
STRESS: A Semi-Automated, Fully Replicable
Approach for Project Selection

Davide Falessi
California Polytechnic State University

USA
Email: dfalessi@calpoly.edu

Wyatt Smith
California Polytechnic State University

USA
Email: wsmith@calpoly.edu

Alexander Serebrenik
Eindhoven University of Technology

The Netherlands
Email: a.serebrenik@tue.nl

Abstract—Background: The mining of software repositories
has provided significant advances in a multitude of software en-
gineering fields, including defect prediction. Several studies show
that the performance of a software engineering technology (e.g.,
prediction model) differs across different project repositories.
Thus, it is important that the project selection is replicable. Aims:
The aim of this paper is twofold: 1) We investigate the possibility
to replicate the project selection in previous studies, 2) We provide
a semi-automated and fully replicable solution called STRESS.
STRESS is a tool that allows researchers to select projects
by configuring the desired level of diversity, fit, and quality.
STRESS records the rationale behind the researcher decisions
and allows different users to re-run or modify such decisions.
STRESS is open-source and it can be used locally or even online
(www.falessi.com/STRESS/). Method: We perform a systematic
mapping study that considers studies that analyzed projects man-
aged with JIRA and Git to asses the project selection replicability
of past studies. We validate the feasible application of STRESS
in realistic research scenarios by applying STRESS to select
projects among the 211 Apache Software Foundation projects.
Results: Our systematic mapping study results show that none
of the 68 analyzed studies is completely replicable. Regarding
STRESS, it successfully supported the project selection among
all 211 ASF projects. It also supported the measurement of 100
projects characteristics, including the 32 criteria of the studies
analyzed in our mapping study. Conclusions: The mapping study
and STRESS are, to our best knowledge, the first attempt to
investigate and support the replicability of project selection. We
plan to extend them to other technologies such as GitHub.

Index Terms—mining software repositories, replication

I. INTRODUCTION

A. Context

Mining software repositories (MSR) provided significant
and valuable advances in a multitude of software engineering
fields such as defect prediction [1], traceability recovery [2],
technical debt management [3], technology adoption [4] and
socio-technical analysis [5], [6].

In order to avoid misunderstandings, we now define the
terms project and repository in the context of this paper. A
project, such as Accumulo1, is a set of software engineering
activities that produce different artifacts such as code, require-
ments, bugs, tasks, and their traces. Some of these artifacts are
managed and linked with issue control systems, such as JIRA
or BugZilla, and with version control systems, such as Git or
Subverison. Systems that store project data, e.g., issue control

1http://accumulo.apache.org/

systems and version control systems, are known as software
repositories. In the context of this paper, a project typically
has two repositories, an issue tracking system (e.g., JIRA) and
a version control system (e.g., Git). In other studies, such as
the ones focusing on GitHub, a project may have only one
repository, since GitHub can act as both the version control
and the issue tracking system.

A crucial step for mining software repositories is choosing
the projects to mine. In the linguistic context, Hunston reported
the most important characteristics for a corpus are size,
contents, representativeness and permanence [7]. Tempero et
al. have argued that the same concerns pertain to software
corpora [8]. Regarding the number of projects Nagappan et
at. [9] state that “more is not necessarily better.”

B. Problem

The mining results are frequently related to the projects
where they have been observed [1], [10]. For instance, Hall et
al. [1] suggest that some application domains (e.g., embedded
systems) may be more difficult than others to build reli-
able prediction models for. Similarly, within-company effort
predictions are usually more accurate than cross-company
ones [11]. Thus, project selection affects both external and
internal validity [12], [13].

Regarding external validity, it is important that the re-
searchers provide a good description of the used projects
so that the reader can reason on how much the results are
generalizable on other contexts. Regarding internal validity,
in most of the cases the technology validation group has
relation with the technology development group and hence
the validation group might have interest in the output of
the validation, a.k.a. conflict of interests. Researchers may
consciously, or even unconsciously, prefer projects showing
that their new technology is reliable [2] or it even outperforms
past ones. As reviewers, editors, and readers, we have no way
to replicate the project selection, and, hence, cannot know
whether it could have been biased. As authors, in case of a
conscious project selection focused on not biasing the results,
we are in trouble when solid justifications for the chosen
projects should be provided.

Past studies provided tools [14] and algorithms [9] to sup-
port researchers in project selection. However, our perception
is that the project selection, in past mining papers, is hard to



replicate. Our mapping study will confirm such a perception.
Indeed, replication of previous studies is essential in empirical
software engineering research as a means to gain confidence
and to understand the limitations of research results [15].

C. Aim

The aim is twofold: 1) We investigate the possibility to
replicate the project selection in previous studies, 2) We
provide a semi-automated and fully replicable solution called
STRESS. STRESS is a tool that allows researchers to select
projects by configuring the desired level of diversity, fit, and
quality. A systematic mapping study of previous MSR studies
analyzing projects managed with JIRA and Git allowed us 1)
to investigate the possibility to replicate the project selection
in previous studies and 2) to decide upon the project selection
criteria to be supported in STRESS we perform We validate
feasibility of application of STRESS in realistic research
scenarios by 1) applying STRESS to select projects among
the 211 Apache Software Foundation (ASF) projects2 and
2) checking whether STRESS supports the project selection
criteria adopted in the past.

D. Structure

After discussing the related work in Section II, in Section III
we report the mapping study design and results. Section IV
presents STRESS. Section V reports the threats to validity and
Section VI concludes the paper.

II. RELATED WORK

A. Replicability of MSR studies

Amann et al. [16] revisited a decade of software mining
studies and highlighted mining goals, study replicability, and
trends in mined artifacts. They reported that only 40% of
the studies provided their datasets for reuse and only 20%
of the studies made the tools actually available. Ghezzi and
Gall [17] provided a distributed and collaborative software
evolution analysis platform for supporting Software Analysis
as a Service (SOFAS). They concluded that the replication
of MSR studies is still at a rather early stage despite the
fact that the replication is just as fundamental as the studies
themselves [17]. Robles [18] analyzed the replicability of 171
MSR papers in terms of project data, processed data, and
tool availability. He found that data and tool are frequently
unavailable, even in cases where studies reported otherwise.

We believe hence that no previous study has investigated
the replicability of, or the criteria used for, project selection.

B. Tool support for project selection

Nagappan et al. [9] provided an algorithm to choose the
projects by maximizing the sample coverage, i.e., the percent-
age of projects in a population that are similar to a given
sample. We reused and extended their approach. Specifically,
we improved the usability by encapsulating their algorithm in
a website with a GUI and with a database of ASF projects

2https://projects.apache.org/

that can be analyzed, and then selected for a follow-up study.
STRESS aims at improving the usability of the work of
Nagappan et al. [9] without decreasing the scientific rigor.

Rozenberg et al. [14] recently presented a tool called
RepoGrams to support researchers in qualitatively comparing
and contrasting projects over time using a set of software
metrics. We share with them the vision to support researchers
in selecting projects to make more reasoned choices. STRESS
differs from RepoGrams in 1) supporting a quantitative, rather
than qualitative, approach and 2) in supporting replication.

Munaiah et al. [19] proposed a tool called Reaper, to
enable researchers to select GitHub repositories that contain
evidence of an engineered software project. Reaper is similar
to STRESS in the sense that it aims at supporting researchers
in selecting projects. However, STRESS focuses and allows
replicability. The advantage of Reaper over STRESS is that
it allows the user to chose among GitHub projects which are
several order of magnitude more numerous than ASF projects.
The disadvantage of Reaper is that it may lead to chose
projects that are not engineered.

Hence, while there are studies supporting project selection,
no study investigated the replication of project selection.

III. SYSTEMATIC MAPPING STUDY

The mapping study addresses two research questions:
• RQ1: Is project selection of past studies replicable?
• RQ2: Which project selection criteria have been used?

A. Design

1) Research Questions:
RQ1: Is project selection of past studies replicable?:

The aim of STRESS is to support a fully replicable project
selection. It is therefore important to understand if and why
past studies do not allow the replication of their project selec-
tion. In order to be replicable, a project selection strategy must
be documented, based on measurable project characteristics,
and complete, i.e. consider all projects satisfying the selection
criteria. Moreover, the time when the projects characteristics,
related to the selection criteria, are measured should be re-
ported. We structure the following sub-research questions to
investigate each of the above replicability conditions.

RQ1.1: Are criteria reported?: Obviously the researchers
must report the criteria to allow other researchers to replicate
their application in project selection.

RQ1.2: Are criteria measurable?: Some criteria can be
more vague and subjective than others. For instance, the
domain of a project can be subject to interpretation. However,
the same domain criterion can be objective and formally
measured if it is defined as a set of measurable characteristics
such as LOC or specific technology in use.

RQ 1.3: Is the search complete?: We differentiate be-
tween studies making sure that the selected projects have
specific characteristics representing some part of the corpus
having those characteristics, as opposed to studies that ana-
lyzed an entire population and selected all the projects having
those characteristics. Only in the latter case can the researchers



claim the absence of bias in project selection; i.e., they used
a quantifiable and replicable project selection strategy.

RQ1.4: Is the time of the project characteristics measur-
ment reported?: Because projects evolve over time, their char-
acteristics, such as size (number of commits) or technology in
use (e.g., programming language), or even their availability,
can change over time. It is therefore important to report the
specific time when the projects characteristics, related to the
decision criteria, have been measured.

RQ2: Which project selection criteria have been used?:
This question investigates the specific criteria used. This
investigation is important because in STRESS we want to
support the criteria used in previous studies.

2) Research Method: The systematic mapping study de-
scribed in this section has been carried out in the period June
2016–March 2017. We adhere to the guidelines for conducting
systematic literature reviews as formulated by Kitchenham and
Charters [20]. The purpose of our study is to characterize the
criteria used by MSR studies.

In particular, we focus on scientific studies of software
projects using JIRA and Git, and on project selection criteria
used in these studies. The main reason is that Jira and Git are
commonly considered by the bug prediction community; it has
been acknowledged that the bug reports in Jira are better linked
to the version control systems than in Bugzilla [21], [22], [23].
Finally, we decided to focus on Jira and Git since our industry
collaborators and colleagues, such as Keymind [24], tend to
use this combination to manage their software projects.

To identify the previous studies, we perform a search on
Google Scholar using “JIRA Git” as the search string. We opt
for Google Scholar since compared to traditional collections of
scientific papers such as Web of Science, IEEEXplore, ACM
DL or Springer Link, it provides the most complete coverage
of scientific literature available and does not suffer from the
idiosyncrasies reported earlier for traditional collections [25].
Finally, the work on JIRA started in 2002, i.e., scientific
publications preceding this date do not refer to the issue
control system but, e.g., have been authored by a researcher
with a surname Jira. Hence, we exclude papers predating 2001.

Next, we exclude some of the scientific studies retrieved
using Google Scholar. We start by applying the practical
screen [26]: the content covered should be related to software
(as opposed to, e.g., JIRA being a surname of one of the
authors) and the language of publication should be English.
Next, we apply the methodological quality screen [26]. We
require that the publication should be peer-reviewed. We
assume workshop/conference papers, journal and magazine
articles to be peer-reviewed. Theses, technical reports, manu-
als, books, and book chapters might be peer-reviewed but are
not necessarily peer-reviewed. Therefore, we exclude theses,
technical reports, manuals, books, and book chapters from
consideration. We also exclude papers that do not report
empirical studies of JIRA repositories as opposed to, e.g.,
surveys with participants reporting that they use JIRA. We
do not, however, restrict the purpose of the study: while
our work has been motivated by the empirical research on

defect prediction, we do bot exclude empirical studies of other
subjects. Finally, we also exclude the MSR studies that used
only one project as those studies are typically case studies and
are not intended to be generalizable.

Application of the inclusion and exclusion criteria has been
performed by the third author. Since application of the criteria
by one researcher only might threaten the reliability of the
study [27] the final set of primary studies has been reviewed
and analyzed by the first author.

B. Data Extraction and Synthesis

In order to answer the research questions we read the
papers and look for an indication whether selection of specific
projects has been explained (RQ1.1), whether the study reports
how the selection criteria have been measured (RQ1.2), and
when have the selection criteria have been applied (RQ1.4).

As opposed to those research questions, RQ1.3: Is the
search complete? and RQ2: Which criteria have been used?
are more “open” in nature. Hence, when studying those
questions we tagged the information derived from the papers.

In order to answer RQ1.3, we searched for explicit indica-
tion whether the authors included all the projects satisfying the
selection criteria or merely some such projects. We classify
each study according to the completeness of their search
using one of the following tags: “complete”, “uncertain”,
“incomplete” and “not applicable”. In the “complete” cases
the authors clearly included all projects that met some criteria.
In the “uncertain” cases the authors did not clearly report
whether the projects included are all projects in the population
satisfying the selection criteria or only a casual sample of
those. For example, a sentence like “We chose these projects
because they satisfy the criterion” is ambiguous and, hence,
not replicable when compared to a sentence like “We chose
all projects that satisfy the criterion” which is unambiguous
and replicable. In the “incomplete” cases where the authors
clearly included projects that casually met some criteria. An
example of the incomplete tag is a sentence like “We chose
these projects among many others that satisfy the criterion”.
Finally, the tag “not applicable” relates to studies not reporting
any criteria for choosing projects or datasets.

In order to answer RQ2, we have checked the criteria used
by the primary studies and applied the open coding pro-
cess [28]. Then we have looked for similarities and differences.

C. Results

Searching for “JIRA Git” on Google Scholar returned 840
hits corresponding to studies published from 2001 onwards.
Excluding studies not related to software engineering resulted
in 774 hits, which were further reduced to 582 after exclusion
of texts published in languages other than English. Since
multiple hits might be related to the same primary study we
have further excluded 9 duplicates. After applying the practical
screen, we keep 573 primary studies.

Our decision to focus on peer-reviewed work eliminates
324 studies, leaving 249 for further consideration. Indeed, 144
excluded studies are bachelor, master or PhD theses; 98 are



books, chapters, and manuals. A large amount of non-peer
reviewed work is inherent for Google Scholar. Among 249
primary studies, 75 cover empirical studies of projects that
make use of JIRA. 7 out of the 75 primary studies report case
studies involving one project only. We exclude these papers as
they do not aim at generalization. Hence, 68 studies are kept
for further investigation.

RQ1.1: Are criteria reported?: Our results show that
35% (24 out of 68) of the studies reported the criteria
adopted for choosing the projects.

RQ1.2: Are criteria measurable?: The 68 studies use a
total of 32 different criteria, and some studies use more than
one criterion. We classify the following 22 criteria (69%) as
being measurable: artifact (requirements, defects, traces), age,
organization, programming language, technology, active, qual-
ity (% Linkage), replica, size (revisions, columns, contributors,
LOC, tables, years), API, hybrid repos, JAVA, JIRA, process
(agile), and SQL. We classify the following 10 criteria (31%)
as not being measurable: domain, functionality, maturity, ran-
domness, stability, successfulness, being top-ranked (without
specifying the metric), level of usage in software engineering
studies, being well commented or well known.

Unfortunately the domain criterion is not replicable because
the affinity of a project to a domain is subjective. For in-
stance, the project Accumulo can be considered belonging
to multiple domains such as API, Storage, and Back-end.
Regarding randomness, unfortunately all three studies using
random project selection fail to report the random number
generation algorithm or the seed used. Finally, we note that
no studies use the sampling strategy proposed by Nagappan
et al. [9]. This could be due to the fact that this strategy
has the Ohloh.net corpus as the native project target whereas
our studies focus on projects managed with JIRA and Git.
Among the 68 studies, only 11 (16%) use criteria that
are all measurable, 13 studies (19%) use one or more non-
measurable criterion, and 44 (65%) studies report no criteria.

RQ1.3: Is the search complete?: Only six studies (9%)
explicitly analyze all the projects before making the final
selection. In eight studies (12%) it is unclear if the search is
complete, six studies have an incomplete search, and the search
completeness condition does not apply because they do not
report any rationale for choosing the projects or datasets. We
conjecture that the low number of studies featuring a complete
search can be due to reasons such as 1) lack of access to the
complete projects corpus, 2) size of the projects corpus or
3) the need to develop special measurement tools merely to
decide whether a project should be selected. Development of
such tools, and application to projects that might not after
all be selected, requires significant effort. For instance, a
researcher cannot identify the top 10 projects ASF or GitHub
without developing the code to do so and analyze all the
projects in the corpus. Therefore, in most of the cases, the
researcher reasonably stops as soon as a desired number of
projects satisfy the defined criteria. This problem is solved
by using STRESS; it provides the mechanisms to measure
the needed metrics and the measurement resulted to require

reasonable resources (time and hardware) for measuring all
211 ASF projects that are managed by JIRA and Git.

We note that the description of 12% of the studies is unclear
on the completeness of the search. We believe STRESS would
make many of these studies replicable by providing researchers
with the possibility to export, and publish, the project selection
rationale documentation.

RQ1.4: Is the time of the search reported?: None of the
analyzed papers report the time when the characteristics
of the projects have been measured.

RQ2: Which criteria have been used? : We have identi-
fied the following exclusive macro criteria categories:

• Artifact: It regards the type of artifacts developed and
managed in the project such as bugs and their traces to
requirements.

• Diversity: It regards the type of diversity of the sampled
projects. For instance, researchers might apply a full
random selection or might select projects to maximize
the number of different programming languages used.

• Replica: It regards choices of projects due to the need to
confirm or reject hypotheses on the exact same projects
or the selection of projects already selected so that the
related repositories are already computed and available.

• Size: It regards the dimension of the projects such as
number of commits, LOC and number of tickets.

• Technology: It regards the technology used for develop-
ing the project such as the programming language.

• None: When no criterion is reported.
• Miscellaneous: It regards criteria different from the ones

mentioned above.
Regarding the macro criteria used for project selection,

the most used criterion is Diversity (43%) followed by
Miscellaneous (16%), Size (16%), and Technology (15%).
Note that each criterion is counted every time it has been used
by a study, even if a study used multiple criteria.

According to the specific criteria used in the studies, we
decompose each of these macro-categories in several micro-
categories. Regarding the macro criterion Diversity (16 studies
total), the following micro criteria are used in one study
(6%): Functionality, Maturity, Organization, Size (LOC), and
Technology. Programming Languages is used in two studies
(12%), Random in three studies (19%) and domain in five
studies (31%). Regarding the macro criterion Miscellaneous
(11 studies total), the only micro criterion used in two studies
is Successfulness (18%).The following micro criteria are used
in only one study (1%): Active, Maturity, Quality (Linkage),
Stable, Topranked, Usage in SE, Well commented, and Well
known. Regarding the macro criterion Size (11 studies total),
the following micro criteria is used in one study: Columns,
Revisions, and Tables. LOC is used in two studies (18%) and
Contributors and Years in three studies (27%). We note that all
criteria belonging to Size are measurable. Regarding the macro
criterion Technology (11 studies total), JIRA is used in five
studies (45%), Java in two studies (18%) and the following
micro criteria in only one study (1%) API, process (agile),
hybrid repos, SQL. We note that all studies use JIRA, but only



14% reported JIRA as an explicit criteria for project selection.
Regarding the macro criterion Artifact (4 studies total), the
related micro criteria are Requirements (50%), Defects (25%)
and Traces (25%).

IV. STRESS: A PROTOTYPE TOOL SUPPORT

Given the identified difficulties in replicating project selec-
tion (see Section III) we developed an open-source tool called
STRESS (Semi-auTomated REplicable projectS Selection)3,
a semi-automated and fully replicable approach that allows
researchers to select projects. Specifically, projects can be
selected by configuring the desired level of diversity, fit, and
quality. It records the rationale behind the researcher decisions
and allows different users to re-run or modify such decisions.
STRESS can be used locally or on-line4.

Interaction with STRESS starts when a user can chose to
load a previous project selection or to create a new one. If the
user has chosen to create a new project selection, STRESS
presents the list of projects characteristics it supports. STRESS
currently supports 100 project characteristics including the 32
criteria of the studies analyzed in our mapping study. For
example, Pat is a researcher and would like to choose all ASF
projects satisfying the following criteria: 1) linkage higher
than 80%, 2) number of bug tickets higher than 100, and
3) number of months tracked higher than 12. Thus, in the
STRESS interface Pat selects linkage, number of bug tickets,
and number of months tracked (see Fig. 1).

Next STRESS allows the user to set constraints on the char-
acteristics of interest. Continuing with the previous example,
Pat defines the following criteria: 1) linkage higher than 0.8,
2) number of bug tickets higher than 100, and 3) number of
months tracked higher than 12. Fig. 2 provides a partial screen-
shot of the criteria definition, as defined by Pat.

Afterward, the user is presented with the list of projects
(rows) satisfying all the provided constraints and their char-
acteristics (columns). Here the user can sort the projects
according to a specific characteristic, by clicking on a column,
in descending or ascending order. The user can now select the
projects 1) manually, 2) fully randomly, or 3) by maximizing
the sample representativeness. In case 1, the user can click on
the checkbox next to the project name. In case 2, the user is
asked to provide a seed (used by STRESS for random selection
among the projects satisfying the criteria) and the number
of desired projects. In case 3, the user is asked to provide
the number of desired projects and STRESS samples them
according to algorithm proposed by Nagappan et al. [9] among
the ones satisfying the defined constraints. Thus, considering
the previous example, Pat checks the three boxes and clicks
on “Use Selection”. Fig. 3 provides a partial screen-shot of
the projects selection, as selected by Pat.

Finally STRESS shows the list of selected projects and
allows the user to store the selection criteria as an external
document, which can then be used to re-run or modify the

3https://github.com/wyattjsmith1/STRESS
4http://www.falessi.com/STRESS

Fig. 1. STRESS: selection of projects characteristics of interest.

Fig. 2. STRESS: criteria definition.

selection choices by the current or subsequent researchers.
Among 211 ASF projects, three satisfy the selection criteria
used by Pat: Ambari, Syncope and UMIA.

V. THREATS TO VALIDITY

In this section, we report the threats to validity related to
our study. The threats are organized by type (i.e., Conclusion,
Internal, Construct, and External).

We do not see any major conclusion validity threat related
to the systematic mapping study.

The main internal threat to validity is the possible incor-
rectness of our replicability conditions (see Section III). To
mitigate this threat we have validated these conditions by
trying to replicate the project selection in the most replicable
studies identified in the systematic mapping study.

Construct validity threats are more probable than the others.
The first threat to construct validity concerns the tagging of the
systematic mapping study and, more specifically, the possibil-
ity that we misinterpreted the natural language of the authors
explaining the rationale for their project selection. In order
to mitigate this threat, we analyze the rationale description
of each of the studies at least three times. Moreover, we
created a tag unclear when the natural language of the authors
explaining the rationale for their project selection was prone to
misunderstandings (see Section III-C). A similar threat is the
possibility that we missed information provided in the papers.
Again, in order to mitigate this threat, we analyze the rationale
description of each of the studies at least three times. However,
we cannot be sure that no information was been overlooked.

One of the major external validity threats is that we analyzed
in our systematic mapping study only papers using the terms



Fig. 3. STRESS: projects selection.

JIRA and Git. We believe our systematic mapping study results
cannot be generalized to studies using technologies different
from JIRA and Git. Thus, we plan to expand this studies to
include papers and projects managed with more technologies.

VI. CONCLUSIONS

Replication is essential in any scientific field because it
allows for an increase in confidence and adds to the under-
standing of study limitations. In this work, we focused on the
replication of the project selection in studies mining software
repositories. We performed a systematic mapping study and we
considered studies analyzing projects that are managed with
JIRA and Git. The study identified a lack of project selection
replication; hence, we propose a solution called STRESS,
a semi-automated and fully replicable approach that allows
researchers to select projects in a replicable way. Specifically,
STRESS records the rationale behind the researcher decisions
and allows different users to re-run or modify such decisions.
STRESS supports the measurement of 100 projects charac-
teristics including the 32 criteria of the studies analyzed in
our mapping study. STRESS can support the project selection
among all 211 ASF projects.

The main limitation of this study is to have focused
on specific technologies in both STRESS development
and systematic mapping study. However STRESS and the
mapping study are, to our best knowledge, the first attempt to
support and investigate the replicability of project selection.
We plan to extend the mapping study and STRESS to other
technologies and repositories such as GitHub.

VII. ACKNOWLEDGEMENT

We thank Stacy Neely for proof reading the manuscript.

REFERENCES

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–1304, Nov 2012.

[2] D. Falessi, M. Di Penta, G. Canfora, and G. Cantone, “Estimating the
number of remaining links in traceability recovery,” Empirical Softw.
Engg., pp. 1–32, 2016.

[3] E. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik, “An
empirical study on the removal of self-admitted technical debt,” in
ICSME. IEEE, 2017.

[4] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “How do
software engineering practices change following adoption of continuous
integration?” in ASE. IEEE, 2017.

[5] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger
and its direction in collaborative software development,” in ICSE NIER.
IEEE, 2017, pp. 11–14.

[6] B. Lin, G. Robles, and A. Serebrenik, “Developer turnover in global, in-
dustrial open source projects: Insights from applying survival analysis,”
in ICGSE. IEEE, 2017, pp. 66–75.

[7] S. Hunston, Corpora in Applied Linguistics, ser. Cambridge Applied
Linguistics. Cambridge University Press, 2002.

[8] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The qualitas corpus: A curated collection of java code
for empirical studies,” in APSEC, Nov 2010, pp. 336–345.

[9] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in software
engineering research,” in FSE. New York, NY, USA: ACM, 2013,
pp. 466–476.

[10] J. Keung, E. Kocaguneli, and T. Menzies, “Finding conclusion stability
for selecting the best effort predictor in software effort estimation,”
Automated Software Engineering, vol. 20, no. 4, pp. 543–567, 2013.

[11] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,” IEEE
Trans. Softw. Eng., vol. 33, no. 5, pp. 316–329, May 2007.

[12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, 2000.

[13] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in ICSE. IEEE, 2015, pp.
9–19.

[14] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker,
M. Palyart, and G. C. Murphy, “Comparing repositories visually with
repograms,” in MSR. ACM, 2016, pp. 109–120.

[15] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical softw. engg.” Empirical Softw. Engg., vol. 13,
no. 2, pp. 211–218, Apr. 2008.

[16] S. Amann, S. Beyer, K. Kevic, and H. Gall, “Software mining studies:
Goals, approaches, artifacts, and replicability,” in Software Engineering:
International Summer Schools, B. Meyer and M. Nordio, Eds. Springer
International Publishing, 2015, pp. 121–158.

[17] G. Ghezzi and H. C. Gall, “A framework for semi-automated soft-
ware evolution analysis composition,” Automated Software Engineering,
vol. 20, no. 3, pp. 463–496, 2013.

[18] G. Robles, “Replicating msr: A study of the potential replicability of
papers published in the mining software repositories proceedings,” in
MSR, May 2010, pp. 171–180.

[19] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” PeerJ PrePrints, vol. 4, p. e2617, 2016.

[20] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” Keele University and
Durham University Joint Report, Tech. Rep. EBSE 2007-001, 2007.

[21] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein, “The
missing links: Bugs and bug-fix commits,” in FSE. ACM, 2010, pp.
97–106.

[22] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced?: Bias in bug-fix datasets,” in ESEC/FSE.
ACM, 2009, pp. 121–130.

[23] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering links
between bugs and changes,” in ESEC/FSE. ACM, 2011, pp. 15–25.

[24] D. Falessi, M. Shaw, and K. Mullen, “Achieving and maintaining cmmi
maturity level 5 in a small organization,” IEEE Software, vol. 31, no. 5,
pp. 80–86, Sept 2014.

[25] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of java reflection literature review and empirical study,” in
ICSE. IEEE, 2017, pp. 507–518.

[26] A. Fink, Conducting Research Literature Reviews: From the Internet to
Paper. SAGE Publications, 2010.

[27] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, pp. 1–18, 2015.

[28] M. Di Penta, “Combining quantitative and qualitative methods (when
mining software data),” in Perspectives on Data Science for Software En-
gineering, T. Menzies, L. Williams, and T. Zimmermann, Eds. Boston:
Morgan Kaufmann, 2016, pp. 205–211.


