derived from the Ecore-based section of our
dataset.

To the extent of our knowledge, no abstract-syntax persistence for OCL in
MTL exists. As such, the MTL-based part of our dataset only stores the raw
data. Similarly to the Ecore-based dataset, we perform duplicate removal, re-
sulting in 6783 unique files, only 2634 of which were parsable. After eyeballing,
this high rate of errors is due to the fact that many .mtl files found are still
files related to 3D modeling, rather than model-to-text transformations.

4 Data description

The dataset, in addition to the scripts written to compose it, is publicly avail-
able on GitHub4. To ensure persistence and permanent identification of the

4 https://github.com/tue-mdse/ocl-dataset

Title Suppressed Due to Excessive Length 15

data we have registered it with the 4TU federation through DataCite Nether-
lands (Noten et al, 2017b).

4.1 Dataset Structure

The dataset consists of two collections:

– Ecore-metamodels and related .ocl files (“dataset”);
– model-to-text transformations that contain OCL (“dataset-mtl”).

Both collections contain a repos directory containing the raw data from
the 671 repositories (245 .ecore and 349 .mtl repositories, with duplicates
removed) identified in the previous section.

Immediate subdirectories of the repos directories are named after the
repository’s user or organization, and contain one or more directories cor-
responding to the repositories. These directories imitate the structure of the
repositories. However, as explained in Section 3.4, all files other than .ocl,
.ecore, and .mtl are removed, as well as directories that are empty as a re-
sult. For each repository in both collections, a .json file with metadata is
included.

In addition to the repos directory the Ecore collection includes the oclas

directory storing files with the abstract syntax trees (ASTs) of the .ocl and
.ecore files. The ASTs are stored in XMI format conforming to the OCL Pivot
Meta-Model (Willink, 2011). These oclas files are named by the MD5 hashes
of their contents, for faster equality-checking. Thus, oclas files for duplicate
files are only persisted once. The relation between an oclas file and its original
files is recorded in the meta.json in the dataset root.

Recall that in Section 3.5 we have eliminated multiple occurrences of files
with the identical contents. Hence, we store the ASTs in files with names
corresponding to their MD5 hash. This naming allows for faster comparison
during processing. Each file with an AST has a file with the same name but
.json extension, containing metadata about the repository and AST files.

Finally, the meta.json file relates the various oclas files in the oclas di-
rectory to their original files in the repos directory. For clarity, we illustrate
the file structure, and its relation to the various GitHub repositories in Fig-
ure 7. It does so using two keys in the root JSON object: oclas and repos.
The oclas object maps the names of the AST files (without extension) to
an array of .ecore or .ocl files (of which the contents are identical) that
the AST refers to. The repos object maps the names of the repositories to
commit hashes that were the most recent commits when we downloaded the
repositories.

4.2 Project Diversity

The OCL expressions we have collected are derived from repositories widely
diverse in terms of size and activity. Table 1 summarizes sizes (KB) and the

16 Josh G.M. Mengerink et al.

GitHub

User1

repo1

repo2

User2

repo3

f1.ecore

f2.ocl

f4.mtl

f3.ecore

Dataset

User1

repo1

repo2

f1.ecore

f2.ocl

f3.ecore

Dataset

fx.java

repos

oclas

{ numOps : 4 }
hash1.json

<pivot:Model />
hash1.oclas

{ numOps : 7 }
hash2.json

<pivot:Model />
file2.oclas

{ hash1 : “/user1/
repo1/f1.ecore” }

meta.json

Dataset
-mtl …

File
Folder

…

Fig. 7: A schematic overview of the file-structure of GitHub (left) and the
representation of those files in our dataset (right).

number of days between the repository creation date and the date of the most
recent update (preceding the data collection).

Table 1: Size and activity of the repositories

.ecore repositories (N = 245) .mtl repositories (N = 349)
size (KB) activity (days) size (KB) activity (days)

Min 0 0.0 0 0.0
Q1 567 0.0 242 0.0
Median 4831 16.0 1610 59.0
Mean 53522 218.5 47504 316.0
Q3 46257 277.0 23686 498.5
Max 981093 1977.0 1802744 2210.0

Title Suppressed Due to Excessive Length 17

4.3 Domains

To gain some preliminary insights into the domains, we perform frequent-
word counts on the full filenames (including user and repository) for our OCL
& Ecore dataset. We have manually analyzed the 400 most frequent terms
appearing in the fully qualified filenames in the dataset. We decided to stop
after 400 terms, as term ranked form 401 onwards occur only once. The top
30 results of this analysis are presented in Table 2.

Not surprising, terms such as org, eclipse, model, and ocl occur frequently.
Important is to note that files that incorporate “examples” in their path occur
extremely frequently. To support these observations, we have performed card-
sorting (Menzies et al, 2016) on every unique expression in our dataset to more
precisely uncover the domains. From this we found the following domains:
general-purpose modeling (UML, Petri nets, state machines), databases, web
& networking, tutorial examples, student exercises, unit tests, academic paper
examples, embedded, workflow modeling, and formal analysis.

We observed that examples and student assignments constitute a large part
of our dataset. However, such repositories are not necessarily representative
of real-world projects. As this may be a threat to validity to various studies
based on our dataset, we wish to be able to separate the example files from the
“real-world” ones. Following (Munaiah et al, 2017) we call the latter files “en-
gineered” files, as they are more likely to represent sound software engineering
practices. From the result of card sorting, we investigate the file paths of the
examples and student exercise domains to extract terms that can be used to
filter them. We compile the found terms into a single regular expression that
can be used for matching:

“/(example | assignment | praktikum | bung | Uebung | Ejemplo |
Profundizacion Arquitectura Software | practica | GenieLogiciel |
Laboratorio | lecture | course)/i”

A second regular expression is used to separate student exercises such as
“ex4 week12”: “/((NAMES[0-9\s -]+)|([0-9\s -]+NAMES))/i” where NAMES

is “(td|tp|ws|ss|lab|GLS)”.

Using this method, we can separate our 9173 unique expression ASTs from
.ecore files into 6334 example ASTs and 8411 engineered ASTs. Note that
the sum of 6334 and 8411 is higher than 9173 because unique ASTs can belong
to multiple files.

We opt for this technique rather than a more elaborate approach of Muna-
iah et al (2017). Indeed, the technique of Munaiah et al. includes or excludes
entire repositories, while we reason at the level of individual files. Repositories
that would have been classified as engineered in the style of Munaiah et al.,
but include a large number of example files (e.g., unit test models) would
“contaminate” our data.

18 Josh G.M. Mengerink et al.

Table 2: Top 30 most frequent words among the OCL & Ecore dataset

word num. occurences
1 eclipse 4325
2 model 3204
3 org 2896
4 ocl 2097
5 papyrus 1706
6 examples 1613
7 uml 1487
8 src 1472
9 robotml 1228
10 tests 1106
11 juancadavid 1079
12 impl 888
13 mdeforge 824
14 upr 790
15 extraplugins 753
16 xtext 719
17 ac 702
18 royalandloyal 600
19 refontouml 570
20 ontouml 521
21 bpmnprof 521
22 ecore 505
23 models 495
24 test 471
25 is 462
26 jp 462
27 pizzafactory 462
28 nces 462
29 a rte 462
30 nagoya u 462

5 Studies Supported by the Dataset

As mentioned in the introduction, there are several possible applications of
the dataset ranging from replication of earlier studies to comparison of OCL
expressions derived from open source projects with those from closed-source
projects. In this section we illustrate a number of these applications.

5.1 Replication Studies of Cadavid et al.

To show how our data set can be used in practice, we start by (partially)
replicating the study of Cadavid et al (2015).

5.1.1 The Original Study

To confirm their intuition that only a subset of the OCL is commonly used, and
other parts of the language are rarely used, Cadavid et al (2015) investigate

Title Suppressed Due to Excessive Length 19

what constructs from the OCL language are used in practice. To do so, they
run various experiments on a dataset that they have compiled. The dataset
consists of 24 metamodels derived from OMG standards, 11 metamodels from
academic research, and 3 metamodels from industry. The metamodels come
from a plethora of domains including databases, formal analysis and security.

In Section 2.3 of their work, Cadavid et al (2015) present an overview
of OCL concepts and relations between them. We reproduce this figure as
Figure 8 below. To show what parts of OCL are commonly and rarely used
Cadavid et al (2015) measure the usage of every construct by counting the
occurrences of every construct in their dataset of OCL expressions.

Fig. 8: A metamodel of the OCL language (Cadavid et al, 2015), showing the
OCL concepts and relations between them. Classes with an italic name are
abstract, where classes colored gray belong to other metamodels.

In the original study, Cadavid et al (2015) study meta-modeling practices
for OCL using on the OCL expressions from 37 meta-models. OCL data is
also gathered from .ocl files, but no exact number is reported. In total of 995
OCL invariants (i.e., expressions) were found, 567 of which could be parsed.

5.1.2 The Original Findings

In the original study, Cadavid et al (2015) create a histogram representing fre-
quency of OCL constructs, reproduced below as Figure 9a. They subsequently
argue that the OperationCall construct is very generic, and is constituted
by various sub-constructs (i.e., the various operations that are called). They
create a similar histogram for operations which is reproduced as Figure 10a.

20 Josh G.M. Mengerink et al.

Furthermore, Cadavid et al (2015) note that several operations in the the top
20 are defined in an ad-hoc manner (e.g., getOutputFlows, getInputFlows,
getFlows).

5.1.3 The Replication Methodology

In order to verify whether the results of the original study generalize to a larger
corpus, we perform an exact replication (cf. Shull et al (2008)) of the work by
Cadavid et al (2015). That is, we reuse the original methodology and apply
it to our data set of OCL expressions. This dataset consists of 9173 unique
expressions originating from 504 meta-models enriched with invariants from
external .ocl files.

Similarly to the dataset of Cadavid et al (2015), our dataset includes meta-
models from a variety of domains, including databases, security, graphics, for-
mal analysis, and workflow modeling.

In contrast to the dataset of Cadavid et al (2015), our dataset consists
only of Ecore-based metamodels and OCL expressions, whereas the dataset
of Cadavid et al (2015) also includes metamodels based on UML (1997),
CMOF (Scheidgen, 2006), and USE (Gogolla et al, 2007). Another major dif-
ference is that our dataset includes “example” files such as student projects.
As such, we perform our experiments on the dataset as a whole, and on the
engineered partition of our dataset (i.e., with examples filtered out).

Furthermore, our dataset is significantly larger than the original dataset of
Cadavid et al (2015). One benefit gained through this increase in size, is that
ad-hoc defined functions should no longer contaminate the most frequently
used OCL constructs. (i.e., due to sheer size, OperationCalls of ad-hoc
defined functions will be subdued by generic OCL OperationCalls).

Absence of original numbers from the study of Cadavid et al (2015) makes
comparison difficult. As in the original study Cadavid et al. were predomi-
nately interested in the set frequently used OCL, we will inspect the overlap
in the reported concepts. These comparisons will be limited to the number
of concepts reported by Cadavid et al (2015), as no other numbers are avail-
able. However, for our histograms, we will compute the top 25 most frequent
OperationCalls. This should eliminate bias due to small differences in the
distribution tails (e.g., a concept at rank 25 in the distribution of Cadavid
et al (2015) being at our rank 26).

Furthermore, as Cadavid et al (2015) reports the numbers in a histogram,
ranking (i.e., the position of each OperationCall in the top 20) of these
concepts is also deemed important. To perform these comparisons, we will use
Kendall’s τb. Note that, the resulting p-values must be adjusted to compen-
sate for performing multiple comparisons. We will do so using the method
of Benjamini and Yekutieli (2001)5.

5 We only report already adjusted p-values

Title Suppressed Due to Excessive Length 21

5.1.4 The Replication Findings

Using our EMF (Meta)Model Analysis tool (EMMA) (Mengerink et al, 2017b),
we count the frequency of each OCL construct in all AST files. Figure 9b
shows these frequencies. Computing Kendall’s τb between this ranking and
the original by Cadavid et al (2015) (Figure 9a) yields a result of τ = 0.685
with a p-value too small to be computed exactly.

Like in the study of Cadavid et al (2015), the OperationCall is the
most frequently used construct. As such, following Cadavid et al., we take
a closer look at OperationCall and create a histogram for frequencies of
OperationCall constructs in the same way as Figure 10a has been constructed
in the original study. Figure 10b shows the resulting frequencies for our entire
dataset.

Comparing the OperationCalls present, we find that they share 15/20
OperationCalls. Computing Kendall’s τb between the OperationCalls of Ca-
david et al (2015) and OperationCalls in our full dataset yields τ = 0.0769
with a p-value of p = 1.

As discussed in the methodology (Section 5.1.3), we conjecture that pres-
ence of a large amount of examples may be influence our results. As such we
perform a similar comparison for both the “engineered” (cf. Munaiah et al
(2017)) partition (Figure 11a) and example partition (Figure 11b) of our
dataset. We find that both partitions share 16/20 concepts with the results of
Cadavid et al (2015) (Figure 10a)

Computing Kendall’s τb between the OperationCalls of Cadavid and those
of our engineered and example partitions yields τ = −0.0513 and τ = 0.103
respectively, both with an (adjusted) p-value of p = 1.0.

These results make us believe that the engineered and example partitions
exhibit little differences. Computing Kendall’s τb between both partitions
yields τ = 0.744 with an (adjusted) p-value of p = 0.004217. Furthermore,
21/25 concepts are shared between them.

22 Josh G.M. Mengerink et al.

(a) Observed distribution of used OCL con-
structs in the study of Cadavid et al (2015)

O
ur	results	

(b) Observed distribution of used OCL con-
structs in our full dataset

Fig. 9: Observed distribution of used OCL constructs in various datasets.

(a) Observed distribution of
OperationCalls in the study of Cadavid
et al (2015)

(b) Observed distribution of
OperationCalls in our full dataset.

Fig. 10: Observed distribution of OperationCalls in various datasets.

Title Suppressed Due to Excessive Length 23

=

and

implies

oclAsType

oclAsSet

oclIsKindOf

size

<>

or

not

notEmpty

includes

oclIsUndefined

oclIsTypeOf

isEmpty

asSet

>

at

+

allInstances

−

union

asOrderedSet

first

<=

E
ngineered

0

2000

4000

6000

8000

(a) Observed distribution of
OperationCalls in the “engineered”
partition of our dataset.

=

and

size

oclAsType

oclIsKindOf

oclAsSet

implies

<>

or

isEmpty

notEmpty

asSet

not

includes

union

at

<=

selectByKind

allInstances

>

matches

oclIsTypeOf

>=

getType

+

E
xam

ple

0

500

1000

1500

2000

2500

(b) Observed distribution of
OperationCalls in the “example” par-
tition of our dataset.

Fig. 11: Observed distribution of OperationCalls in various datasets.

5.1.5 Discussion

Comparing the most used constructs by Cadavid et al (2015) (Figure 9a) to
the most used constructs for our full dataset (Figure 9b), we find that the
results are highly similar. The sets of reported constructs are even identical
(i.e., the 21 constructs reported by Cadavid as most frequent are also our 21
most frequent constructs). These results are in line with the original results by
Cadavid et al (2015): e.g., the six most used constructs are identical even with
respect to their order (OperationCall, Variable, PropertyCall, Iterator,
Type and IntegerLiteral)

Like in the study of Cadavid et al (2015), the OperationCall is the most
frequently used construct in our dataset (Figure 9b). Concurring with Cadavid
et al (2015), we expected this outcome, as OperationCall encapsulates all
operations that are called on OCL constructs (e.g., AND, OR, forEach).

Further inspection of the distribution of our OperationCalls (Figure 10b),
shows that our results are not in line with the results of Cadavid et al (2015)
(Figure 10a). Although 75% (15/20) OperationCalls observed are shared be-
tween distributions, their rankings show no similarity (tau = 0.04769). Both

24 Josh G.M. Mengerink et al.

(a) 10 OCL Constructs named in the study
of Cadavid et al. Cadavid et al (2015), that
allow for the specification of 98.9% of OCL
expressions in their dataset, projected onto
Figure 9a in red;

(b) The same 10 concepts from the Study
of Cadavid et al. (Cadavid et al (2015), Fig-
ure 12a), projected onto Figure 9b in red.
Here only able to specify 68.3% of expres-
sions.

Fig. 12: Differences in the findings of Cadavid, and our findings.

the original (p = 0.76) and adjusted (p = 1.0) p-values indicate that the
distributions are independent.

Recall form Section 5.1.1 that the dataset used by Cadavid et al. makes
use of data from standards, scientific, and industrial sources. Moreover, the
domains from which their data is drawn are similar to those in the engineered
partoitition of our dataset (e.g., databases, workflow modeling, security).
The most significant difference between the dataset of Cadavid et al (2015)
and ours, is that our dataset includes a large amount of examples and student
projects. As we have expected (Section 5.1.3), the large amount of example
files in our dataset may lead to a difference between rankings, specifically
between Figure 10a and Figure 10b

As such, we replicate the OperationCall histogram for the “example” and
“engineered” (cf. (Munaiah et al, 2017)) partitions of our dataset separately.
The results are shown in Figure 11b and Figure 11a, respectively.

Title Suppressed Due to Excessive Length 25

As such, we compare the distribution of OperationCalls from the dataset
of Cadavid et al. to the distributions of OperationCalls from the OCL expres-
sions in the engineered partition (Figure 11a). Although the domains of Ca-
david et al (2015) and our “engineered” partition are more similar than when
compared to our “example” partition, both our distributions (Figures 11a and
11b) share 16/20 OperationCalls. Moreover, the same 4 OperationCalls are
dissimilar.

Computing Kendall’s τb between the OperationCalls of Cadavid et al
(2015) (Figure 10a) and the engineered and example partitions respectively
yields τ = −0.0513 and τ = 0.103, respectively, both with (adjusted) p-values
of p = 1.0 (originally p = 0.85478 and p = 0.66933, respectively).

The dissimilarity between Cadavid et al (2015) and engineered partitions
surprises us as its domains are more similar than that of the example parti-
tion. Indeed, both datasets have similar domains. Following the argument of
Cadavid et al (2015) that eContainer is not part of the OCL language itself,
but part of one of its standard libraries (cf. stdio.h in C), we exclude it from
further analysis.

By manually comparing the ranks of OperationCalls in both distributions
(Table 3) we made the following observations.

The largest difference between both rankings is in the boolean operators
and and implies. In particular the increase in rank of and and similar de-
crease in rank of allInstances (+18 and -13, respectively) is noteworthy.
The allInstances OperationCall is typically found in the root of a con-
straint, i.e., allInstances marks a new context for an OCL expression.

� Example 5.1

Person.allInstances()→forAll(self.age > 18)
Person.allInstances()→forAll(self.height > 180)

Decrease in the rank of allInstances suggests that in the engineered par-
tition of our dataset introduction of a context occurs less frequently. Indeed,
instead of introducing the same context several times and defining the cor-
responding OCL expressions per context, one could combine multiple OCL
expressions sharing the same context using and.

� Example 5.2

Person.allInstances()→forAll(self.age > 18 and self.height > 180)

Preference for combining OCL expressions would, subsequently, results in
the higher number of ands.

In Section 6.1.4 of the original work by Cadavid et al (2015) the authors
list ten constructs that capture 98.6% of all OCL expressions, as illustrated in
Figure 12a. Counting the number of OCL expressions captured by the same
ten constructs in our dataset yields merely 68.3%, as illustrated in Figure 12b.

26 Josh G.M. Mengerink et al.

Table 3: The absolute and relative positions of OperationCalls from Fig-
ure 10a and Figure 11a respectively, ordered largest relative (absolute) differ-
ence first.

OperationCall Cadavid et al (2015) Engineered Partition Difference
and 20 2 +18
implies 19 3 +16
allInstances 7 20 -13
oclIsUndefined 2 13 -11
<> 17 8 +9
not 3 10 -7
union 18 22 -4
oclIsKindOf 10 6 +4
oclIsTypeOF 11 14 -3
asSet 13 16 -3
+ 16 19 -3
size 5 7 -2
or 8 9 -1
oclAsType 4 4 +0
= 1 1 +0
getOutputFlow 9 NA NA
getInputFlow 12 NA NA
getFlows 14 NA NA
notEmpty 15 NA NA
null 6 NA NA
includes NA 12 NA
isEmpty NA 15 NA
at NA 18 NA
- NA 21 NA
asOrderedSet NA 23 NA
first NA 24 NA
<= NA 25 NA

Furthermore, note that getOutputFlow, getInputFlow, and getFlows,
present in Figure 10a, are absent from Figure 11a. Indeed, Cadavid et al (2015)
explain that these are methods that are defined ad-hoc within the OCL ex-
pressions. Such ad-hoc defined OperationCalls, also present in our dataset,
are subdued by generic OperationCalls: the first ad-hoc OperationCall in
the engineered partition of our dataset occurs at rank 63.

The remaining OperationCalls from the top 20 of Cadavid et al., notably
absent from our top 25 are null (that might have been caused by resolution
errors during the parsing step in the original study) and notEmpty (whose
place is taken by isEmpty in the engineered partition of our dataset).

Lastly, equivalence checking (=) is still the most used construct. This seems
logical, as equivalence checking is what constraints are all about.

Summarizing, the set of OCL most frequent OperationCalls identified
by Cadavid et al (2015) is, to a large extent, the same in the our dataset.
Although their positions have shifted, 15 concepts from the top 20 of Cadavid
et al (2015) are still in the top 25 of our full dataset.

Going beyond the context of MDE, we observe that all distributions ob-
served (Figures 9a, 9b, 10a, 10b, 11a, and 11b) exhibit a Pareto-like shape

Title Suppressed Due to Excessive Length 27

that is common in studies related to refactoring (Murphy-Hill et al, 2012)
and, broader, software engineering (Goeminne and Mens, 2011).

5.2 Benchmarking

A major issue with empirical research into model-driven engineering is that
the amount of real-life data is scarce (Gogolla et al, 2013; Gogolla and Cabot,
2016). Most research revolves around standards documents or small corpora
of open-source data.

Industrial data is even more scarce, as most companies consider their MDE
data proprietary. This has several downsides:

– Checking results and findings of studies performed on these closed-source
datasets is impossible;

– Generalization of techniques and results from industrial data are unclear.

We propose to use our large-scale open-source OCL dataset as a bench-
mark. First, studies originally performed on closed-source (industrial) datasets
can be replicated on our dataset evaluating generalisability of the results. Al-
ternatively, one can compare properties of closed-source OCL expressions with
properties of OCL expressions in our dataset. By performing such a compar-
ison one might either conclude that the closed-source OCL expressions are
similar to the ones in our dataset and therefore more advanced conclusions
derived from analyzing our dataset can be transferred to the closed-source
OCL expressions; or the closed-source OCL expressions are inherently differ-
ent from the ones in our dataset requiring a more profound investigation of
the differences between the two.

5.2.1 Open-Source versus Closed-Source

As proof-of-concept we have compared a closed-source dataset of OCL expres-
sions and the OCL expressions in our dataset with respect to their complex-
ity. However, as observed by Munaiah et al (2017), some open source projects
on GitHub are merely examples or student projects rather than engineered
software projects. Therefore, in this section we compare complexity of three
groups of OCL expressions: those on closed-source metamodels, those on ex-
ample metamodels from GitHub and those on engineered metamodels.

Discussion in this section extends our earlier work Mengerink et al (2017a)
by distinguishing example and engineered GitHub metamodels, and conse-
quently performing more advanced statistical analysis.

Methodology We compare the engineered partition of our dataset to a closed-
source (proprietary) dataset obtained from ALTRAN (1982), a large company
offering third-party MDE services. The 93 expressions in the dataset are de-
rived from seven metamodels.

28 Josh G.M. Mengerink et al.

Having identified which files are “engineered” or “examples”, we use EMMA
(Mengerink et al, 2017b) to compute the complexity values for all expressions.
To compare complexity of the engineered partition, example partition, and
closed-source OCL expressions we employ the complexity metric introduced
by Cadavid et al (2015) for the complexity of OCL Expressions (Definition 7
and Listing 12 (Cadavid et al, 2015)). This metric is defined as the the number
of metamodel elements that the expression uses, an approach that is also found
elsewhere (Cabot and Teniente, 2006). Although other metrics may exist, we
adhere to the metric of Cadavid et al (2015), as it is used in the literature and
is easy to understand.

After the complexity measurements have been performed we need to com-
pare three distributions of complexity values. Traditionally, a comparison of
multiple groups follows a two-step approach: first, a global null hypothesis is
tested, then multiple comparisons are used to test sub-hypotheses pertaining
to each pair of groups. The first step is commonly carried out by means of
ANOVA or its non-parametric counterpart, the Kruskal-Wallis one-way anal-
ysis of variance by ranks (Kruskal and Wallis, 1952). The second step uses
the t-test or the rank-based Wilcoxon-Mann-Whitney test (Mann and Whit-
ney, 1947), with correction for multiple comparisons, e.g., Bonferroni correc-
tion (Dunn, 1961; Sheskin, 2003) or the method of Benjamini and Yekutieli
(2001). Unfortunately, the global test null hypothesis may be rejected while
none of the sub-hypotheses are rejected, or vice versa (Gabriel, 1969). More-
over, simulation studies suggest that the Wilcoxon-Mann-Whitney test is not
robust to unequal population variances, especially in the case of unequal sam-
ple sizes (Brunner and Munzel, 2000; Zimmerman and Zumbo, 1992). Recall,
that the collection of OCL over engineered open-source metamodels is more
than 100 times larger than the collection of OCLs over closed-source meta-
models; similarly, variance of complexity for OCL over engineered open-source
metamodels is more than five times larger than variance of complexity of OCLs
over closed-source metamodels.

Therefore, one-step approaches are preferred: these should produce confi-
dence intervals which always lead to the same test decisions as the multiple
comparisons. We use the T̃-procedure of Konietschke et al (2012). This sta-
tistical procedure can perform different kinds of intergroup comparisons: we
focus on the comparisons between all pairs of distributions; such a comparison
is known as a Tukey-type contrast (Tukey, 1951). Furthermore, similarly to
the previous studies we use the default probit transformation and the tradi-
tional 5% family error rate (cf. (Vasilescu et al, 2013; Yu et al, 2016; Swidan
et al, 2017; Cassee et al, 2018)). A more detailed discussion of the application

of the T̃-procedure to software engineering data and an illustrative example
can be found in the article of Vasilescu et al (2013).

To complement the study for statistically significant differences we also
report the effect size using Cliff’s delta (Cliff, 1993).

Title Suppressed Due to Excessive Length 29

Results Distributions of the complexity values of closed-source and open-
source OCL expressions are shown in the violin plots (Hintze and Nelson,

1998) in Figure 13. The T̃-procedure shows that

– OCLs over engineered metamodels tend to be more complex than over the
example metamodels (p is too small to be computed precisely);

– OCL over the closed-source metamodels tend to be more complex than
over the example metamodels (p ∼ 0.02);

– no statistically significant relation could be established between the OCLs
over example metamodels and the closed-source metamodels (p ∼ 0.99);

While the differences between the complexities of OCLs over the engineered
metamodels and the example metamodels, as well as between those over the
engineered metamodels and closed-source metamodels are statistically signif-
icant the effect size is negligible (cf. Romano et al (2006)): ca. 0.12 and 0.13,
respectively.

0 5 10 15 20 25 30 35

O
S

E
ng

in
ee

rd
(n

=
 8

41
1

)

O
S

E
xa

m
pl

es
(n

=
 6

33
4

)

C
lo

se
d

so
ur

ce
(n

=
 9

3
)

Fig. 13: Violin plots of the complexities of closed-source Ecore-based OCL,
and open-source Ecore-based OCL, reproduced from Mengerink et al (2017a).
Note that the numbers are higher than reported in Section 4, because unique
expressions may occur in both example and engineered projects.

Discussion We observe that while two of the three pairs are statistically dif-
ferent the effect size is negligible. i.e., differences in complexity of OCL ex-
pressions over metamodels from open-source engineered projects, open-source

30 Josh G.M. Mengerink et al.

example projects and closed-source projects are practically unimportant. We
therefore conclude that OCL expressions over open-source engineered meta-
models on GitHub, collected in our dataset, can be used as a proxy for studying
complexity of OCL expressions both over open source example metamodels an,
more importantly, over metamodels from closed-source projects. Moreover, we
conjecture that the same conclusion would hold for other metrics defined for
OCL expressions. Validity of this conjecture should be subject of follow-up
studies.

Threats to Validity As any empirical study, discussion in this subsection is
subject to several threats to validity. We postpone their discussion to Section 7.

Future Work Future work would be to involve closed-source meta-models com-
ing from a larger number of companies, to strengthen the statistics for this
experiment. However, as industry is quite protective of its models, we envision
obtaining a broad and representative set to be tedious if not impossible.

5.2.2 Ecore versus Acceleo

Following the results from Section 5.2.1, we assess to what extent results ob-
tained in EMF-based OCL context could be generalized to other contexts. In
this study we use both the Ecore-based and MTL-based (Acceleo) collections
of our dataset.

Methodology As above we perform the Mann-Whitney test using p = 0.05 as
a threshold, with the following hypotheses:

– H0: The distributions of complexity of the samples of Ecore-based and
MTL-based OCL expressions represent two populations with the same me-
dian values.

– Halt: The distributions of complexity of the samples of Ecore-based and
MTL-based OCL expressions represent two populations with different me-
dian values.

As in Section 5.2.1, we complement the study by using Cliff’s delta for effect
size.

Results Distribution of complexities of OCL expressions derived from meta-
models and model transformations is illustrated in Figure 14. The p-value
associated with the Mann-Whitney test is too small to be computed precisely,
p < 2.2×10−16, i.e., H0 can be rejected. Computing the effect size using Cliff’s
delta yields a value of 0.568 with a 95% confidence interval of [0.557, 0.578].
This effect size can be interpreted as large Romano et al (2006).

Title Suppressed Due to Excessive Length 31

Discussion With a p-value too small to compute precisely, there is a statis-
tically significant difference between complexity in Acceleo and Ecore-based
OCL. Moreover, the effect size is large suggesting that OCL expressions from
open-source Ecore are substantively more complex than those from open-
source MTL. This is to be expected, as the roles OCL takes on in both contexts
are different. In Ecore, OCL is primarily used to define constraints on abstract-
syntax structures (e.g., Context graph: self.outDegree > 1). Whereas in
Acceleo, OCL is used primarily to define queries and selectors for transforma-
tions (e.g., ePackage.eClassifiers->filter(EClass))).

The conclusion from this experiment is thus, that results obtained from
Ecore-based OCL may not necessarily be generalized to Acceleo, and vice-
versa. Based on this observation we revisit the discussion of the frequency of
the OCL constructs (cf. Figures 8 and 9b) and investigate the distribution
of the frequency of the OCL constructs for four different categories of OCL
expressions: those derived from open-source meta-models, closed-source meta-
models, open-source transformations and closed-source transformations. OCL
expressions from open-source meta-models and open-source transformations
constitute our dataset; those from the closed-source meta-models have been
discussed in Section 5.2.1 and those from the closed-source transformations
cannot be made public due to confidentiality reasons. Figure 15 summarizes

0 5 10 15 20 25 30 35

O
S

 E
co

re
(n

=
91

73
)

O
S

 M
T

L
(n

=
94

08
9)

Fig. 14: Violin plots of the complexities of OCL in Ecore- versus Acceleo-based
OCL.

32 Josh G.M. Mengerink et al.

the normalized usage frequencies, i.e., percentages of usage. We opt for per-
centages such that we could compare the usage for different categories.

Figure 15 shows that the usage of OCL constructs differs heavily per chosen
category of OCL expressions, e.g., Variable is the most frequent construct
in closed-source (industrial) transformations, while StringLiteral occupies
the highest share among the OCL constructs. This suggests that results ob-
tained for one category of OCL expressions are not necessarily transferable to
a different category.

5.3 Limiting Threats to Validity of Another Study

In this subsection we show how the dataset compiled can be used to evaluate
assumptions made by previously published analysis techniques. Indeed, if those
assumptions are frequently challenged by the real OCL code, more advanced
analysis techniques should be developed; if, however, these assumptions hold in
the lion’s share of OCL code, then they can be safely made: a similar argument

Fig. 15: Normalized usage of various OCL constructs: closed-source (indus-
trial) meta-models, closed-source (industrial) model-to-text transformations
(mtl), open-source meta-models, and open-source model-to-text transforma-
tions (mtl). The blue bars (open-source meta-models) correspond to Figure 9b.

Title Suppressed Due to Excessive Length 33

has been recently made by Landman et al (2017) for static analysis of Java
programs using reflection, and by Casalnuovo et al (2015) for usage of the
C/C++ assert construct. Both Landman et al (2017) and Casalnuovo et al
(2015) used GitHub data to evaluate validity of the assumptions.

To illustrate this application of the dataset we consider the work of Anas-
tasakis et al (2008) and evaluate practical relevance of the assumptions made.
Anastasakis et al (2008) advocated analysis of UML models by first trans-
forming them to Alloy (Jackson, 2012), and then applying constraints solving
techniques to the resulting models. However, the authors also observed that
various OCL concepts cannot be expressed in Alloy, possibly rendering their
technique inapplicable in practice.

The leading example of discrepancy between UML and Alloy is the Iterate
operation, which has no equivalent in Alloy. The Iterate concept is used
for imperative-style iteration over collections, however Alloy is a declarative-
oriented language, and as such no generic translation exists.

By consulting our dataset with respect to the Iteratre construct, we
observe that:

– 8% (19/245) of repositories use the Iterate construct;
– only 5% of (24/504) of all meta-models within these projects use the con-

struct. It thus appears that the number of meta-models per project that
use Iterate is limited;

– at an even larger scale, less than 1% (82/9173) of OCL expressions make
use of the Iterate construct. So even within the limited number of meta-
models that use the construct, the amount of OCL expressions that require
it also limited.

Hence, most OCL expressions are not affected by the limitation identified
by Anastasakis et al (2008), and the technique of Anastasakis et al (2008) can
be applied to almost all expressions.

6 Related work

The need for replication on larger dataset from a broad context of domains
publicly has been listed as future work for many empirical study in MDE; more
recently this need has been also recognized by researchers in MDE (Gogolla
et al, 2013; Gogolla and Cabot, 2016).

As explained in the Introduction most of the research so far has either
considered prepared datasets rather than the real-world ones (e.g., the work
of Reynoso et al (2006) and Correa et al (2007)) or relatively small collections
of OCL expressions (e.g., the work of Cadavid et al (2015), Cabot6, and
Basciani et al (2014)). The current submission is based on and extends two of
our earlier publications (Noten et al, 2017a; Mengerink et al, 2017a). In (Noten
et al, 2017a) we have described the data collection process, presented the
dataset of OCL expressions derived from the Ecore meta-models, replicated

6 https://github.com/jcabot/ocl-repository

34 Josh G.M. Mengerink et al.

a study of Cadavid et al (2015) and evaluated the assumptions made by a
previous work of Anastasakis et al (2008). In the follow-up work (Mengerink
et al, 2017a) we have compared complexity of OCL expressions derived from
open-source and industrial meta-models.

In particular, compared to these publications in the current work we in-
vestigate a more diverse set of files including model transformations.

7 Threats to Validity

As with any empirical research, the data collection process is subject to several
threats to validity.

Construct Validity Construct validity is the degree to which the test used mea-
sures the construct the test has been designed to measure. For instance, in our
study of Open-Source versus Closed-Source OCL expressions in Section 5.2.1
we follow Cadavid et al (2015) and operationalize complexity of an OCL ex-
pression as the number of meta-model elements that the expression uses. While
this approach is also found elsewhere (Cabot and Teniente, 2006), it provides
a very restricted view on the notion of complexity, and therefore, introduces
imminent threats to construct validity. Indeed, structure of an OCL expression
or names of the meta-model elements referenced can be expected to be related
to the expression complexity in the same way as structure of a function and
names of the variables used are related to complexity of traditional software
systems. We consider, however, designing a validated complexity measure for
OCL expressions to be a challenge of its own going beyond the scope of this
article. artofzThe dataset we provide can be used to assess validity of such a
complexity measure.

Furthermore, our operationalization of “example” metamodels assumes
that the fully qualified package name contains an indication whether the
project is an example or not, and is based on manual identification of terms-
related to examples among terms frequently used in the fully qualified package
names. To reduce the impact of this threat, the labeling was carried out by
the first author, having a masters degree in computer science.

Internal Validity Internal validity is related to the inference of the conclusions
based on the data collected.

Validity of our conclusions might have been threatened by our decision to
use GitHub, e.g., due to the limitations of the search functionality of GitHub
(git, 2008). The search functionality of GitHub only allows searching of the
main branch in repositories, i.e., our search query might miss files (Bird et al,
2009). However, our data is less likely to contain experimental files, giving
a more accurate representation of finished products. Similarly, files might be
missed due to project forks being excluded by default from the GitHub search.
While, in general, this is beneficial as it reduces noise in the data, it is also
possible that forks contain new data as well, which we then miss.

Title Suppressed Due to Excessive Length 35

Moreover, only files smaller than 384 KB are searchable. This means that
the search misses repositories in which all .ocl and .ecore files exceed 384KB
(note that we download full repositories that we identified, potentially includ-
ing files bigger than 384KB). To estimate the number of .ecore and .ocl

files larger than 384KB, we investigate the repositories that we included in the
data set. We conclude that of all .ecore and .ocl files in the repositories, 3%
(739/25130) is bigger than 384 KB. We therefore expect the impact of this
threat to be limited.

Yet another limitation of the search pertains to very big repositories:
GitHub search covers only repositories with fewer than 500,000 files. This
may cause us to miss files in very large repositories. Plotting the number of
files per repository in our dataset (Figure 16) reveals that there are two ma-
jor outliers at approximately 80,000 and 100,000 files. This indicates that the
probability of missed repositories (i.e., repositories with over 500,000 files) is
slim.

Specifically, internal validity of the example studies in Section 5 might also
have been threatened by the choice of the statistical machinery. We have used
well-established statistical techniques that have been successfully applied to
software engineering.

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Fig. 16: A boxplot of the number of files per repository

External Validity External validity pertains to generalization of the conclu-
sions derived beyond the context of our study. While we do not claim our
findings to be valid beyond GitHub, as a future work we plan to extend the
data set with additional sources of data, such as SourceForge, OMG docu-
ments, and scientific articles.

36 Josh G.M. Mengerink et al.

The major concern for external validity of our study in Section 5.2 is related
to the fact that our collection of OCL expressions over metamodels from closed-
source projects is small, and that all these projects have been carried out by the
same organization. Unfortunately, real-life MDE data is scarce (Gogolla et al,
2013; Gogolla and Cabot, 2016) and real-life closed-source data is even less
accessible for the researchers. Therefore, we would like to encourage replication
of our study (Shull et al, 2008) with the goal of confirming or circumscribing
its conclusions.

8 Conclusions

In this work we present a publicly available dataset of OCL expressions derived
from GitHub. The dataset is composed of two collections of OCL expressions:

– A collection of 9173 OCL expressions, derived from 504 unique .ocl and
.ecore files, originating from 245 systematically selected GitHub reposi-
tories Noten et al (2017a)

– A collection of 94089 OCL expressions, derived from 2634 unique .mtl files
originating from 349 systematically selected GitHub repositories.

The data set includes the original .ocl, .ecore, and .mtl files, as well as
the generated AST files for the OCL/Ecore dataset. The AST files are stored
in XMI format conforming to the OCL Pivot Meta Model. Furthermore, lists
of used repositories, as well as a variety of metadata for the various files is
provided.

This data set allows for a variety of empirical studies of the OCL, includ-
ing usage studies and practical evaluations of proposed techniques. We have
performed several case studies of various types to illustrate the applicability of
this data set in practice. As such, we highly encourage the reader to download
the dataset7, as we consider the primary value of this work to be the dataset
itself, not the example experiments we have performed with it.

In particular, we have extended the previous version of our dataset (Noten
et al, 2017a) with OCL expressions drawn from Acceleo-based model-to-text
transformations. This adds a plethora of possible new studies, a hint of which
we have presented in Section 5.2.

Throughout this work, we have already hinted at various pieces of future
work with respect to the experiments performed. However, as stated, the pri-
mary value of this work is the dataset itself, and as such most of the future
work will be in improving it.

Firstly, extending the dataset with an even broader set of models is a
main piece of future work. One could consider different sources such as Google
Code, SourceForge, but also data from bug-trackers or mailing lists could be
considered.

Furthermore, OCL is used in a broader scope than just Ecore or model-to-
text. One could also include models that use OCL to implement operations,

7 https://github.com/tue-mdse/ocl-dataset

Title Suppressed Due to Excessive Length 37

or model-to-model transformations that also use OCL. The list of reposito-
ries that were used for mining MTL- and Ecore-based data should serve as a
valuable research for enabling such extensions.

Acknowledgements The work of the first author has been funded by the ASML Holding
N.V.

References

(2008) GitHub help — searching code. https://help.github.com/

articles/searching-code/, accessed: 2017-03-14
ALTRAN (1982) ALTRAN. https://www.altran.com, accessed: 2018-04-10
Anastasakis K, Bordbar B, Georg G, Ray I (2008) On challenges of model

transformation from UML to Alloy. Software & Systems Modeling 9(1):69–
86

Basciani F, Di Rocco J, Di Ruscio D, Salle AD, Iovino L, Pierantonio A
(2014) MDEForge: an extensible web-based modeling platform. In: Cloud-
MDE@MoDELS, CEUR-WS, pp 66–75

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in
multiple testing under dependency. The Annals of Statistics 29:1165–1188

Bézivin J (2006) Model driven engineering: An emerging technical space. In:
Generative and Transformational Techniques in Software Engineering, Lec-
ture Notes in Computer Science, vol 4143, Springer, pp 36–64

Bird C, Rigby PC, Barr ET, Hamilton DJ, Germán DM, Devanbu PT (2009)
The promises and perils of mining git. In: Mining Software Repositories, pp
1–10

Bottoni P, Koch M, Parisi-Presicce F, Taentzer G (2001) A visualization of
OCL using collaborations. In: Gogolla M, Kobryn C (eds) “UML” 2001—
The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
Springer, pp 257–271, DOI 10.1007/3-540-45441-1 20

Brunner E, Munzel U (2000) The Nonparametric Behrens-Fisher Problem:
Asymptotic Theory and a Small-Sample Approximation. Biometrical Jour-
nal 42(1):17–25

Cabot J, Teniente E (2006) A metric for measuring the complexity of OCL ex-
pressions. In: Models in Software Engineering, Workshops and Symposia—
Model Size Metrics Workshop, pp 1–10

Cadavid JJ, Combemale B, Baudry B (2015) An analysis of metamodeling
practices for MOF and OCL. Computer Languages, Systems & Structures
41:42–65

Casalnuovo C, Devanbu P, Oliveira A, Filkov V, Ray B (2015) Assert use in
GitHub projects. In: IEEE International Conference on Software Engineer-
ing, IEEE, pp 755–766

Cassee N, Pinto G, Castor F, Serebrenik A (2018) How Swift developers handle
errors. In: Mining Software Repositories, pp 292–302

38 Josh G.M. Mengerink et al.

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal ques-
tions. The Psychological Bulletin 114:494–509

Correa A, Werner C, Barros M (2007) An empirical study of the impact of
OCL smells and refactorings on the understandability of OCL specifications.
In: ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems, Springer, Lecture Notes in Computer Science, vol 4735,
pp 76–90

Cuadrado JS, Molina JG (2007) Building domain-specific languages for model-
driven development. IEEE Software 24(5):48–55

Dunn OJ (1961) Multiple comparisons among means. Journal of the American
Statistical Association 56(293):52–64

Eclipse Juno (2012) Eclipse Juno Documentation. http://help.eclipse.

org/juno/index.jsp, accessed: 2015-10-07
Ecore (2004) Ecore. http://www.eclipse.org/modeling/emf/, accessed:

2016-7-20
Gabriel KR (1969) Simultaneous test procedures—some theory of multiple

comparisons. The Annals of Mathematical Statistics 40(1):224–250
Goeminne M, Mens T (2011) Evidence for the Pareto principle in open source

software activity. In: Workshop on Software Quality and Maintainability, pp
74–82

Gogolla M, Cabot J (2016) Continuing a benchmark for UML and OCL design
and analysis tools. In: Software Technologies: Applications and Foundations
- Collocated Workshops, Revised Selected Papers, Springer, Lecture Notes
in Computer Science, vol 9946, pp 289–302

Gogolla M, Büttner F, Richters M (2007) USE: A UML-based specification en-
vironment for validating UML and OCL. Science of Computer Programming
69(1–3):27–34

Gogolla M, Büttner F, Cabot J (2013) Initiating a benchmark for UML and
OCL analysis tools. In: TAP, Springer, Berlin, Heidelberg, pp 115–132

Gousios G, Spinellis D (2012) GHTorrent: GitHub’s data from a firehose. In:
Mining Software Repositories, IEEE, pp 12–21

Habela P, Kaczmarski K, Stencel K, Subieta K (2008) OCL as the query
language for UML model execution. In: International Conference on Com-
putational Science, Springer, Lecture Notes in Computer Science, vol 5103,
pp 311–320

Hebig R, Ho-Quang T, Chaudron MRV, Robles G, Fernández MA (2016)
The quest for open source projects that use UML: mining GitHub. In:
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems, pp 173–183

Heitlager I, Kuipers T, Visser J (2007) A practical model for measuring main-
tainability. In: Machado RJ, Brito e Abreu F, Rupino da Cunha P (eds)
Quality of Information and Communications Technology, IEEE, pp 30–39

Hermans F, Pinzger M, van Deursen A (2009) Domain-specific languages in
practice: A user study on the success factors. In: ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, Springer,
pp 423–437

Title Suppressed Due to Excessive Length 39

Hintze JL, Nelson RD (1998) Violin plots: A box plot-density trace synergism.
The American Statistician 52(2):181–184

Hutchinson JE, Rouncefield M, Whittle J (2011a) Model-driven engineering
practices in industry. In: IEEE International Conference on Software Engi-
neering, ACM, pp 633–642

Hutchinson JE, Whittle J, Rouncefield M, Kristoffersen S (2011b) Empiri-
cal assessment of MDE in industry. In: IEEE International Conference on
Software Engineering, pp 471–480

Jackson D (2012) Software Abstractions: logic, language, and analysis. MIT
press

Jouault F, Kurtev I (2006) Transforming models with atl. In: Bruel JM (ed)
Satellite Events at the MoDELS 2005 Conference, Lecture Notes in Com-
puter Science, vol 3844, Springer, pp 128–138

Kleppe AG, Warmer JB, Bast W (2003) MDA explained: the model driven
architecture: practice and promise. Addison-Wesley Professional

Kolovos DS, Paige RF, Polack FAC (2008) The epsilon transformation lan-
guage. In: Vallecillo A, Gray J, Pierantonio A (eds) International Conference
on Model Transformation, Springer, pp 46–60

Kolovos DS, Matragkas ND, Korkontzelos I, Ananiadou S, Paige RF (2015) As-
sessing the use of eclipse MDE technologies in open-source software projects.
In: International Workshop on Open Source Software for Model Driven Engi-
neering co-located with ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems, pp 20–29

Konietschke F, Hothorn LA, Brunner E (2012) Rank-based multiple test proce-
dures and simultaneous confidence intervals. Electronic Journal of Statistics
6:738–759

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association 47(260):583–621

Kuhlmann M, Hamann L, Gogolla M (2011) Extensive validation of OCL
models by integrating SAT solving into USE. In: International Conference
on Objects, Models, Components, Patterns (TOOLS), Springer, pp 290–306

Landman D, Serebrenik A, Vinju JJ (2017) Challenges for static analysis of
Java reflection: literature review and empirical study. In: IEEE International
Conference on Software Engineering, IEEE / ACM, pp 507–518

Mann HB, Whitney DR (1947) On a test of whether one of two random vari-
ables is stochastically larger than the other. The Annals of Mathematical
Statistics 18(1):50–60

Mengerink JGM, Schiffelers RRH, van den Brand MGJ, Serebrenik A (2017a)
A case of industrial vs. open-source OCL: Not so different after all. In:
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and SystemsSatellite Events, pp 472–474

Mengerink JGM, Serebrenik A, Schiffelers RRH, van den Brand MGJ (2017b)
Automated analyses of model-driven artifacts: Obtaining insights into real-
life application of MDE. In: 27th International Workshop on Software Mea-
surement and 12th International Conference on Software Process and Prod-
uct Measurement (IWSM-Mensura), pp 116–121

40 Josh G.M. Mengerink et al.

Menzies T, Williams L, Zimmermann T (2016) Perspectives on Data Science
for Software Engineering. Morgan Kaufmann

MOF (1996) MOF. http://www.omg.org/spec/MOF/, accessed: 2016-04-07
Mohagheghi P, Gilani W, Stefanescu A, Fernandez MA (2013) An empirical

study of the state of the practice and acceptance of model-driven engineering
in four industrial cases. Empirical Software Engineering 18(1):89–116

MTL (2016) MTL
Muller J (1998) The great Logo Adventure: Discovering Logo on and off the

computer. Doone
Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for engi-

neered software projects. Empirical Software Engineering 22(6):3219–3253
Murphy-Hill E, Parnin C, Black AP (2012) How we refactor, and how we know

it. IEEE Transactions on Software Engineering 38(1):5–18
Noten J, Mengerink JGM, Serebrenik A (2017a) A data set of OCL expressions

on GitHub. In: Mining Software Repositories, pp 531–534
Noten J, Mengerink JGM, Serebrenik A (2017b) A data set of

OCL expressions on GitHub. https://doi.org/10.4121/uuid:

83317fd5-91f5-4e4b-b475-3e2d8ff12d1c, accessed: 2018-03-12
Oliveira P, Lima FP, Valente MT, Serebrenik A (2014) RTTool: A tool for

extracting relative thresholds for source code metrics. In: IEEE International
Conference on Software Maintenance and Evolution, IEEE, pp 629–632

OMG (1989) OMG. http://www.omg.org, accessed: 2017-07-03
Petre M (2013) UML in practice. In: IEEE International Conference on Soft-

ware Engineering, IEEE, pp 722–731
QVT (2015) QVT. http://www.omg.org/spec/QVT/, accessed: 2015-04-07
QVTo (2015) QVTo. http://www.eclipse.org/mmt/?project=qvto, ac-

cessed: 2015-04-07
Reynoso L, Genero M, Piattini M, Manso E (2006) Does object coupling re-

ally affect the understanding and modifying of OCL expressions? In: ACM
Symposium on Applied Computing, ACM, pp 1721–1727

Richters M, Gogolla M (1998) On formalizing the UML object constraint lan-
guage OCL. In: Conceptual Modeling, Springer, Lecture Notes in Computer
Science, vol 1507, pp 449–464

Robles G, Ho-Quang T, Hebig R, Chaudron MRV, Fernandez MA (2017) An
extensive dataset of UML models in GitHub. In: Mining Software Reposi-
tories, IEEE, pp 519–522

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring
methods for evaluating group differences on the NSSE and other surveys:
Are the t-test and Cohens d indices the most appropriate choices? In: Annual
Meeting of the Southern Association for Institutional Research

Rose LM, Kolovos DS, Paige RF, Polack FA (2010) Model migration with Ep-
silon Flock. In: International Conference on Model Transformation, Lecture
Notes in Computer Science, vol 6142, Springer, pp 184–198

Scheidgen M (2006) CMOF-model semantics and language mapping for MOF
2.0 implementations. In: Joint Meeting of The Fourth Workshop on Model-
Based Development of Computer-Based Systems and The Third Interna-

Title Suppressed Due to Excessive Length 41

tional Workshop on Model-based Methodologies for Pervasive and Embed-
ded Software (MBD/MOMPES), IEEE, pp 84–93

Sheskin DJ (2003) Handbook of parametric and nonparametric statistical pro-
cedures. CRC Press

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in
empirical software engineering. Empirical Software Engineering 13:211–218

Swidan A, Serebrenik A, Hermans F (2017) How do Scratch programmers
name variables and procedures? In: IEEE International Working Conference
on Source Code Analysis and Manipulation, pp 51–60

SysML (2001) OMG SysML. http://www.omgsysml.org/, accessed: 2016-07-
05

Tukey JW (1951) Quick and dirty methods in statistics, part II, Simple analy-
sis for standard designs. In: American Society for Quality Control, pp 189–
197

UML (1997) UML. http://www.uml.org/, accessed: 2016-06-28
Vasilescu B, Serebrenik A, Goeminne M, Mens T (2013) On the variation and

specialisation of workload—a case study of the Gnome ecosystem commu-
nity. Empirical Software Engineering 19(4):955–1008

Warmer J, Kleppe A (2003) The Object Constraint Language: Getting Your
Models Ready for MDA, 2nd edn. Addison-Wesley

Whittle J, Hutchinson JE, Rouncefield M (2014) The state of practice in
model-driven engineering. IEEE software 31(3):79–85

Willink ED (2011) Aligning OCL with UML. Electronic Communication of
the European Association of Software Science and Technology 44

Yu Y, Wang H, Yin G, Wang T (2016) Reviewer recommendation for pull-
requests in GitHub: What can we learn from code review and bug assign-
ment? Information & Software Technology 74:204–218

Zimmerman DW, Zumbo BD (1992) Parametric alternatives to the Student t
test under violation of normality and homogeneity of variance. Perceptual
and motor skills 74(3(1)):835–844

