
Noname manuscript No.
(will be inserted by the editor)

Reducing User Input Requests to Improve IT
Support Ticket Resolution Process

Monika Gupta · Allahbaksh Asadullah ·
Srinivas Padmanabhuni · Alexander
Serebrenik

Received: date / Accepted: date

Abstract Management and maintenance of IT infrastructure resources such as
hardware, software and network is an integral part of software development and
maintenance projects. Service management ensures that the tickets submitted
by users, i.e. software developers, are serviced within the agreed resolution
times. Failure to meet those times induces penalty on the service provider. To
prevent a spurious penalty on the service provider, non-working hours such as
waiting for user inputs are not included in the measured resolution time, that
is, a service level clock pauses its timing. Nevertheless, the user interactions
slow down the resolution process, that is, add to user experienced resolution
time and degrade user experience. Therefore, this work is motivated by the
need to analyze and reduce user input requests in tickets’ life cycle.

To address this problem, we analyze user input requests and investigate
their impact on user experienced resolution time. We distinguish between input
requests of two types: real, seeking information from the user to process the
ticket and tactical, when no information is asked but the user input request
is raised merely to pause the service level clock. Next, we propose a system
that preempts a user at the time of ticket submission to provide additional
information that the analyst, a person responsible for servicing the ticket, is

Monika Gupta
Indraprastha Institute of Information Technology, Delhi, India
E-mail: monikag@iiitd.ac.in

Allahbaksh Asadullah
Infosys Ltd., India
E-mail: allahbaksh asadullah@infosys.com

Srinivas Padmanabhuni
Tarah Technologies, India
E-mail: spadmanabhuni@gmail.com

Alexander Serebrenik
Eindhoven University of Technology, The Netherlands
E-mail: a.serebrenik@tue.nl

2 Monika Gupta et al.

likely to ask, thus reducing real user input requests. Further, we propose a
detection system to identify tactical user input requests.

To evaluate the approach, we conducted a case study in a large global IT
company. We observed that around 57% of the tickets have user input requests
in the life cycle, causing user experienced resolution time to be almost twice as
long as the measured service resolution time. The proposed preemptive system
preempts the information needs with an average accuracy of 94–99% across
five cross validations while traditional approaches such as logistic regression
and naive Bayes have accuracy in the range of 50–60%. The detection system
identifies around 15% of the total user input requests as tactical. Therefore, the
proposed solution can efficiently bring down the number of user input requests
and, hence, improve the user-experienced resolution time.

Keywords Software Process · Machine Learning · Process Mining · Service
Level Agreement · Ticket Resolution Time

1 Introduction

Infrastructure support is an integral part of software development and main-
tenance projects. It is usually handled by the Information Technology In-
frastructure Support (ITIS) team [5][15]. The ITIS team is responsible for
effective deployment, configuration, usage, management and maintenance of
IT infrastructure resources such as hardware, software, and network [7]. The
ITIS team ensures stable conditions for the production systems, and enhances
performance of the features and products created by developers [35].

ITIS service is supported by an information system that is, referred to
as ITIS information system. It is a ticketing system to simplify logging of
tickets by customers (here software developers), facilitate tracking, monitoring,
and resolution of tickets by analysts. The software developers request IT
infrastructure support for their business projects. Efficient servicing of requests
is essential for the success of the business [6][7]. Organizations usually have
a well-defined workflow to streamline the servicing of IT support tickets [7].
Typically, a user reports a ticket in the information system by selecting the
ticket category such as hardware, software, and network. Every category has
a corresponding ticket reporting template to capture information deemed
necessary for servicing the ticket. The ITIS information system automatically
asks the user to provide details in the template for the chosen category. The
user often provides textual description for the requested service, and category-
specific details. On the basis of the ticket category, service level resolution
time gets associated with the ticket. Service level clock is used to measure the
service resolution time for every ticket and can have two states: pause (stops
measuring the time) and resume (continues measuring the time). On the basis
of business criticality, the service level resolution time for every ticket category
is agreed a priori between the service provider and the client (user) as part of
service level agreement [1][6]. The ticket is assigned to an analyst, a person
responsible for servicing the ticket within the associated service level resolution

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 3

time. It is crucial to service within agreed service levels because nonfeasance
leads to penalty on the service provider [8]. The analyst can ask for user inputs
while resolving the ticket. When this happens the state of the ticket changes
to Awaiting User Inputs (AUI). To prevent spurious penalty on the service
provider, the service level clock pauses while the ticket is in the AUI state.
Nevertheless, the time spent while remaining in the AUI state adds to the
user experienced resolution time. Indeed, passing back and forth of tickets
for getting user input slows down the resolution process and degrades user
experience [1]. Therefore, users typically like to have their tickets serviced with
the minimum interaction requirements [1].

Analysts might require user input for various reasons such as incomplete
or unclear information provided by the user, input information requirements
not being defined clearly and completely, resolution of some tickets requiring
specific information which is not intuitive to user, and analysts not interpreting
the user inputs correctly [1]. These user input requirements can be avoided by
ensuring that the information required for ticket resolution is provided by the
user at the time of ticket submission itself.

Further given the paramount importance of honoring service level agreement,
marking a ticket as Awaiting User Inputs is used as a sneaky way to achieve the
service level target of resolution time [1][74]. In general, analysts are guided to
request user inputs only if they genuinely need information for ticket resolution.
However, previous research suggests that there are cases of non-information
seeking, tactical user input requests, performed merely for the sake of pausing
the service level clock, and thus degrading the user experience [74]. Therefore, to
reduce the overall number of user input requests, we need to handle tactical user
input requests in addition to ensuring the availability of relevant information
at the time of ticket submission.

The work presented in this paper is motivated by the need to analyze
and reduce the overall user input requests in IT support tickets’ life cycle,
thus improving the user experienced resolution time and thereby enhancing
user experience.

1.1 Real Motivating Example

Fig. 1 illustrates a real example of ticket’s life cycle from the information
system of a large global IT company. As shown, a user reports a ticket in
category software and sub-category install with a short description: “Please
install following software on my machine. This is a CORE software as per
EARC”. EARC is a software classification system internal to the organization.
The user also provides category specific details such as hardware asset id,
platform, software name, and software version. Based on a priori agreed service
levels, the resolution time of 9 hours gets associated with the ticket. Next, the
ticket gets assigned to an analyst. The analyst starts working on the ticket

4 Monika Gupta et al.

Fig. 1 A real example of ticket life cycle from a large global IT company, illustrating the
problem of delay (here delay of 87 hours 34 min) in overall user experienced resolution time
due to multiple user input requests by analyst.

and requests the user to “provide risk and ops team approval”, changing the
ticket status to Awaiting User Inputs. The user attaches the approval after
21 hours 34 min (as labeled on the edge in Fig. 1). This time is not counted
towards service level resolution time but it is experienced by the user. Such
real, information seeking user input requests could have been avoided if the
user had been preempted at the time of ticket submission and required to
provide the risk and ops team approval upfront. Some time after receiving the
user’s input, the analyst again changes the status to Awaiting User Inputs
with the comment “Will check and update soon” (highlighted with the dotted
outline). Inspecting this comment, we notice that no information is sought
from the user; subsequently the ticket status changes to Resolved without any
input from the user. The time for this transition, that is, 66 hours is also
experienced by user but not included in the measured resolution time. Such
tactical, non-information seeking user input requests need to be detected and
handled separately. Summarizing, the resolution time measured by the service
level clock that is, 5 hours 52 min (10 min + 3 hours 32 min + 2 hours 10 min)
is significantly lower than the user experienced resolution time of 93 hours 26
min (10 min + 3 hours 32 min + 21 hours 34 min + 2 hours 10 min + 66
hours). Consequently, for the presented example, the measured resolution time
is within the agreed threshold of 9 hours, i.e. there is no service level violation.
However, the user did not experience the agreed service quality because of two
user input requests. Both real and tactical user input requests add to the user
experienced resolution time and need to be minimized.

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 5

1.2 Research Contributions

To analyze the IT support ticket resolution process and reduce overall user
input requests, we make following research contributions:

1. To analyze the user input requests and their impact on user experienced
resolution time, we discover runtime (reality) process from ticket data as
opposed to measuring performance metrics, by novel applications of process
mining [18]. Process mining consists of analyzing event logs generated
from business process execution by the information systems [18][73]. The
discovered process helps managers to decide if there is need for reducing real
and tactical user input requests. Section 4 provides details on the process
discovery and performance analysis.

2. To reduce real input requests in tickets’ life cycle, an automated machine
learning based preemptive model is designed. It preempts users at the time
of ticket submission to provide additional information which the analyst is
likely to ask, thus overcoming the limitations of ticket reporting templates.
Section 5 presents the detailed model.

3. To reduce tactical input requests, a real time rule-based detection model
decides whether the user input request by an analyst is tactical and identify
its refined class to facilitate suitable actions against such requests. Section
6 focuses on the detection model.

4. To demonstrate the usefulness of the proposed solution approach for redu-
cing user input requests, we conduct a case-study on ITIS data of a large
global IT company. We triangulate our study by conducting a survey with
both users and analysts. Sections 7 and 8 provide details on the case study.

2 Background and Related Work

In this section, we discuss the background of our work including the work
related to ITIS process improvement and selection of technology used to address
the problem.

2.1 ITIS Process Improvement

We start by discussing the work on ITIS process improvement. To be able
to improve, it is important to measure the performance of the ITIS process.
Standards for service organizations such as COBIT, ISO 20000, and IT infra-
structure library, help to establish a set of practices and processes for effective
and efficient service management [47][48][69]. They define objectives for IT
infrastructure support and link them to high-level metrics such as the average
ticket resolution time, and the number of ticket reopens. However, these high-
level metrics are not sufficient to capture the finer grain level details required
for investigating the root cause for poor performance and deciding on corrective
actions.

6 Monika Gupta et al.

Approaches based on mining ticket data for ITIS process improvement are
more closely related to our work. Barash et al. focused on providing useful
metrics to assess and improve performance of IT support ticket management
process [6]. Bartolini et al. presented HANNIBAL, a business impact-driven
decision support tool enabling business managers to make well informed de-
cisions about the critical incident (ticket) management processes [7]. Li et al.
demonstrated several statistical techniques for analyzing IT support ticket
data to identify anomalies [44]. Bartsch et al. presented a Petri-net based
approach in order to simulate service processes in terms of availability levels,
thus assisting service providers and their customers when negotiating Service
Level Agreement (SLA) during design time [8]. Ferreira et al. applied process
mining to extract the existing process and assess whether a business process
follows ITIL guidelines by conducting a real world case study [21]. Palshikar et
al. proposed a domain driven-data mining approach to solve specific business
problems such as overall workload reduction, improved ticket processing and
better SLA compliance for ITIS services and validated on more than 25 large
real-life ITIS datasets [49]. Also, a domain data mining approach is proposed
to streamline the ITIS services in terms of levels (L1 or L2) at which tickets
are handled for reducing service cost and improving service levels [48]. Weerdt
et al. proposed a combination of trace clustering and text mining to enhance
process discovery techniques with the purpose of retrieving more useful insig-
hts for incident management process [19]. While these works addressed the
improvement of IT support ticket management process by leveraging data
and process mining based techniques, they did not focus on analyzing and
reducing user input requests. Their emphasized on achieving better service
level compliance and meeting business objectives of IT support organization,
by identifying inefficiencies.

The BPI challenge 2013 investigated event logs from an incident and problem
management system, provided by Volvo IT Belgium, by applying process mining
[74]. One of the challenge’s aim was to investigate “wait user abuse” that is,
user input requests during resolution of tickets. The challenge answered high
level questions such as frequency of user input requests, behavior per support
team and per organization, and average delay in ticket resolution time due
to user input requests [50][70]. The challenge also leveraged process mining
techniques for analyzing wait user abuse. However, they did not distinguish
between real and tactical user input requests and did not provide any solution
to reduce overall user input requests in the IT support ticket resolution process.

To the best of our knowledge, this is the first work on investigating the
extent of user input requests and distinguishing them as real and tactical,
and analyzing the impact of user input requests on user experienced ticket
resolution time, using process mining techniques. Further, the work proposes a
preemptive and detection model to reduce real and identify tactical user input
requests respectively. The approach is validated through a case study in a large
global IT company.

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 7

2.2 Process Mining of Software Repositories

We advocate process mining for analyzing user input request patterns in the IT
support ticket resolution process because process mining has been advocated
as a means of analyzing process reality in previous studies [71]. Process mining
takes an event log as input and is used for various purposes such as process
discovery, conformance verification, case prediction, history based recommen-
dations and organizational analysis [71]. It has already been applied to analyze
business processes from multiple domains [71][72]. Process mining of software
repositories has diverse applications and has attracted the attention of several
researchers due to the availability of vast data generated and archived in e.g.
issue tracking systems, version control systems, and mail archives. Process mi-
ning of software repositories can provide Capability Maturity Model Integration
(CMMI) assessors with relevant information and can support existing software
process assessment and improvement approaches [59]. Some of the business
applications of process mining of software repositories are: uncovering runtime
process models [28][40], discovering process inefficiencies and inconsistencies
[2][28], observing project key indicators and computing correlation between
product and process metrics [66], extracting general visual process patterns for
effort estimation and analyzing problem resolution activities [41], integrating
multiple IS for process mining from control flow and organizational perspective
[29], assessing development process components of student projects [53] and
combining multiple repositories for assigning role to developers [54]. Process
mining is applied on software repositories for different purposes. The main
difference is that the techniques are tailored for the software development and
bug (issue) resolution process and this work focuses on IT support ticket reso-
lution process with huge alternative process variant possibilities and associated
service level agreement constraints. The process structure highlights the need
to analyze the ITIS process leveraging meta data, i.e., service level clock state
to identify inefficiencies, and to suggest corrective actions for improvement.

2.3 Application of Recommendation Systems in Software Engineering

Recommendation systems in software engineering focus on providing infor-
mation which can be valuable for a task and improve the productivity [56].
Robillard et al. presented diverse applications of recommendation systems in
software engineering [56]. Some of the applications include recommendation
system for: requirements engineering tasks such as finding experts for develop-
ment tasks [46] and supporting build process [60], source code based tasks such
as the correct usage of APIs [79] and code refactoring [9], and bug related tasks
such as duplicate bug detection [65][67] and bug triaging [26]. However, the
application of recommendation systems for reducing user input requests (both
real and tactical) in IT support ticket resolution process is not yet explored
which is the focus of the presented work.

8 Monika Gupta et al.

Here, preemptive and detection models can be interpreted as recommen-
dation systems because the predicted values are used to provide actionable
insights [56]. The preemptive model predicts the information that can be needed
for resolving the ticket and hence, the user is recommended to provide the
same information at the time of ticket submission. Similarly, the detection
model classifies if a user input request by an analyst is tactical or not, thus
recommending managers to take actions for preventing tactical user input
requests. Effectively, both preemptive and detection models are used to pro-
vide information in a proactive way to improve the ticket resolution process.
Proactive (preventive) management of a process often improves efficiency by
eliminating rework and the cost associated with the delays [1].

2.4 Information Needs in Software Engineering

Information needs of software engineers, i.e., information that engineers are
looking for when performing software engineering tasks, have been extensively
studied in the literature. In particular, the studies have focussed on the infor-
mation needs arising when software is being designed [32], comprehended [57],
changed[63][64] and released [51], when bugs are being fixed [14][11][23][42],
and when the development teams activities need to be coordinated [10][78][42].
Similarly to this line of research we consider information needs arising during
software engineering activities, in particular those pertaining to the IT support
tickets. The nature of the IT support tickets makes them similar to the bug
reports in the issue tracking system. Hence, in the discussion below we focus on
positioning our work with respect to the studies that investigate the information
needs for issue tracking systems.

Bettenburg et al. [11] conducted a survey on developers and users from
Apache, Eclipse, and Mozilla to identify the information that makes good
bug reports. Further, they designed a tool Cuezilla that provides feedback
to the user at the time of ticket reporting for enhancing bug quality. Yusop
et al. [78] conducted a survey focused on reporting usability defects and the
analysis of 147 responses reveals a substantial gap between what developers
provide and what software developers need when fixing usability defects. These
studies captured the information deemed important in the opinion of the users
and developers. As opposed to this line of work we do not rely only on the
intuition and domain knowledge of users and developers but perform data
driven analysis. Therefore, we focus on what information developers need as
opposed to what information developers believe they need.

Ko et al. [42] looked at thousands of bug report titles for several open source
projects and identified fields that could be incorporated into new bug report
forms. It analyzed only the titles of the bug reports, not the comments to
determine the information asked during bug resolution. Breu et al. [14] identified
eight categories of information needs by analyzing the interaction between
developers and users on a sample of 600 bug reports from the Mozilla and
Eclipse project. They found a significant proportion of these interactions were

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 9

1. Process mining of ticket logs to analyze user input requests

Ticket Data

CASE ID

TIMESTAMP

ACTIVITY… Performance Analysis

Data Source Event log Process Mining

2. Preemptive model to preempt user for required information

3. Detection model to identify tactical user input requests

New
Ticket

Will need more
information?
[Using learnt

model]

Preempt user for information needs
[Using learnt binary classifiers]

Nothing preempted

Make user
input request

Log it as tactical and
notify manager

Request user input and
pause service level clock

User

Analyst

Is request tactical?
[by parsing

analyst’s comment]

Transition Pattern Analysis

Fig. 2 Proposed approach involving three elements: 1. process mining of ticket logs to
investigate process inefficiencies specifically user input request pattern, 2. preemptive model
to preempt users with additional information needs at the time of ticket submission, and 3.
detection model to identify tactical user input requests.

related to missing or inaccurate information. They observed some rhetorical
questions (no information asked) however, did not consider them for detailed
analysis. While the interaction between developers and users is analyzed, it is
for a small sample of bug reports. We focus on IT support tickets and analyze
the analysts comments for a large number of tickets.

3 Proposed Approach

To achieve the objective of analyzing and reducing user input requests in
the ticket life cycle, we present an approach consisting of three elements as
shown in Fig. 2. First, a manager analyses the user input requests in the
ticket resolution process by applying process mining techniques on ticket data.
This step helps the manager to make an informed decision regarding the need
for reducing real or tactical or both user input requests. Accordingly, the
preemptive model and the detection model are activated to reduce real user
input requests and to identify tactical user input requests, respectively. To
reduce real user input requests, the preemptive model preempts the user for
required information at the time of ticket submission. To identify tactical user
input requests, the detection model classifies the analysts’ comment while
marking a ticket as Awaiting User Inputs as tactical or not.

For analysis of user input requests, the process model is discovered from
ticket data using process mining [71]. Discovered process model represents the

10 Monika Gupta et al.

reality that is, the observed process behaviors. Each activity corresponds to
a state in the process model. The transitions involving Awaiting User Inputs
(AUI) as one of the states are investigated for the discovered process. For
instance, to distinguish user input requests as real and tactical, we analyze the
outgoing edges from AUI. If users provide inputs to user input request, the
user input request is likely to be real and if the ticket is resolved by analysts
without receiving any inputs from the user for the user input request, it is
more likely a tactical user input request. To capture the delay caused due to
user input requests, the performance is analyzed for the discovered process
in terms of user experienced resolution time. Based on the transition pattern
analysis and delays incurred by user input requests, a manager decides if there
is need to reduce user input requests and of which type, real or tactical or both.
Accordingly, the proposed preemptive and detection model are used to reduce
real and tactical user input requests respectively and thus, to reduce the user
experienced resolution time.

As depicted in Fig. 2, the preemptive model comes into play when a user
submits a new ticket. The learnt model first determines if any user input request
is likely to be made to service the ticket. If yes, the required information is
demanded from the user. The preemptive model ensures that the information
required for processing the ticket is asked upfront. The detection model is used
when the analyst makes a user input request. It classifies the user input request
as tactical or not by analyzing the analyst’s comment when marking a ticket
as Awaiting User Inputs. If the comment is detected to be tactical, it is logged
in the ITIS information system and the manager can take appropriate actions,
e.g., redefine service level resolution time or reassign the ticket.

This is a generic approach which can be adopted to reduce overall user
input requests for any ITIS system. We discuss each of these elements in detail
in the following sections.

4 Process Mining of Ticket Data: For User Input Request Analysis

To capture the extent of user input requests, investigate user response behavior
to estimate the extent of real and tactical user input requests and observe
their impact on ticket resolution time, process mining is applied on ticket data.
Process mining of ticket data consists of data extraction and preprocessing to
generate event logs followed by process discovery and performance analysis.

4.1 Data Extraction and Preprocessing to Derive Event Log

Data is downloaded from the ticket information system and is transformed
to make it suitable for process mining [29]. One of the major challenges in
applying process mining on software repositories is to produce a log conforming
to the input format of a process mining tool [54]. Therefore, prior to applying
process mining, an event log should be generated based on the information

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 11

from the ITIS information system. Event log consists of following attributes
where each of them have their significance:

– Case ID: It uniquely identifies the case. It helps to visualize the life cycle
of each case in discovered process models.

– Activity : Every event is related to some activity embarking the progress of
case life cycle.

– Time Stamp: All events have an associated time stamp, a datetime attribute.
It enables ordering of activities on the basis of execution time and allows
analysis such as bottleneck identification that is, most time consuming
transitions.

– Other attributes: Additional attributes can be useful for more interesting
and diverse analysis.

In our study, the event log consists of events having four attributes: Ticket
ID, activity, time stamp, and service level clock state. The fields are derived from
extracted tickets’ data (refer to Fig. 2) where Ticket ID uniquely identifies the
ticket, and activity captures the progress of ticket life cycle e.g., logging of ticket,
assignment of ticket to analysts, making a user input request and marking a
ticket as resolved. Based on domain knowledge, the activities required for the
given analysis and deemed to have an impact on overall process performance
are captured as an event in the event log derived from ticket data. Unnecessary
activities are not captured to avoid complexity that is, the derived process
model may look like a spaghetti if there is a large number of activities [71].
All events have an associated time stamp, that is, the time when the activity
is executed. Service level clock state, that is, resume/pause is stored for each
event to capture its association with every activity. Hence, impact of an event
on the measured service level resolution time.

To generate the log, we perform several preprocessing steps:

– Mapping onto the event log: All the data for ticket resolution process is
recorded in the ITIS information system. Mapping of data fields to event
log attributes needs to be done carefully depending on the type of analysis
to be performed. For example,we select Ticket ID as case ID to visualize
the life cycle of a ticket that is, the transition between different activities
in the discovered process.

– Selecting optimal level of granularity for activities: Activities need to be
recorded at the desired level of granularity so that detailed analysis can be
performed. For example, on the basis of the reason for closing the ticket,
we capture different activities: autoclosure of ticket if no action from the
user in response to user input request, autoclosure if ticket is not explicitly
closed by the user after resolution, and explicit closing of ticket by the user.

– Resolving time stamp inconsistencies: Data is captured in different time
zones for global organization and thus needs to be handled carefully. We
convert time stamps to a consistent timezone on the basis of the geographical
location (captured for the ticket) where the ticket is submitted and resolved.

12 Monika Gupta et al.

4.2 Process Discovery

As shown in Fig. 2, the preprocessed event log is imported to Disco [24] for
runtime process discovery. The discovered process captures the ordering of
activities to find a good characterization of the most common possible runtime
process paths. Disco miner is based on Fuzzy Miner, a process mining algorithm
that can be applied to less structured processes which is mostly the case for
real-life environments [25]. To measure the extent of user input requests and
distinguish them as real and tactical, we investigate the transitions involving
Awaiting User Inputs state.

To understand the transition distribution, the percentage of transitions
from the source state S to the destination state D is measured as:

TransitionPercentage, SD =
S → D transition frequency× 100

Absolute frequency of S
(1)

The Awaiting User Inputs state acts as D for incoming edges and S for
outgoing edges. Incoming edges give us an intuition on the source state that
is, the activities often followed by user input requests by analysts. Similarly,
outgoing edges allow us to investigate user response behavior to user input
requests by analysts and thus, possibility of requests being real and tactical.

4.3 Performance Analysis

We measure User Experienced Resolution Time (URT) and compare it with
Service Level Resolution Time (SLRT) to capture the gap between them.
To evaluate URT for ticket i, we use the total time elapsed between ticket
assignment and final resolution of ticket, without excluding user input waiting
time and non-business hours, as follows:

URTi = tsi(Resolved)− tsi(Assigned) (2)

5 Preemptive Model: For Real User Input Requests

The preemptive model is an automated learning based system deployed at the
time of submitting a new ticket (refer to Fig. 2). It preempts the user to provide
the information required for servicing the ticket. There are ticket reporting
templates corresponding to the ticket category and subcategory chosen by the
user. For example, if a user selects the category as software and subcategory
as install, the ITIS information system automatically asks the user to provide
details as per the corresponding template. While ticket reporting templates try
to capture the required details, they have limitations motivating the need for
the preemptive model:

– Users do not provide all the details asked in the initial template because
of limited understanding or time [1]. A balance needs to be maintained

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 13

between two contradictory demands: ask as much information as possible
as to help the analyst to service the ticket in the best possible way, and as
little information as possible as not to put too much burden on the user
submitting the ticket. It is not possible to make all the fields mandatory
because this would make it difficult for users to submit their requests.
The preemptive model can help in such situations by preempting only
if the missed information is indeed crucial for processing the ticket. For
example, if a user submits a ticket in the software install category and
writes description as “install latest version of MS office” but leaves the
version field blank, the system should allow the user to submit this ticket
without preemption because an analyst can service the ticket by installing
the latest version.

– If a user selects the wrong category for the ticket, the corresponding template
will not capture the information required to resolve the ticket. The learnt
model can preempt the required information because the ticket description
provided by user is used as one of the features for preemption and the
model does not rely on the chosen ticket category.

– Users tend to provide incorrect or unclear information [1] to pacify the
system which the learnt model can preempt. For example, if a user mentions
version as some random value such as xx or 2.3 for MS office then the
learnt model still can preempt and indicate that the version has been asked
for similar tickets.

– Some tickets have specific information needs which are not captured in
the corresponding template. For example, if a user requests for installing a
software that has a requirement such as approval for purchasing software
license in case of specific proprietary software. Such information needs are
not always intuitive for users hence can be preempted by the learnt model.

Effectively, the preemptive model should facilitate dynamic information col-
lection for faster processing of the reported ticket. Since it is a preventive
measure, it helps to improve efficiency by eliminating later interaction delays
and enhances user satisfaction [1].

As depicted in Fig. 3, the major steps involved in designing the preemptive
model are: preprocessing, feature extraction, training classification model and
preemption for a new ticket at the time of submission. To preempt information
needed for a given ticket, we learn the model to predict the following:

– P1: To process a given ticket, will there be user input request?
– P2: If there will be a user input request according to P1, what is the

specific information that is likely to be asked by the analyst?

To train a supervised model for P1, the ticket is labeled as 1 if Awaiting
User Inputs state is present in ticket life cycle otherwise 0. This information is
derived from the event log extracted for each ticket.

14 Monika Gupta et al.

Preprocessing

Preempt

Feature Extraction

Bag of words
(Unigram, Bigram)

Dimensionality
Reduction (PCA)

Provide following
information

• Download URL
• Approval
• Software version..

Learn Classifier

New Ticket

Submit

Ticket Attributes

Description
Software Name
Software Version
Asset ID
Platform
Doc Attached…

Remove:
stop words
special char

Stemming
(Porter Stemmer)

LABEL

Supervised machine
learning algorithm

Feature
vector

Learnt
model

Fig. 3 Preemptive model to preempt users with additional information needs at the time of
ticket submission with broadly two stages: training and preemption.

5.1 Ground Truth

To train and evaluate the model for P2, we establish the ground truth for
information needs. The Ground Truth (GT) label for a ticket w.r.t a specific
information, x is defined as follows:

GroundTruth,GT (x) =

{
1, if x information asked in ticket’s life cycle.

0, if x information not asked in ticket’s life cycle.

(3)
Firstly, information asked by the analysts (such as software name, software

version, machine IP address, operating system, and manager approval) in the
user input request comments are identified on the basis of managers’ domain
knowledge and manual inspection of the user input request comments. Manual
inspection is performed by two authors (first and third) for disjoint set of
comments (random sample of 1000 comments each) to identify the information
needs. Information needs identified by both the authors are compared to
create the consolidated list. Authors used different terms to represent the same
information needs which were made consistent. Both the authors identified
same information needs (that is, 23) with one exception that is, asking user
the duration for which requested software will be used, identified by only
one author as it is a rarely asked information. All the information needs
mentioned by the managers turned out to be a subset of the consolidated list.
The information needs solely identified by the authors are confirmed with the
managers by presenting them the information needs along with the example
analysts’ comments where such an information is asked.
Comment annotation using keywords-based approach: Ground truth
for every information need is established using a keyword-based approach [52]. A
list of keywords corresponding to each information need is prepared iteratively.

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 15

Initial set of keywords is created using domain knowledge of the managers. For
example, for information need software version, “software version, sw version,
and software number” are some of the commonly used terms, thus, included in
the keywords list. Porter stemming and case folding of comments and keywords
is performed to improve the matching of keywords with the comments. If
the comment contains the keywords, it is annotated with the corresponding
information need. Thereafter, we (first and third author of paper) manually
investigate the disjoint set of randomly selected unannotated comments (around
500 each) to identify the comments missed out using given set of keywords.
Keywords are added to the initial set to capture the missed out comments.
Also, disjoint set of annotated comments (50% of the total annotated by each
author because it is typically a small set) is manually analyzed by the same
two authors to eliminate wrongly annotated comments. Keywords are updated
to distill the wrongly annotated comments. The comments are now annotated
with the updated set of keywords. This process is repeated two to three times
till very few/no updates are made in the set of keywords. Similarly, keywords
are created for every information need. Keywords for an information can vary
across the organization based on their specific terminologies.

Evaluate keywords based annotation: To evaluate the keywords based
annotation, we decide to get a set of comments manually annotated and
compare it with the keywords based annotation. We requested second year
B.Tech in Computer Science students of the university for annotation. Each
participant was promised a cash gift as token of gratitude. We received interest
from nine students and shared the details with each of them. Three of them
dropped out and the remaining six were given a short in person demonstration
of the tool (screen shot made publicly available on github [27]) that we designed
for convenient annotation. Each participant was given a set of 4000 different
comments and 15 days time as agreed by students thus, make sure that they
perform annotation without any pressure. Finally we received annotated files
from five participants that is, 20000 annotated comments. First author randomly
verified 50 annotated comments for each student for sanity check. For every
information need, keywords based annotation is compared with annotation
by students. We observed that annotation is consistent between the two for
90–95% comments for various information needs (we compare for five - software
version, IP address, approval, operating system, and asking location/cubicle ID
of the user). When manually inspected the inconsistently annotated comments,
we found that in some cases keywords based annotation was incorrect and in
some cases the student annotations were incorrect (attributed to human error)
thus we ignored this inconsistency. This validates that the keywords based
approach correctly annotates the comments.

To annotate the ticket, every user input request comment for a ticket is
checked for its label and the ticket is labeled as 1 for the given information
need if any of its comments are annotated with the same information otherwise
it is labeled as 0.

16 Monika Gupta et al.

5.2 Ticket Preprocessing

A ticket consists of a short description and fields capturing category-specific
information about the ticket such as software name, version, platform, and
attachment such as screen shot. Some of the ticket attributes can be free-
form text data and hence require preprocessing as shown in Fig. 3. Common
textual preprocessing practices such as case folding, stemming, stop words
and punctuation removal are performed [56]. We perform stemming using
Porter stemmer [55]. Removing classical stop words such as “a” and “the” is
not sufficient because there are some stop words specific to the context. For
context-specific stop word removal, we combine all the tickets into one text file
and extract the term frequencies (tf) of the unique tokens from the text. We
manually create a dictionary of stop words for given context which contains
words such as “Dear”, “Please”, and “Regards”.

5.3 Feature Extraction

As shown in Fig. 3, a bag-of-words feature model is used to represent each
unstructured feature extracted from the ticket. A bag-of-words representation
is known to extract good patterns from unstructured text data [80]. The bag-
of-words model can be learnt over a vector of unigrams or bigrams or both
extracted from text data. For instance, first we tokenize the description of
ticket shown in Fig. 1 then stem the tokens that is, “following” is stemmed
to “follow”. After stemming, we remove the stop words: “on”, “my”, “this”,
“is”, “a”, “as”, and “per”. The resultant bag-of-words consists of unigrams:
“please”, “install”, “follow”, “software”, “machine”, “core”, and “EARC”. For
most bag-of-words representations, gram (unigram or bigram) features found
in the training corpus have weights such as binary or term frequency or term
frequency-inverse document frequency [56][61]. We use bag-of-words feature
with term frequency weights. Concatenation of bag-of-words features (both
the unigrams and bigrams) with features corresponding to other fields such as
platform name is used as the feature description for the entire ticket. Given
the high-dimensional and sparse nature of the final representation, learning
a classifier might be affected by the curse of dimensionality [12]. Therefore,
we apply Principal Component Analysis (PCA), a feature vector dimension
reduction technique with minimum information loss, such that 95% of the eigen
energy is conserved [38]. For preemption, a feature vector extracted from the
ticket submitted by a user is mapped to the reduced dimensional space learnt
from the training data.

5.4 Training and Preemption

The preemptive system is learnt over features extracted using tickets’ data at
the time of submission. To address P1, a binary classifier is trained over a set

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 17

of labeled tickets to classify if user input request will be made for a given ticket
or not. If the classifier predicts class as 1, i.e. a user input request will be made,
the next question (that is P2) is to identify the specific information likely to
be asked such as version number of a software or approval for processing. To
identify the need for each of the possible information, an independent binary
classifier is constructed. As shown in Fig. 3, when a new ticket is submitted
the cumulative results of the learnt binary classifiers suggest the subset of
information that could be further required to easily process the ticket. By
dividing this complex task into simple binary classifiers, more flexibility is
added to the preemptive model. If a new information need is identified in the
future, a new binary classifier can be trained for the corresponding information
without the need to retrain any of the existing classifiers. In our study, we
have used a supervised learning model, Support Vector Machines (SVM) [16].
SVM is a binary linear classifier that attempts to find the maximum margin
hyperplane, such that the distance of data points from either of the classes
is maximized. Furthermore, it performs classification very effectively using
a technique called a kernel trick, by implicitly mapping input data into a
higher dimensional feature space, where linear classification is possible. SVM
is a popular choice and is often used in the literature [4][20][37][45][65][77]. To
compare the efficiency of SVM for the proposed preemptive system, we evaluate
other commonly used classifiers such as naive Bayes [3], logistic regression [30],
and random decision forest [33]. Performance of a classifier strongly depends
on the value of its input parameters, whose optimal choice heavily depends on
the data being used [68]. We choose the parameters for the classifiers using
grid search [34] and heuristics [13].

5.5 Evaluation

A 50/50 train/test split protocol is followed to train and evaluate the classifier.
In comparison with a more lenient protocol such as 80/20 split, the proposed
split is less risk-prone in terms of generalizability [17]. To address the challenge
of imbalanced class labels in train data, we perform random under-sampling of
majority class as recommended by Japkowicz [36]. For creating the training set
in a binary classification setting, 50% of data points are randomly taken from
the minority class and an equal number of data points are randomly sampled
from the majority class. Thus, it is ensured that the training data has an equal
number of data points from both the classes. The remaining 50% data of the
minority class and all the remaining points of the other class are included in the
test split for evaluation (testing). To make a realistic estimation of the classifier
performance and to avoid any training bias, we perform five times random
sub-sampling cross validation (also called Monte Carlo cross-validation) where
new training and test partitions are generated (at random) each time using the
above protocol [76]. The evaluation metrics are averaged over the five rounds
and the standard deviation is computed.

18 Monika Gupta et al.

Accuracy places more weight on the majority class than on the minority class,
thus prone to bias in case of imbalanced datasets [43]. Therefore, additional
metrics such as precision and recall are used. Classes with label 1 and label 0
correspond to positive and negative classes respectively. TP and TN denote the
number of positive and negative examples that are classified correctly, while
FN and FP denote the number of misclassified positive and negative examples
respectively. We evaluate performance of the learnt classification model on the
test set using the following evaluation metrics:

Accuracy = (TP+TN)/(TP+FN+FP+TN)

Precision of positive detection = TP/(TP+FP)

Recall of positive detection = TP/(TP+FN)

6 Detection Model: For Tactical User Input Requests

Identifying tactical input requests is important because such requests degrade
user experience as indicated by users in the survey conducted at the large
global IT company (Section 8.2) and also evident from following user responses
recorded in the ITIS information system of a large global IT company:

– “I have already provided all the necessary inputs. Please take actions.”
– “Kindly let me know what inputs are required from my end. As mentioned

in my earlier comments, I have already provided the necessary information
but I still see the status as Awaiting user inputs. Its already been about a
week since I submitted this request and the issue has not been resolved as
yet. Request you to kindly do the needful.”

While users and managers recognize tactical user input requests, following
are the challenges in handling this practice thus, highlighting the need for
automated detection system:

– After users recognize tactical user input requests and give feedback, the
user experience has already been degraded. With the automatic detection
system, it is possible to identify such requests in a proactive way and prevent
users from receiving such requests thus, enhance user experience.

– Merely looking at the complaints will give biased impression because not
every user will raise a complaint about such tactical user input requests.
Raising complaints is an additional effort for the users which every user
may not like to put. Moreover, many users (specifically new ones) are not
familiar with the process and the fact that service level clock pauses when
a ticket is in Awaiting User Inputs state thus, do not realize the need to
complain about such experiences.

– A manager needs to look at the comments manually to decide if input
request seeks any information or not, i.e. it is tactical. This control is
human intensive and not always possible given the high number of input
requests made by a team of analysts every day.

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 19

– Automatic detection allows to derive actionable insights thus, help managers
make informed decisions. For example, if tactical requests are made by
specific analysts then tackled at individual’s level otherwise if practiced
by majority of the analysts then take organization level decisions such as
redefine service level resolution time limit or staff more analysts.

It is difficult to identify tactical user input requests because of the perpetual
competition. For any technique to detect tactical user input requests, analysts
will come up with ways to overcome them. The proposed detection model is an
initial attempt to mitigate tactical user input requests. The detection model
identifies tactical input requests in real time by analyzing analysts’ comments
when changing status to Awaiting User Inputs. For this, as shown in Fig. 2 we
suggest to classify the user input requests using a keyword based rule classifier.
Rules are a set of regular expressions derived to represent the keywords for
tactical user input requests in a concise way. Rules are created for identifying
user input requests where no direct information is asked. Domain knowledge of
managers can be used to create an initial set of rules which can be updated
iteratively by manually inspecting the tactical comments from the data corpus.
Once the rule set is ready, any user input request by the analyst is checked
against it for the classification. If the user input request is identified as tactical,
it is logged in the ITIS information system and the manager is notified to take
suitable actions.

As opposed to the preemptive component, we do not use machine learning
because of the differences in the context: as part of preemptive model, informa-
tion need is preempted for resolving a ticket at the time of ticket submission
whereas in case of detection model, a comment by analyst during the ticket
lifecycle is classified (not preempted) as tactical or not. For P2, the ground
truth is created for a ticket by analyzing the analyst comments such as if
version is asked in some comment then ground truth for a ticket is labeled as 1
w.r.t to class version. Therefore, the preemptive model takes ticket as input
and preempts the information need using the learnt models. Unlike preemptive
model, detection of tactical user input requests requires learning a classification
model from labeled analyst comments. Since we manually create the ground
truth label for tactical comments using keywords based approach (like done for
P2), learning a classification model does not add value. Therefore, for given
scenario, a set of rules to concisely represent the manually identified keywords
for tactical user input requests is sufficient. Learning a classification model
for tactical user input requests would have been an option if we had human
annotated tactical user input requests available.

The detection model identifies whether an input request by the analyst
belongs to one of the classes below. The classes are created on the basis of data
analysis and discussion with the manager for a given case study. A separate
set of rules is derived for each category.

– Temporize: The analyst indicates that the ticket will be handled soon and
mentions things such as ‘Work in progress’, and ‘Will check and update’.

20 Monika Gupta et al.

Table 1 Experimental dataset details for the case study in a large global IT company.

Attribute Value
Duration One quarter of 2014
Total extracted closed tickets 593,497
Total categories 64
Closed tickets with category Software 154,092 (26%)
Total subcategories in Software 15
Total tickets with atleast one AUI state 88,039 (57%)

– Invalid: No valid character is present in the string. Comments such as
empty strings or strings consisting of few special characters only.

– Contact Me: The analyst asks the user to contact her over phone or chat
or in-person instead of asking for specific information.

– Will Transfer: The analyst informs the user that the ticket will be transferred
to another analyst and marks the state as Awaiting User Inputs. The ticket
is transferred to another analyst later instead of transferring directly.

– Done So Check: The analyst asks the user to check if the resolution is
satisfactory. Ideally the analyst should mark the ticket as Resolved when
done with resolution from their side and let the user reopen, if unsatisfied.

This classification helps managers to decide upon the appropriate course of
action. For example, if the class is Invalid, the user input request can be blocked
and if the class is Contact Me then it can be logged for clarification with the
involved user and analyst to verify whether there was a need for contact.

For evaluation, we request managers to randomly select comments from the
classified ones and indicate if they have been wrongly labeled. This ensures
high precision but it is difficult to comment on recall. We do not know how
many tactical comments are missed because of the incomplete class list or
incomplete dictionary for a class.

Now, that we explained the details of the approach, we present the case
study to illustrate its effectiveness.

7 Case Study: IT Support System of a Large Global IT Company

We performed a case study in a large global IT company to find out what is
happening in the organization’s ticket resolution process by applying process
mining on ticket data and thus, derive actionable insights. We triangulated
our results by conducting survey with users and analysts, to better understand
the process in-practice and validate the data driven findings and inferences.
Triangulation is known to improve the credibility and validity of the results
[39][58]. Further, we demonstrated the usefulness of the proposed preemptive
and detection model in reducing real and identifying tactical user input requests
respectively. We chose this company for the following reasons: 1. it is a CMM
level 5 company with a well-defined process in place, 2. it is a large global IT
company with IT support as one of the crucial activities, 3. a large number of
IT support tickets are reported, i.e. in order of a million per quarter, by diverse

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 21

0 1 2 3 4 >4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Total AUI in lifecycle

P
er

ce
nt

ag
e

of
 C

as
es

Fig. 4 User input request distribution - percentage of cases with given number of Awaiting
User Inputs (AUI) state.

users, and 4. the service level metrics are continuously monitored by service
level management and the organization has very high service compliance.

We download data of closed tickets for one quarter, archived in the orga-
nization’s ticket system and store it in a relational database. We ignore open
tickets because we want to analyze user input requests in the tickets’ life cycle
and the resolution time. Data includes the required information about a ticket
starting from the time of ticket submission till it is closed. As summarized in
Table 1, there are 593, 497 closed tickets labeled with 64 distinct categories
such as software, desktop, and network. We select software category for the
study because it is the most common category constituting 26% of total tickets
and large enough to illustrate the proposed approach. The software category
further has 15 subcategories such as software install, uninstall and upgrade.

The Awaiting User Inputs state is present in 57% of the tickets and 27.5% of
them have multiple user input requests in their life cycle. With a total number
of 125330 comments, we observe from the distribution curve depicted in Fig. 4
that the majority of the cases have one or two user input requests in the life
cycle, and some cases have more than four user input requests. Similarly, in the
Volvo IT organization ticket data investigated as part of the BPI challenge 2013
[74], the “wait-user” (user input requests) activity was present in 33% cases
[50]. For many products, the “wait-user” activity is present in 67–84% of the
cases, much more than the average of 33% [50]. This supports the observation
for our data that user input requests are frequent in the ticket life cycle.

8 Experimental Results

In this section, we present our experimental results for the proposed approach
including process mining of ticket data, and performance of the preemptive
model and the detection model.

22 Monika Gupta et al.

11/16/2016 29

Awaiting User Inputs
(125330)

ACK (152820) TR (139709) Non-RE (2729)

User Input
Received (56289)

RE Closed
AUI-

Autoclosure Attachtdoc

26.00% 34.35% 35.58%

23.93% 15.42% 8.19%35.52% 6.13%

[User Update] [Signals Misuse] [No User Update] [User Update]

2.4 hrs 4.4 hrs 1.1 hrs

6.1 hrs 5.2 hrs23.2 hrs 47.9 hrs 14 days

45.96%

1.5 hrs

Fig. 5 Awaiting User Inputs state transition pattern showing user response classes where
SD and median transition time are edge labels. The state of the service level clock is indicated
using play/pause icons. The activities are: ACK - ticket assigned to an analyst, TR - transfer
of ticket to other analyst, Non-RE - user marks a ticket as not resolved, Awaiting User
Inputs - analyst makes a user input request, User Input Received - user provides input for
the user input request, RE - analyst marks a ticket as resolved, Closed - user closes the
ticket, AUI-Autoclosure - ticket autoclosed as user did not provide inputs within the defined
limit of 14 days, Attachtdoc - user attaches a document.

8.1 Process Mining of Ticket Data

As discussed in Section 4, we transformed data for all closed software category
tickets (593, 497 tickets) to make it suitable for process mining and analyze
user input requests.

To generate the event log, we identified the activities to be captured for
the analysis. All the important activities defined as part of ticket’s life cycle
are captured explicitly in the information system. We included in the event
log a subset of the activities which we believe captures progression of tickets,
can affect the performance and is sufficient for the analysis. Also we validated
the list of activities with the manager. The list of activities along with the
significance of each activity is made publicly available [27]. Ticket ID and time
stamp corresponding to an activity is extracted from the information system.
The service level clock state (resume/pause) for an activity is inferred from the
documentation which clearly states the activities for which the service level
clock pauses. For example, the service level clock pauses when asking for user
inputs, marking a ticket as resolved, and closing a ticket.

Transition Pattern Analysis: We imported the event log to Disco for process
model generation and made the derived process model for the complete process
publicly available [27]. In Fig. 5, we present only the transitions involving
Awaiting User Inputs activity for analyzing its transition patterns. We evaluate
Transition Percentage, SD (see Equation 2) for both incoming and outgoing
edges, indicated as label in Fig. 5. State of service level clock is indicated using

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 23

play/pause icons and the median transition time is labeled on the edges to
visualize time perspective.

Incoming edges to Awaiting User Inputs: From Fig. 5, we observe
that analysts seek inputs when assigned a new ticket (ACK) or when a ticket
is transferred (TR) to them from other analysts for 26.00% and 34.35% of the
instances respectively. It indicates that as they start working on the ticket,
they identify a need for additional information hence start by asking for inputs.
Interestingly, Awaiting User Inputs is a successor state for User Input Received
(for 45.96% of the instances) signaling that input from user leads to another
user input request. The most common source states for Awaiting User Inputs
are ACK, TR, and User Input Received, together constituting around 90%
((152820×0.26+139709×0.3435+56289×0.4596)/125330) of the total incoming
transitions (refer Fig. 5). Non-RE (user marks a ticket as not resolved after
analyst says its resolved) is followed by user input request in 35.58% of the
instances but constitutes merely 0.7% (2729 × 0.3538/125330) of total user
input requests.

Outgoing edges from Awaiting User Inputs: We explore outgoing
edges and classify destination states broadly into the following two classes:

– User update: We observe that users provide inputs, User Input Received
(comment from user) or AttachtDoc (document attached by user), for around
42.00% of the user input requests. We conjecture that user input requests
with these destination states are mostly information seeking (real) thus,
updated by user. For around 15.42% of the instances, the user does not
provide information and explicitly closes a ticket instead, i.e., the destina-
tion state is Closed.

– No update: As shown in Fig. 5, 23.93% of the total Awaiting User Inputs
state transit to RE (resolved) without any update from user. We conjecture
that such user input requests are more likely to be the tactical ones as
the analysts managed to resolve the ticket without receiving user inputs.
For 8.00% of the cases, a ticket is auto-closed, i.e. destination state is
AUI-Autoclosure because no user action is performed in response to the
user input request within the defined time limit of 14 days (as enforced in
the given information system).

The above conjecture w.r.t. destination state for Awaiting User Inputs will be
revisited in Section 9.

Performance Analysis We consider for analysis only the cases which are resolved
and never reopened. There are 105, 539 such cases for which we evaluate user
experienced resolution time.

The software category has tickets with three service resolution time thres-
holds as per the organization’s service level agreement: 9 hours, 18 hours and
36 hours. We group tickets into three categories on the basis of same service
level resolution time. As shown in Table 2, a high percentage of cases have user
experienced resolution time more than the agreed service level resolution time.

24 Monika Gupta et al.

Table 2 Gap between Service Level Resolution Time (SLRT) and User Experienced Resolu-
tion Time (URT).

Class #Cases SLRT Median URT Cases with URT>SLRT
1 16,110 9 hours 21 hours 62.46% cases
2 83,939 18 hours 26.34 hours 72.49% cases
3 5,490 36 hours 77.84 hours 76.14% cases

However, the service level violation is recorded for very few cases1 because the
waiting time is not counted towards the measured resolution time. The median
resolution time experienced by user is 21 hours, 26.34 hours, and 77.84 hours
for cases with service level resolution time of 9 hours, 18 hours and 36 hours
(refer to Table 2) respectively. Similarly, as analyzed in Volvo IT organization
ticket data for the BPI challenge, on an average 34% of the user experienced
resolution time was due to user input requests [70]. This highlights that the
user experienced resolution time is much higher than the measured resolution
time due to user input requests, thus a bottleneck in the ticket resolution life
cycle.

We observe from Fig. 5 that the median transition time for Awaiting User
Inputs to RE, potentially tactical is much higher (23.2 hours) than the median
transition time for Awaiting User Inputs to User Input Received (6.1 hours)
and Attachtdoc (5.2 hours), potentially real. Therefore, while both real and
tactical user input requests add to the user experienced resolution time, tactical
user input requests cause relatively more delay.

To summarize, from process mining analysis, we observe that 57% of the
tickets have user input requests in the life cycle. Users provide input to around
42% of the total user input requests which we consider as potentially real
requests. For around 23% of the cases, the ticket is resolved without any user
inputs, thus corresponding to potentially tactical requests. User input requests
cause a significant gap between the measured resolution time and the user
experienced resolution time. The findings clearly highlight the need to reduce
real and tactical user input requests.

Next, we triangulate our results by conducting survey with users and
analysts of the organization.

8.2 Survey of Users and Analysts

We designed two short surveys (Tables 3 and 4) to understand users’ and
analysts’ experience with the IT support process and in particular user input
requests. The choice of options for Q3 and Q4 in Table 3 and 4 respectively
was made after discussions with the manager and validated with randomly
selected participants for each of the respondents’ groups till all the pilot study
respondents were satisfied. Still to make sure that survey respondents can
provide applicable reasons if not included in the given list, we provided other as

1 We cannot reveal exact numbers because of confidentiality

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 25

Table 3 User Survey Results [95 Responses]: User experience with the IT support services
provided in last six months.

Q1: In last six months, how many tickets have you submitted?
No request at all - 0 Up to 5 - 43.16%
Up to 10 - 28.42% More than 10 - 28.42%
Q2: How often were you asked to provide at least one input?
Never - 1.05% Rarely - 10.53% Sometimes - 46.31%
Often - 26.31% Always - 15.79%
Q3: Below is the list of possible reasons explaining why you were asked to
provide inputs. Rank given reasons from 1 to 5 where 1-most frequent and 5-least
frequent. NA if Not Applicable.
Reasons 1 2 3 4 5 NA
1. Complex issue that required specific information 33 28 11 13 0 10
2. Initial request you submitted was incomplete or
unclear

11 16 29 26 1 12

3. You felt the asked input was unnecessary to
resolve the issue

9 16 27 28 2 13

4. Approvals 39 22 13 10 1 10
5. Others..
Q4: Were any of your tickets auto closed because you could not provide
inputs within the time constraint of 14 days as enforced in ticket system?
Yes - 28.42% No - 71.58%
Q5: Did you ever decide to leave a ticket unresolved because you were
asked to provide inputs multiple times?
Yes - 23.16% No - 76.84%

a free form option. We could not include the option of unnecessary user input
requests in the analysts’ survey for company policy reasons. The survey was
administered after analyzing the findings from the process mining of ticket data
to triangulate the results. We sent an email with survey to 40 randomly selected
analysts and 125 users (from diverse project teams) from the organization. We
received a total of 28 (around 70%) responses from analysts and 95 (around
76%) responses from users. Relatively high response rate can be attributed to
the fact that these are very short objective survey and many reminders were
sent. Survey and anonymized responses are made publicly available [27].

Analysis of Users’ Survey: Table 3 presents the results of the users’ survey
consisting of five mandatory questions. This survey is about the users’ expe-
rience with IT support services provided to them in the last six months. All the
survey participants submitted ticket in the last six months out of which 57%
users submitted more than 5 tickets (refer to Q1 in Table 3). User responses
to Q2 show that most of the users are asked to provide inputs (sometimes to
always). Responses to Q4 and Q5 confirms that users decide to leave tickets
unresolved or let them auto close when asked to provide multiple inputs. We
contacted the users who replied Yes to Q4 or Q5 over email and asked to
provide the reasons for their choice. Based on the responses, we identify the
following reasons behind the decision:

– users give up if it is not crucial to get the ticket resolved and they find it
difficult to provide the information asked.

26 Monika Gupta et al.

– users submit a new ticket which gets assigned to a different analyst and
resolved with fewer or no user input requests. This is more common in the
cases where they feel that unnecessary user input requests are being made
by the analyst.

– users find alternative means of solving the problem that is, discuss with
colleagues or search online.

Results of Q3 from the survey reveal that majority of the users believe that
the most frequent reasons to ask for inputs are missing approvals and need for
specific information to resolve complex issues. Users also expressed that the
inputs were asked because they provided incomplete or unclear information at
the time of ticket submission. Around 86% users (only 13 select Not Applicable
out of 95) agree that asking for unnecessary inputs is one of the reasons though
not the most frequent one. We received eight other answers. Following is the
list of consolidated reasons mentioned in other option:

1. When a ticket needs to be transferred to another analyst, the service
level clock is paused by marking ticket as Awaiting User Inputs till it is
transferred to the other analyst.

2. In order to avoid a service level breach, tickets are closed without proper
resolution and then reopened. For reopened ticket, analysts again ask all
the previously provided information.

3. A ticket is marked as Awaiting User Inputs when analysts make request
for license purchase to the concerned authorities.

4. The analyst asks to provide information such as software version, physical
address of system and download URLs to process ticket.

The above additional reasons mentioned by the users are specific cases of
requesting user input. The answers (points 1 and 2 above) highlight the
different ways for pausing service level clock without asking any information
from the user. We deem those user input requests as tactical. In other cases, the
user quote the information they were asked to provide for the ticket resolution.

Analysis of Analysts’ Survey: Analysts were asked four mandatory questions
on the basis of their experience with IT support ticket resolution in the last six
months as shown in Table 4. The majority of the survey participants (75%) have
more than a year of work experience with IT service team of the organization.
Responses to Q2 and Q3 reveal that while analysts often ask for user inputs,
asking inputs multiple times for the same ticket is perceived as relatively
infrequent. Comparison between ranking of Q3 from Table 3 and Q4 from
Table 4 brings out interesting findings. While user ranked incompleteness of the
initial report as a comparatively less frequent reason, analysts consider it as the
most frequent reason. It highlights the difference between the expectations of
analyst and of the user [11]. Reasons 3 and 4 in Q4 (refer to Table 4) support
the observation of having Awaiting User Inputs as a subsequent state after
User Inputs Received in Fig. 5. We received five other answers for Q4 and the
consolidated reasons are as follows:

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 27

Table 4 Analyst Survey Results [28 Responses]: Analysts’ experience with IT support ticket
resolution in last six months.

Q1: For how many years have you been working as an analyst?
<1 yr - 25.00% Up to 3 yr - 46.43%
Up to 5 yr - 14.29% >5 yr - 14.29%
Q2: For approximately what percentage of all the tickets, do you need to
ask for user inputs atleast once?
<20% : 10.71% 21–40% : 28.57% 41–60% : 35.71%
61–80% : 3.57% 81–100% : 21.43%
Q3: For approximately what percentage of all the tickets, do you need to
ask for user inputs more than once?
<20% : 50.00% 21–40% : 14.29% 41–60% : 17.86%
61–80% : 17.86% 81–100% : 0%
Q4: Below is the list of possible reasons to ask for user inputs.
Rank given reasons from 1 to 5 where 1-most frequent and 5-least frequent.
NA if Not Applicable.
Reasons 1 2 3 4 5 NA
1. Incomplete information provided in the initial report 18 6 3 1 0 0
2. Complex issue that required specific information 4 11 7 6 0 0
3. Dependency between user inputs thus, need to ask
for inputs sequentially

4 4 12 8 0 0

4. User provided wrong or unclear information 2 7 6 12 1 0
5. Others..

1. Users submit a ticket in a wrong category, thus the analyst needs to change
the category after analyzing the ticket and ask the user for the required
information accordingly.

2. Users miss required attachment such as approval and license.

The answers highlight the points missed by users thus, analysts had to ask for
user inputs.

The survey supports the findings from the ticket log analysis that analysts
frequently mark ticket as Awaiting User Inputs (Q2 of Table 3 and Table 4)
for two reasons: seek inputs from users to process tickets (Q3 of Table 3 and
Q4 of Table 4), and for the sake of pausing service level clock (Q3 of Table 3).
The frequent user input requests degrade user experience (from Q4 or Q5 of
Table 3) despite of very high service level compliance. This reinforces the need
to address the problem by ensuring that maximum information required for
resolution is asked upfront and misuse of user input requests is discouraged.
To achieve this, we evaluate the effectiveness of the proposed preemption and
detection model.

8.3 Preemption Model

To demonstrate the usefulness of the proposed preemption, we conducted
experiments on a total of 96, 756 closed tickets belonging to the most frequent
subcategory, that is, install, within the software category. We chose this because
every category has different information requirements thus for the illustration
purposes we believe one category is sufficient. The approach can be similarly

28 Monika Gupta et al.

Table 5 Number of class-wise data points in the ground truth and test-train split for the
proposed preemptive model. Class 1: if the information is asked in the ticket life cycle, Class
0: information is not asked in the ticket life cycle.

Preempted Ground Truth Train Set Test Set
Information class 1 class 0 class 1 class 0 class 1 class 0
Awaiting User Inputs 55,398 41,358 20,679 20,679 34,719 20,679
Software Version 1,174 95,582 587 587 586 94,996
Approval 3,686 93,070 1,843 1,843 1,843 91,227
IP Address 2,750 94,006 1,375 1,375 1,374 92,632

applied to other categories because the overall characteristics are common
across the categories [1].

To learn the model for P1 (to process the ticket, will there be user input
request), tickets are labeled on the basis of Awaiting User Inputs state in life
cycle. As shown in Table 5, 55, 398 (57.25%) tickets belong to class 1, that is,
have at least one user input request in the life cycle. The bias due to tickets
with only tactical user input requests in the life cycle will affect the outcome
of P1 because the model is learnt to predict class for a ticket as 1 (that is,
some information will be asked) even if it had just tactical user input requests.
However, outcome of P2 will take care of this limitation: if P1 predicts class
as 1, binary classifiers for every information need will be executed and all of
them will give the output as 0 because none of those information were asked
for the given ticket. Therefore, user will not be preempted to provide any
information. Moreover, there are only 3117 tickets (that is, around 6% of total
tickets in class 1 for P1) which just had tactical user input requests and still
were assigned ground truth label as 1 thus, ignored to eliminate such cases.
Effectively, the preemptive model remains independent of detection model and
accurately preempts user for the additional information needs.

We observe from comments that different information is asked by analysts
such as manager approval, operating system, location or cubicle ID, machine ID,
IP address, project code, purpose of download, problem screen shot, download
URL, software name and software version. Information requested by the analysts
can, therefore, be categorized into three categories: information such as the
IP address or the machine ID that can be derived automatically; information
such as software name or software version that is explicitly asked in the ticket
template; information such as the manager approval that is not explicitly asked
in the ticket template but might be requested by the analyst under specific
circumstances.

Ground truth is labeled for the information needs using a keyword-based
approach (as discussed in Section 5.1). Table 6 presents the example information
needs for each category along with the example keywords. Amanat (a Urdu
word meaning fidelity) id is one of the keyword for Machine ID because it is a
term used in the company to refer to a machine. To represent each category we
address P2 (what specific information is likely to be asked) for the IP address,
software version, and manager approval, corresponding to 3.5%, 1.5% and 4.8%
of the 77, 333 user input requests derived from 55, 398 tickets. All the keywords

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 29

Table 6 Different category of information needs with example information needs and their
corresponding example keywords. Category 1 - information that can be derived automatically,
Category 2 - information that is explicitly asked in the ticket template, and Category 3 -
information that is not explicitly asked in the ticket template but might be requested by the
analysts.

Category Information Need Example Keywords
Information that can
be derived automati-
cally

IP Address ip, ipv4, ipaddress
Machine ID Amanat id, mac id, machine name, ma-

chine id, hardware id, asset id, hw name
Location of user location details, building no., cubicle id

Information that is
explicitly asked in
the ticket template

Software Version Software version, sw ver, software number
Operating System OS details, platform, Operating system

details
Software Name Software name, sw name

Information that is not
explicitly asked in the
ticket template but
might be requested by
the analysts

Manager Approval DM Appr, DM’s approval, approval DM,
approval PM, project manager approval,
PM approval

Software License PO details, PO number, license details,
Software asset id, Purchase order

Screen Share msra, share screen

for IP address, software version and manager approval are made publicly
available [27], however, labeled data could not be shared because of company
policy concerns. We notice from ground truth in Table 5 that a relatively small
percentage of tickets belong to class 1, i.e. the data is imbalanced, likely to
overfit to the majority class [31].

The following information is extracted from a user submitted ticket: des-
cription, software name, software version, platform, doc-attached and time of
reporting. Doc-attached is a binary field indicating the presence or absence of
an attachment. Platform is a categorical attribute with seven unique values
such as Windows, Linux and Unix. Time of reporting is mapped to three ranges
in a day, that is, morning (before noon), afternoon (from noon to 4 PM), and
evening (after 4 PM). Overall we have 21 possible values for time corresponding
to the seven days of the week. Description, software name and software version
are free-form text fields. The data from all the three fields for a given ticket are
concatenated and preprocessed using case folding, stemming (using the Porter
stemmer [55]) and stop words removal. We make the manually created stop
words dictionary, on the basis of term frequency, for given context publicly
available [27]. Also we remove all the punctuation marks except period because
period is used in the IP address mentioned in the description.

As shown in Table 5, the testing and training data is created as per the
50/50 train/test split protocol with random under-sampling of majority class
(cf. Section 5). Preprocessed text field for tickets in training data is represented
as a term frequency vector of both unigrams and bigrams. Many unigrams
and bigrams have very low frequency adding to the feature sparsity thus, we
eliminate them by setting the term frequency threshold as 150. We started
with a low threshold and tried for random values such as 50, 100, 150 and 200,
and observed that 150 works the best given the trade-off between the model

30 Monika Gupta et al.

Table 7 PCA is applied for reducing feature dimension and reduced feature vector is used
for training. Table presents number of features before and after applying PCA.

Preempted Information #Features before PCA #Features after PCA
Awaiting User Inputs 1357 493
Software Version 33 17
Approval 119 50
IP Address 96 42

Table 8 Table showing the performance of the prediction model by comparing various
popular classifiers with the proposed SVM. The best results are from SVM for any information
need. NB - Naive Bayes, LR - Logistic Regression, RDF - Random Decision Forest, SVM -
Support Vector Machine.

Evaluation
Metric

Awaiting
User Inputs

Version Approval IP Address

N
B

Accuracy 54.38 ± 0.09 62.19 ± 0.54 70.41 ± 0.29 60.41 ± 0.72
Precision 53.42 ± 0.08 63.71 ± 2.29 73.54 ± 0.23 63.21 ± 1.24
Recall 68.48 ± 0.32 57.58 ± 7.03 63.75 ± 1.20 49.92 ± 1.06

L
R

Accuracy 61.85 ± 0.17 62.84 ± 0.98 72.55 ± 0.53 63.13 ± 0.47
Precision 62.21 ± 0.11 65.78 ± 1.33 76.98 ± 0.80 65.95 ± 0.52
Recall 60.37 ± 0.45 53.63 ± 2.91 64.35 ± 0.75 54.30 ± 1.46

R
D

F

Accuracy 99.51 ± 0.01 91.36 ± 0.92 97.73 ± 0.30 96.58 ± 0.42
Precision 99.83 ± 0.02 94.78 ± 1.45 99.36 ± 0.24 98.39 ± 0.56
Recall 99.20 ± 0.03 87.60 ± 2.84 96.07 ± 0.75 94.72 ± 0.72

S
V

M

Accuracy 99.83 ± 0.01 94.96 ± 0.69 99.28 ± 0.17 98.69 ± 0.14
Precision 99.94 ± 0.02 95.59 ± 0.92 99.56 ± 0.23 98.89 ± 0.20
Recall 99.73 ± 0.02 94.28 ± 1.82 99.00 ± 0.24 98.49 ± 0.26

computation time and the performance. The reduced feature set of unigrams
and bigrams is concatenated with the other three features (platform, doc-
attached and time of reporting) to represent a ticket. Thereafter, we reduced
the dimension of the ticket feature vector by applying PCA. We notice from
Table 7 that the feature length is different for models corresponding to different
information needs because the training data set is different.

Using the list of features and the labeled training data set, a SVM is trained
with different kernels such as linear, polynomial and Radial Basis Function
(RBF) kernel, using LIBSVM [16]. We found experimentally that RBF kernel
performed the best with c = 8 and g = 2 where c and g are the input parameters.
A grid search is performed using a validation set and c = 8 and g = 2 are
obtained as the best set of optimal parameters [34]. The performance of the
learnt classification model is shown in Table 8 on the test set using evaluation
metrics discussed in Subsection 5.5. Further, the performance of the proposed
SVM classifier is compared with some baseline and popular classifiers in the
literature such as naive Bayes, logistic regression, and Random Decision Forest
(RDF) (refer to Table 8). For logistic regression the threshold hyperparameter
is manually fine-tuned to be 0.5. Breiman et al. discuss some experimental
heuristics to tune the parameters of RDF [13]. Based on those intuitions,
the parameters of RDF used in our experiments are number of trees = 200,
bootstrap ratio = 0.7, and subset of features per tree = 0.6. The average results

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 31

(b) Software Version(a) Awaiting User Inputs (c) Approval (d) IP Address

(b) Software Version(a) Awaiting User Inputs (c) Approval (d) IP Address

Fig. 6 ROC for SVM and RDF based preemtive model to illustrate their performance for
different information needs: (a) Awaiting User Inputs, (b)Software Version, (c) Approval and
(d) IP Address. The y-axis is cut at 0.8 to zoom in the point of bending for ROC curves.

obtained over five-times repeated random subsampling for all the classifiers
are tabulated in Table 8. ROC is presented in Fig. 6 for SVM and random
decision forest classifier as they perform better for all the four models. The
major observations drawn from the results are as follows:

1. The proposed SVM classifier provides the best overall classification accu-
racy in the range of 95–99% for all the information needs. SVM is kind
of expected to perform best with optimal parameter values since it is re-
garded as one of the best classifier in the literature for text classification
tasks [22][4][20][37][45][65][77]. It can be observed that both precision and
recall of the classifier are high suggesting that the classifier is not biased
towards any particular class. It is possible because random under-sampling
of majority class is performed at the time of training to handle imbalanced
class problem.

2. It can be observed that an ensemble learning based classifier such as Random
Decision Forest (RDF) performs comparable to SVM. Thus, SVM is not

32 Monika Gupta et al.

Table 9 Categories in tactical user input requests with total comments in each class, percent
of total comments, and example keywords.

Class #Comments % of comments Example keywords
Temporize 6272 8.11% in progress, working, will do it
Invalid 645 0.83% No alphanumeric character
Will Transfer 482 0.62% transfer to, assign to
Contact Me 21081 27.26% ping me when free, call me @
Done So Check 4414 5.70% Installed, Completed, Check

a strict choice for choosing the classifier of the preemptive system. SVM
performs a kernel trick to project the feature space into a suitable higher
dimensional space where linear classification is possible, while RDF combi-
nes the classification results of multiple individual classifiers making the
classification decision robust. The logistic function of the regression classifier
tries to fit a linear boundary in the provided feature space, thus, can lead
to an approximate classification. Hence, logistic regression performs poorly
when compared with SVM and RDF. Since a sparse feature representation is
obtained from the bag-of-words model, models such as naive Bayes perform
poorly in trying to fit a distribution for the data.

3. Fig. 6 shows the ROC curve plotted between the false accept rate (in log
scale) and true accept rates, comparing the performance of SVM and RDF
classifiers across all information needs. The ROC curve shows the trade off
between sensitivity (also called recall) and specificity, providing the number
of true detects for a given number of fall-outs. For all the information
needs, it can be observed that SVM performs better than RDF by correctly
detecting more than 95% of the test cases.

4. It is to be noted that the test data is an unseen data for the classifier. Thus,
the performance of the classifier, as shown using the test data, is equivalent
to the performance of the classifier as deployed in a real-time environment.

We have made the trained preemptive model and code publicly available [27]
and they can be used by other researchers in their experiments.

8.4 Detection Model

Set of rules is derived iteratively for each of the five categories using the
approach suggested in Section 6. For example, rule for category transfer is
comment description should be like *transfer to* or *assign to*. Example
keywords in generating rules for each category are shown in Table 9 and the
complete set of rules for reference are made publicly available [27]. The given
data set, that is, 77, 333 analyst comments corresponding to 96, 756 closed
tickets for subcategory install are classified using the designed rule based
classifier. We perform stemming, case folding of comments to ensure that
matching is case insensitive and remove special characters. The total number of
data points classified to each of the categories is summarized in Table 9. Around
42.52% of the total user input requests are classified to one of the five listed

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 33

Table 10 Real example comments for each category of tactical user input requests.

Class Example Comments

Temporize
“We are trying to find the solution for the problem.We shall get
back you soon.”
“Please provide sometime it will be done asap”
“Will check and update the status.”

Invalid “...”, “-”, “ ”

Will Transfer
“Will Assigned to L1 Team. They will reach you shortly.”
“Transferring to concerned person.”
“This request is not under my scope of work. I will contact admin
and transfer it to correct analyst.”

Contact Me
“Please ping me when you are available.”
“Please Ping/Call me once you are at your desk and free so that
we can work on your request.”
“You seem offline. Please contact me once you are available.”

Done So Check
“The requested software has been installed. Please check and close
the request.”
“Please check and update.”
“It has been done. Kindly check it.”

categories. Managers expressed that while it is very useful to know comments
from Contact Me category, it needs to be tackled differently as compared to
other tactical categories. This is because they believe that while no direct
information is asked in such comments, the analyst asked user to contact them.
Therefore, there is high possibility that the analyst asked for inputs in follow
up communication with the user over phone or chat. Hence, whether it is truly
tactical or not also depends on the reason for asking user to contact them which
is not captured in the comment therefore, cannot be concluded as clear case of
tactical. As a result, comments from other four categories constituting around
15.27% of the total user input requests are considered as tactical. The most
frequent tactical category is temporize constituting 8.11% of the total of user
input requests. Interestingly, 645 input requests consist of non-alphanumeric
characters such as dash, periods, and NULL. Table 10 presents some of the
comments from the IT support system which are classified in the presented
classes using the proposed detection model.

For evaluation, we requested two managers with experience (as manager
in the same organization) of 3–5 years to independently and randomly pick
around 100 comments each from the classified ones. They are requested to make
sure that the sample contains comments from all the five categories shown
in Table 10. They manually inspected the sampled comments and indicated
if the comment is wrongly classified to a category. In all cases the managers
agreed that the comment classified to a category indeed belongs to the same.
Both the managers mentioned that it is really useful to have categories within
tactical because each category may need to be tackled differently. Though
the completeness is not guaranteed with this evaluation, the detection model
precisely classifies comments to categories of tactical requests which can be
handled accordingly.

34 Monika Gupta et al.

Table 11 Destination state transition analysis for different types of user input requests.
Most frequent destination state for each type of user input request is highlighted in bold.

User Update No Update
Type of user
input request
/ dest. state

User In-
put Re-
ceived

Attach
doc

Closed Resolved AUI -
Auto-
closure

Transfer

1. Real user
input request
(44439)

18224
(41.0%)

4340
(9.8%)

7429
(16.7%)

5678
(12.8%)

4432
(10.0%)

2222
(5.0%)

2. ContactMe
(21081)

5469
(26.0%)

186
(0.9%)

3093
(14.7%)

9202
(43.6%)

1143
(5.4%)

1191
(5.6%)

3. Done So
Check (4414)

941
(21.3%)

58
(1.3%)

1517
(34.4%)

1466
(33.2%)

226
(5.1%)

97
(2.2%)

4. Invalid (645) 160
(24.8%)

4 (0.6%) 29
(4.5%)

362
(56.1%)

8 (1.2%) 62
(9.6%)

5. Temporize
(6272)

1873
(29.9%)

84
(1.3%)

514
(8.2%)

2569
(41.0%)

289
(4.6%)

715
(11.4%)

6. Will Transfer
(482)

46 (9.5%) 4 (0.8%) 27
(5.6%)

21 (4.4%) 12
(2.5%)

350
(72.6%)

9 Destination State Analysis

We analyze the comments classified to one of the tactical categories and the
ones not classified to any tactical class (referred to as real user input request) for
the destination state. Table 11 presents transition of different user input request
types to most frequent destination states. We test if there exists relationship
between user input request type and destination state using chi-square test
for independence because both are categorical variables and every cell has
expected value more than 5. The p-value for the significance test is too low to
be computed (less that 0.01) thus, the two variables are significantly related to
each other. From Table 11, we make the following observations:

– Most frequent destination state (highlighted with bold) for tactical catego-
ries (2–5 in Table 11) is from No Update that is, Resolved, AUI-Autoclosure,
and Transfer. However, most frequent destination for real user input reque-
sts is from User Update. This validates our conjecture that if no update
from user for a user input request then it is more likely to be tactical and
if user provides any update then it is more likely to be a real user input
request.

– For real user input requests, user inputs are received for majority (around
41%) of the cases. In some cases (around 17%), tickets are closed by users
without getting resolved.

– For Contact Me user input requests, either the user gave some inputs (as
destination state is User Input Received for 26.0% comments) or the ticket
was Resolved (for 43.6% cases) based on interaction between the user and
the analyst outside ticketing system (not recorded in database).

– Done So Check type user input requests have Closed (34.4%) and Resolved
(33.2%) as most frequent destination state. Closed indicates that the user
was satisfied with the resolution hence closed. Many a times, user confirms

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 35

with a comment in response to this input request, hence, User Input Received
is also quite frequent destination state. Apart from this, Resolved is frequent
state indicating that the user did not confirm the resolution and analyst
marked it as Resolved in sometime.

– For Invalid user input requests which are clear case of tactical input requests,
the most frequent destination state is Resolved (around 56.1%). In cases
where the destination state is User Input Received, the input from user is
an expression of displeasure.

– For Temporize user input requests, maximum transitions are to state
Resolved (for around 41.0% times), that is, analyst actually needed no
information and misused the label. For instances with the destination state
as User Input Received, users mostly clarify with analysts the information
they are supposed to provide.

– Will Transfer user input requests are often followed by Transfer (for 72.6%
times) of ticket with few exceptions.

The p-value (less than 0.01) and above observations validate our conjecture
that destination state gives an indication about the type of user input requests.
Therefore, manager can leverage the transition pattern (output of process
mining) to decide if there is a need to reduce real or tactical or both type of
user input requests.

10 Discussion

Based on organization size, culture and needs, the information from the propo-
sed preemption and detection model can be leveraged in different ways.

10.1 Applications of Preemptive Model

Some of the applications of the proposed preemptive model are as follows:

– Recommendation System: The user is preempted with the potential informa-
tion needs. However, it is up to the user to choose to provide the suggested
information or not. If user provides the information on preemption, it can
reduce delay due to later user input requests by analyst.

– Mandatory System: The user is not allowed to submit the ticket without
providing all the preempted information. This guarantees reduction in user
input requests because it is not left on the user to choose if (s)he wants to
act on the preempted information. However, such a strict system makes it
difficult for a user to report an issue if some of the preempted information
is not available in hand. Also for such a system it is crucial to achieve very
high precision.

– Feedback for Template Improvement: If the system preempts specific infor-
mation needs more often, it is likely that the field to collect that information
is either missing or not clear in the initial ticket template. Therefore, the

36 Monika Gupta et al.

team can use this information to upgrade the template for more efficient
ticket reporting.

10.2 Applications of Detection Model

Detection of tactical user input requests can be utilized in the following ways:

– Notification System: The manager is notified if the system detects that an
analyst is trying to make a tactical user input request. The manager can
look at the comment and if it is confirmed to be tactical, suitable actions
(such as reassign the ticket) are taken based on the organizational policies.
However, it is difficult for a manager to manually inspect all such suspicious
cases for large organizations.

– Logging System: No immediate action is taken for the detected tactical
user input requests, rather a log is maintained along with the analysts’
information. It is analyzed by manager on a monthly or quarterly basis
to understand if practice of making tactical user input requests is specific
to some individuals or spans to a majority of analysts, and thus, to take
appropriate actions. In the first case, analysts who make such requests more
often are handled at individual level. In the other case, the information
can be used by service level management to better estimate feasible service
level resolution time and negotiate with clients accordingly.

– Blocking System: If the system detects a tactical user input request, it is
blocked and not sent to the user. It ensures that no such requests degrade
user experience. However, if a request is wrongly detected as tactical, the
analyst is forced to paraphrase the comment such that it clearly seeks
information.

Reduction in ticket resolution time depends on the application of a preemp-
tive and detection model thus, we cannot estimate effective reduction in resolu-
tion time. However, given the observation that user input requests cause user
experienced resolution to be much higher than measured service resolution time,
reduction in user input requests will definitely lead to significant reduction in
resolution time.

In case of the preemptive model, we achieve very high accuracy using SVM
and RDF but it is not overfitting because the test data is different from the
training data. This performance is achieved after fine tuning the parameters
to optimal values for given data otherwise for some parameter values, the
performance was no better than naive Bayes and logistic regression.

It is possible that an analyst seeks information which is not really required
to resolve a ticket. However, it looks like a real user input request because
in the given solution only non-information seeking user input requests are
detected as tactical. Such cases go undetected with the given solution.

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 37

11 Threats to Validity

The threats for the presented work are as follows:

– Threats to external validity: External validity is concerned with the genera-
lizability of the results to other settings [62][75]. Following are the threats
to external validity for each element of the approach:

– Process mining of Ticket Data: We analyze the transition pattern for
awaiting user inputs and conjecture that there are both real and tactical
user input requests. Tactical user input requests are observed in Volvo
IT organization ticket data [74] and the data for the large global IT
company investigated as part of this case study. However, tactical user
input requests can be very rare or not present in other IT support ticket
data for other organizations with different characteristics (such as small
sized, less work load, and lenient service level resolution time limit).

– Survey of Users and Analysts: We surveyed participants, that is, users
from diverse project types and analysts working on different category
of tickets. Nevertheless, they are part of the same organization using
similar processes and guidelines. Though having diverse participants
from the same organization enables to explore experiences from several
perspectives, organizational culture may create a bias.

– Preemptive Model: We evaluated performance of the preemption model
for install subcategory within software category on real data for a large
global IT company. Proposed model needs to be trained separately for
each subcategory because different subcategories have different informa-
tion requirements. The performance of the preemption model may vary
with different ticket dataset. More so because performance of a classier
strongly depends on the value of its input parameters, whose optimal
choice heavily depends on the data being used. Therefore, the proposed
preemptive model may preempt information needs in different contexts
less accurately leading to smaller reduction in later user input requests.

– Detection Model: The detection model classifies user input requests to
refined tactical classes. However, the list of classes is not exhaustive and
can vary with the organization.

– Threats to conclusion validity: Conclusion validity refers to whether the
conclusions reached in the study are correct [62][75]. Threats to conclusion
validity of the presented work are as follows:
– Preemptive Model: Evaluation of the preemptive model is done on the

test data but not in production. Since test data is unseen, we believe
that the performance is close to reality and the model efficiently reduces
user input requests. However, it depends on the way the preemptive
model is applied in practice. For instance, if applied as recommendation
system then there will be a performance improvement only if users
choose to provide the preempted information.

38 Monika Gupta et al.

– Detection Model: While the detection model has high precision, it
is difficult to guarantee high recall because it is possible that some
infrequent tactical request classes are missed out.

– Threats to construct validity: Construct validity refers to the degree to
which the factors under consideration in the designed experiment simulate
the real conditions of their use [62][75]. While IT information system is the
recommended communication channel between analysts and users, there can
be communication over chat and telephone. The data for the communication
over those channels is not accessible for analysis because of confidentiality
and privacy reasons.
We distinguish between analysts requesting information outside the ITIS
and users proving the information outside the ITIS. The former is unlikely
to happen as the SLA clock would not be affected. The latter would not
affect the detection model, as the detection model analyzes the comments
made when the analysts mark a ticket as Awaiting User Inputs. However,
the validity of preemption model might have been affected as follows:
– Preemption Model: Preemption model inherently reflects the data it

has been trained upon and since no information is available about the
communication outside ticket tracking system, the preemptive model
might not adequately reflect the information needs expressed in such
communication.

12 Conclusions and Future Work

We analyzed ticket data to capture the process reality more specifically user
input requests made during ticket resolution life cycle by applying process
mining. Also we studied the impact of user input requests on overall user
experienced resolution time. There is a need to ensure that the information
required for ticket resolution is collected from the user upfront thus, reducing
real user input requests. However, users do not have a clear idea on what
information will be required for resolving a specific ticket. Therefore, an SVM
classifier based preemptive model was learnt to preempt users with the need for
additional information during the time of ticket submission. Also we noticed
non-information seeking, tactical user input requests for the sake of service
level compliance. The rule based detection model identifies such input requests,
thus can be discouraged. Performance of the proposed preemptive model and
detection model on the real world data for a large global IT company shows
the effectiveness of our solution approach in reducing the number of user input
requests in tickets’ life cycle.

In the existing approach, every information seeking user input request is
considered as real irrespective of whether it is really required to resolve the
ticket or not. In the future we plan to extend the detection model to also
identify the cases where unnecessary information is asked, which is another
way of making tactical requests. It requires further investigation of user input

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 39

requests and understanding of information actually being used for resolving
the ticket.

Acknowledgements The work presented in this paper is supported by Prime Minister’s
Fellowship, SERB, CII, and Infosys Limited. The authors are thankful to the participants of
both the surveys and Charlotte Ramon, an intern at Infosys Ltd. for help with conducting
the survey. Thanks to Anush Sankaran for help with the preemptive model. We thank Prof.
Tom Mens for his feedback on the early version of this manuscript. We acknowledge Prof.
Pankaj Jalote, the PhD adviser of first author, and Anjaneyulu Pasala, the industry mentor
of first author for the valuable feedback.

References

1. Rob Addy. Effective IT service management: to ITIL and beyond! Springer-Verlag New
York, Inc., 2007.

2. Burcu Akman and Onur Demirors. Applicability of process discovery algorithms for
software organizations. In 35th Euromicro Conference on Software Engineering and
Advanced Applications, pages 195–202. IEEE, 2009.

3. Jeff Anderson, Saeed Salem, and Hyunsook Do. Striving for failure: an industrial case
study about test failure prediction. In 37th International Conference on Software
Engineering, volume 2, pages 49–58. IEEE, 2015.

4. John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In 28th
International Conference on Software Engineering, pages 361–370. ACM, 2006.

5. Alain April, Jane Huffman Hayes, Alain Abran, and Reiner Dumke. Software maintenance
maturity model (SMmm): the software maintenance process model. Journal of Software
Maintenance and Evolution: Research and Practice, 17(3):197–223, 2005.

6. Gilad Barash, Claudio Bartolini, and Liya Wu. Measuring and improving the performance
of an IT support organization in managing service incidents. In International Workshop
on Business-Driven IT Management, pages 11–18. IEEE, 2007.

7. Claudio Bartolini, Cesare Stefanelli, and Mauro Tortonesi. Business-impact analysis and
simulation of critical incidents in IT service management. In International Symposium
on Integrated Network Management, pages 9–16. IEEE, 2009.

8. Christian Bartsch, Marco Mevius, and Andreas Oberweis. Simulation of IT service
processes with Petri-nets. In International Conference on Service-Oriented Computing,
pages 53–65. Springer, 2008.

9. Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Automating
extract class refactoring: an improved method and its evaluation. Empirical Software
Engineering, 19(6):1617–1664, 2014.

10. Andrew Begel, Thomas Zimmermann, Yit Phang Khoo, and Gina D. Venolia. Discovering
and exploiting relationships in software repositories, September 8 2015. US Patent
9,129,038.

11. Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and
Thomas Zimmermann. What makes a good bug report? In International Symposium on
Foundations of Software Engineering, pages 308–318. ACM, 2008.

12. Christopher M. Bishop. Pattern recognition. Machine Learning, 128, 2006.
13. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
14. Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Information

needs in bug reports: improving cooperation between developers and users. In Proceedings
of the 2010 ACM conference on Computer supported cooperative work, pages 301–310.
ACM, 2010.

15. João Caldeira and Fernando Brito e Abreu. Influential factors on incident management:
Lessons learned from a large sample of products in operation. In International Conference
on Product Focused Software Process Improvement, pages 330–344. Springer, 2008.

16. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):1–27, 2011.

40 Monika Gupta et al.

17. Patricia S. Crowther and Robert J. Cox. A method for optimal division of data sets for
use in neural networks. In International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems, pages 1–7. Springer, 2005.

18. Florian Daniel, Kamel Barkaoui, and Schahram Dustdar, editors. Business Process
Management Workshops - BPM 2011 International Workshops, Clermont-Ferrand,
France, August 29, 2011, Revised Selected Papers, Part I, volume 99 of Lecture Notes
in Business Information Processing. Springer, 2012.

19. Jochen De Weerdt, Seppe Vanden Broucke, Jan Vanthienen, and Bart Baesens. Leveraging
process discovery with trace clustering and text mining for intelligent analysis of incident
management processes. In Congress on Evolutionary Computation, pages 1–8. IEEE,
2012.

20. Karim O. Elish and Mahmoud O. Elish. Predicting defect-prone software modules using
support vector machines. Journal of Systems and Software, 81(5):649–660, 2008.

21. Diogo R. Ferreira and Miguel Mira Da Silva. Using process mining for ITIL assessment:
a case study with incident management. In 13th Annual UKAIS Conference, pages 1–16.

22. Daviti Gachechiladze, Filippo Lanubile, Nicole Novielli, and Alexander Serebrenik. Anger
and its direction in collaborative software development. ICSE NIER, pages 11–14.

23. Vahid Garousi, Ebru Göçmen Ergezer, and Kadir Herkiloğlu. Usage, usefulness and
quality of defect reports: an industrial case study. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering, number 39, pages
1–6. ACM, 2016.

24. Christian W. Günther and Anne Rozinat. Disco: Discover your processes. BPM (Demos),
940:40–44, 2012.

25. Christian W. Günther and Wil van der Aalst. Fuzzy mining–adaptive process simpli-
fication based on multi-perspective metrics. In Business Process Management, pages
328–343. Springer, 2007.

26. Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy.
Characterizing and predicting which bugs get fixed: an empirical study of microsoft
windows. In 32nd International Conference on Software Engineering, volume 1, pages
495–504. IEEE, 2010.

27. Monika Gupta. Artifacts for ITIS ticket analysis. https://github.com/

Mining-multiple-repos-data/TicketExperimentalDataset. Accessed: June 1, 2017.
28. Monika Gupta and Ashish Sureka. Nirikshan: Mining bug report history for discovering

process maps, inefficiencies and inconsistencies. In 7th India Software Engineering
Conference, pages 1–10. ACM, 2014.

29. Monika Gupta, Ashish Sureka, and Srinivas Padmanabhuni. Process mining multiple
repositories for software defect resolution from control and organizational perspective. In
11th Working Conference on Mining Software Repositories, pages 122–131. ACM, 2014.

30. Frank E. Harrell. Regression modeling strategies: with applications to linear models,
logistic regression, and survival analysis. Springer Science & Business Media, 2013.

31. Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions
on knowledge and data engineering, 21(9):1263–1284, 2009.

32. James D. Herbsleb and Eiji Kuwana. Preserving knowledge in design projects: What
designers need to know. In Proceedings of the INTERACT’93 and CHI’93 conference
on Human factors in computing systems, pages 7–14. ACM, 1993.

33. Tin Kam Ho. The random subspace method for constructing decision forests. Transacti-
ons on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

34. Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support
vector classification. 2003.

35. Michael Hüttermann. DevOps for developers. Apress, 2012.
36. Nathalie Japkowicz. The class imbalance problem: Significance and strategies. In

International Conference on Artificial Intelligence, 2000.
37. Thorsten Joachims. Text categorization with support vector machines: Learning with

many relevant features. In European Conference on Machine Learning, pages 137–142.
Springer, 1998.

38. Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.
39. Chang Jae Kang, Young Sik Kang, Yeong Shin Lee, Seonkyu Noh, Hyeong Cheol Kim,

Woo Cheol Lim, Juhee Kim, and Regina Hong. Process mining-based understanding and

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 41

analysis of Volvo IT’s incident and problem management processes. In BPIC@ BPM,
2013.

40. Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer. Activity mining for discove-
ring software process models. Software Engineering, Fachtagung des GI-Fachbereichs
Softwaretechnik, 79:175–180, 2006.

41. Patrick Knab, Martin Pinzger, and Harald C. Gall. Visual patterns in issue tracking
data. In New Modeling Concepts for Todays Software Processes, pages 222–233. Springer,
2010.

42. Andrew J. Ko, Brad A. Myers, and Duen Horng Chau. A linguistic analysis of how
people describe software problems. In Visual Languages and Human-Centric Computing,
2006. VL/HCC 2006. IEEE Symposium on, pages 127–134. IEEE, 2006.

43. Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. Handling imbalan-
ced datasets: A review. GESTS International Transactions on Computer Science and
Engineering, 30(1):25–36, 2006.

44. Ta Hsin Li, Rong Liu, Noi Sukaviriya, Ying Li, Jeaha Yang, Michael Sandin, and
Juhnyoung Lee. Incident ticket analytics for IT application management services. In
International Conference on Services Computing, pages 568–574. IEEE, 2014.

45. Ana Roćıo Cárdenas Maita, Lucas Correa Martins, Carlos Ramón López Paz, Sara-
jane Marques Peres, and Marcelo Fantinato. Process mining through artificial neural
networks and support vector machines: a systematic literature review. Business Process
Management Journal, 21(6):1391–1415, 2015.

46. Alan Moraes, Eduardo Silva, Cleyton da Trindade, Yuri Barbosa, and Silvio Meira.
Recommending experts using communication history. In International Workshop on
Recommendation Systems for Software Engineering, pages 41–45. ACM, 2010.

47. Denilson Cursino Oliveira and Raimir Holanda Filho. A time and financial loss estimation
using a highly parallel scheduling model for IT change management. In International
Symposium on Integrated Network Management-Workshops, pages 1–9. IEEE, 2009.

48. Girish Keshav Palshikar, Mohammed Mudassar, Harrick M. Vin, and Maitreya Natu.
Streamlining service levels for IT infrastructure support. In International Conference
on Data Mining Workshops, pages 309–316, 2012.

49. Girish Keshav Palshikar, Harrick M. Vin, Mohammed Mudassar, and Maitreya Natu.
Domain-driven data mining for IT infrastructure support. In International Conference
on Data Mining Workshops, pages 959–966, 2010.

50. Zbigniew Paszkiewicz and Willy Picard. Analysis of the volvo IT incident and problem
handling processes using process mining and social network analysis. In BPIC@ BPM,
2013.

51. Shaun Phillips, Guenther Ruhe, and Jonathan Sillito. Information needs for integration
decisions in the release process of large-scale parallel development. In Proceedings of
the ACM 2012 conference on Computer Supported Cooperative Work, pages 1371–1380.
ACM, 2012.

52. Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and emotion:
sentiment analysis of security discussions on github. In Proceedings of the 11th working
conference on mining software repositories, pages 348–351. ACM, 2014.

53. Wouter Poncin, Alexander Serebrenik, and Mark G. J. van den Brand. Mining student
capstone projects with FRASR and ProM. In International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion, pages
87–96. ACM, 2011.

54. Wouter Poncin, Alexander Serebrenik, and Mark G. J. van den Brand. Process mi-
ning software repositories. In European Conference on Software Maintenance and
Reengineering, pages 5–14, 2011.

55. Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
56. Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann. Re-

commendation systems in software engineering. Springer, 2014.
57. Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do professional

developers comprehend software? In Proceedings of the 34th International Conference
on Software Engineering, pages 255–265. IEEE Press, 2012.

58. Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164, 2009.

42 Monika Gupta et al.

59. Jana Samalikova, Rob J Kusters, Jos JM Trienekens, and AJMM Weijters. Process mining
support for capability maturity model integration-based software process assessment, in
principle and in practice. Journal of Software: Evolution and Process, 26(7):714–728,
2014.

60. Adrian Schröter, Irwin Kwan, Lucas D Panjer, and Daniela Damian. Chat to succeed. In
International Workshop on Recommendation Systems for Software Engineering, pages
43–44. ACM, 2008.

61. Sam Scott and Stan Matwin. Feature engineering for text classification. In International
Conference on Machine Learning, volume 99, pages 379–388, 1999.

62. Forrest Shull, Janice Singer, and Dag I. K. Sjøberg. Guide to Advanced Empirical
Software Engineering, volume 93. Springer, 2008.

63. Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions programmers ask
during software evolution tasks. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 23–34. ACM, 2006.

64. Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking and answering questions
during a programming change task. IEEE Transactions on Software Engineering,
34(4):434–451, 2008.

65. Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. A discrimi-
native model approach for accurate duplicate bug report retrieval. In 32nd International
Conference on Software Engineering-Volume 1, pages 45–54. ACM, 2010.

66. Wikan Sunindyo, Thomas Moser, Dietmar Winkler, and Deepak Dhungana. Improving
open source software process quality based on defect data mining. In Software Quality.
Process Automation in Software Development, pages 84–102. Springer, 2012.

67. Ashish Sureka and Pankaj Jalote. Detecting duplicate bug report using character n-
gram-based features. In 2010 Asia Pacific Software Engineering Conference, pages
366–374. IEEE, 2010.

68. Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto.
Automated parameter optimization of classification techniques for defect prediction
models. In Proceedings of the 38th International Conference on Software Engineering,
pages 321–332. ACM, 2016.

69. Tapanee Treeratanaporn. Information Technology Service Management (ITSM) in
education. Walailak Journal of Science and Technology, 12(9):739–747, 2015.

70. Peter Van den Spiegel, Leen Dieltjens, and Liese Blevi. Applied process mining techniques
for incident and problem management. In BPIC@ BPM, 2013.

71. Wil van der Aalst. Process mining - discovery, conformance and enhancement of business
processes. Springer, 2011.

72. Wil van der Aalst, Hajo A. Reijers, Ton Weijters, Boudewijn F. van Dongen, Ana Karla
Alves de Medeiros, Minseok Song, and Eric Verbeek. Business process mining: An
industrial application. Information Systems, 32(5):713–732, 2007.

73. Jan Martijn E. M. Van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens,
and Alexander Serebrenik. Process discovery using integer linear programming. In
International Conference on Applications and Theory of Petri Nets, pages 368–387.
Springer, 2008.

74. Boudewijn F. van Dongen, Barbara Weber, Diogo R. Ferreira, and Jochen De Weerdt.
Business process intelligence challenge, 2013.

75. Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders
Wesslén. Experimentation in Software Engineering. Springer Science & Business Media,
2012.

76. Qing-Song Xu and Yi-Zeng Liang. Monte Carlo cross validation. Chemometrics and
Intelligent Laboratory Systems, 56(1):1–11, 2001.

77. Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou. Developer prioritization in bug
repositories. In 34th International Conference on Software Engineering, pages 25–35.
IEEE, 2012.

78. Nor Shahida Mohamad Yusop, John Grundy, and Rajesh Vasa. Reporting usability
defects: do reporters report what software developers need? In Proceedings of the
20th International Conference on Evaluation and Assessment in Software Engineering,
number 38, pages 1–10.

Reducing User Input Requests to Improve IT Support Ticket Resolution Process 43

79. Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jianjun Zhao, and Peizhao
Ou. Automatic parameter recommendation for practical API usage. In 34th International
Conference on Software Engineering, pages 826–836. IEEE Press, 2012.

80. Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical
framework. Journal of Machine Learning and Cybernetics, 1(1-4):43–52, 2010.

