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Abstract—Domain specific languages (DSLs) ease the adoption
of formal specification in industry. They allow developers to
describe their specification models in concepts of their domain.

However, DSLs evolve over time, causing specification models
to have to co-evolve to reflect the evolution in the DSL. The main-
tenance overhead introduced by these, often manual, changes to
specification models threatens to overshadow the advantages of
DSL usage in industry. To this extent, many approaches have
been proposed in the literature to facilitate DSL maintenance by
automating model co-changes.

In this paper, we evaluate the ability of a tool, Edapt, to
support the change and co-change in twenty-two industrial
DSLs and corresponding specification models over a maintenance
period of four years. We observe that the tool is only able to
automatically co-change specification models for 72% of the DSL
changes. To address the remaining 28% of the changes, we extend
Edapt. The resulting extension allows automatically co-changing
specification models for 98% of the DSL changes.

I. INTRODUCTION

A promising approach to designing formal specification
languages is Model Driven Engineering (MDE). MDE al-
lows developers to create Domain Specific Languages (DSLs)
which enables modeling in terms of familiar domain concepts,
rather than in generic concepts such as those offered by UML.
The standardization of these MDE DSL formalisms [?] allows
for fast creation and re-use of tools such as graphical editors
and code generators. Due to these advantages, DSLs and MDE
are increasingly being used for the specification of systems in
industry [1], [?]. However, as the number of models created
in a particular language grows, so do the maintenance chal-
lenges. Anecdotal evidence suggests that these maintenance
challenges are threatening to become so large that they may
overshadow the advantages of DSLs and MDE.

We focus on model maintenance with respect to DSL evolu-
tion. That is, DSLs may evolve over time [2], for instance due
to new requirements or technical advancements of the domain.
When DSLs evolve, models created in those DSLs might
need to co-evolve to reflect the evolution of the language,
as illustrated in Fig. 1. This challenge is similar to database
maintenance with respect to a schema evolution [3], or code
refactoring with an API evolution [?]. As the number of
models for a particular DSL may grow into the hundreds (as
illustrated in Fig. 2), manual maintenance of models becomes
infeasible, calling for an automated solution.

In the literature, many approaches and tools have been
proposed towards automating model maintenance. As our
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Fig. 1: A schematic overview of the DSL maintenance
problem, also known as the co-evolution problem

Fig. 2: The number of models per DSL on a logarithmic
scale.

research takes places in industry, we require a mature tool
with a low learning curve that enables reuse. To meet these
requirements, we have selected Edapt1, which is the official
Eclipse tool for migrating EMF models in response to DSL
evolution [5].

Edapt is a tool that implements the operator-based approach.
The operator-based approach captures frequently occurring
patterns of DSL evolution and model co-evolution in terms
of reusable operators. The usability of this approach in large
scale applications thus depends heavily on the amount of
reusable operators available. Earlier work [6] has shown that
the state-of-the-art operator library [7] lacks 11% of the
operators required to automatically (co-)evolve the DSLs and
their models. We suspect that Edapt has similar deficiencies.
Thus we pose our first research question:

1Previously COPE [4]



RQ1: To what extent is Edapt able to automatically (co-
)evolve DSLs and models in an industrial context?

We conclude that Edapt is only able to specify 72% of
the (co-)evolution in the sample DSLs chosen using reusable
operators. Having identified the deficiencies in Edapt, we wish
to utilize the extensibility of Edapt and implement additional
operators to mitigate the deficiencies identified. Thus, we pose
our second research question:

RQ2: What challenges arise when extending the library of
reusable operators provided by Edapt?

We classify the operator deficiencies (i.e., operators required
by our case, but not offered by the library) of Edapt with
respect to their degree of automatability [8]. The least au-
tomatable operator deficiencies require user interaction. We
follow Herrmannsdörfer [9] and implement user interaction
as a choice between a number of provided options. Having
extended Edapt with a number of operators that require user
interaction, Edapt is now able to automatically perform 98%
of the DSL/model (co-)evolutions. We conclude that, once
extended with additional operators, and support for model-
specific operators, Edapt is suitable for the maintenance
of DSLs and models in an industrial context.

The remainder of this paper is structured as follows. In
Section II we discuss the industrial background of our research
as well as operator-based co-evolution. In Section III we
elaborate on the experimental choices made for answering
our research questions, the results of which we present in
Section IV. Lastly, we present our conclusions in Section V.

II. BACKGROUND

A. Introduction to DSLs and their Evolution

Before going into detail about DSL evolution, in this section
we present an example of a DSL, its evolution, and the model
co-evolution challenge it poses.

name : String
Person

name : String
Hobby

0..3 hobbies

Fig. 3: A sample DSL before
evolution

name : String
salary : Int

Employee

name : String
Hobby

0..1 hobbies

Fig. 4: A sample DSL after
evolution

name = “John”
:Person

name = “Golf”
:Hobby

name = “Chess”
:Hobby

:hobbies:hobbies

Fig. 5: A sample model for
original DSL

name = “John”
salary = 1600

:Employee

name = “Golf”
:Hobby

:hobbies

Fig. 6: The evolved version of
the model , that is now valid
for the evolved DSL

To start, an original version of the sample DSL can be
defined by the class diagram illustrated in Figure 3. This DSL
allows for the specification of a person with hobbies. Note that
a person has up to three hobbies. An example model for this
DSL is illustrated in Figure 5.

We can now evolve this DSL, as illustrated in Figure 4, to
represent employees. This evolution consists of three steps:
(1) the concept Person is renamed to Employee, (2)
Employee gets a salary attribute, and (3) the maximum
number of hobbies is reduced to one.

The example Person model in Figure 5 is now no longer
valid for a number of reasons. Firstly, the concept Person
is unknown in the context of the DSL in Figure 3. Secondly,
a Person can now only have one hobby, and the model has
two. Lastly, there is no salary attribute in the primary model
concept.

To co-evolve the model in response to the DSL evolution,
the instance of Person must be retyped to be a person of
Employee, the instance of Employee must have its salary
attribute set, and one of its hobbies must be removed. The
result of this co-evolution is illustrated in Figure 6.

In this small example, the number of steps required to co-
evolve the model are still limited. However, if several hundred
models require similar (but often not identical) co-evolution,
this task quickly becomes tedious, error-prone, and thus costly.

B. Industrial Context

Our research takes place at ASML, provider of lithography
equipment for the semiconductor industry. In recent years,
MDE is gradually being incorporated into the development
process at ASML. In particular, we look at the CARM
ecosystem [1].

The CARM ecosystem consists of twenty-two DSLs to
model servo control components at various levels of abstrac-
tions, using the Y-chart paradigm for system decomposition
[10]. The DSLs in CARM are defined as EMF Ecore class
diagrams 2 [11], [12] and OCL constraints [13]. Both the
EMF Ecore class diagrams and OCL constraints have evolved
actively over the past four years. Fig. 7 shows the evolution
of an EMF Ecore class diagram for a CARM DSL.

The models that are currently affected most frequently
by the DSL evolution are models that reside with the DSL
developer (cf. Figure 2), which have to co-evolve with every
evolution of the DSL during its development. Moreover, thou-
sands of models residing with the model developers should
co-evolve whenever a new DSL version is released. Manual
co-evolution of these models is a tedious, error-prone, and
therefore costly, process [14], [6]. Due to the DSL developers
and model developers having several, separate, sets of models,
the maintenance effort is shared between several parties and
additional communication and synchronization overhead has
to be incurred during maintenance.

2Also known as meta-models



Fig. 7: The size and structure of a DSL in the CARM
ecosystem over time (where time is represented by revisions
from the repository)
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Fig. 8: A schematic overview of coupled evolution, using a
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C. Edapt: Operator-Based Co-Evolution

Edapt [15] (previously developed as COPE [14], [16]) is
a tool for model co-evolution that implements the operator-
based approach, and is integrated into the Eclipse Modeling
Framework (EMF) [11].

Operator-based model co-evolution is performed incremen-
tally by executing a sequence of coupled operators that encode
one or more DSL evolutions in addition to zero or more
model co-evolution steps [15]. The DSL developer specifies
a sequence of operators from two types (Fig. 8):

• Re-usable operators are operators that can be quickly
configured to perform frequently occurring patterns of
coupled evolution (e.g., rename a class).

• Custom operators allow users to manually specify a
pattern of coupled evolution when no reusable operator
is available, or to add custom semantics to existing
operators (e.g., rename an integer attribute and square
all its values).

The usability of the operator-based approach relies on the
availability of re-usable operators [17]. When no reusable
operator is available, a custom operator has to be manually
created to mitigate this deficiency, increasing the required co-

evolutionary effort.

D. Related work

This study is based on our previous work [?]. While in
that work we have focused on constructing and evaluating a
complete operator library R for DSL evolution specification,
the current study performs a similar evaluation of Edapt.

III. STUDY SETUP

To answer RQ1, we perform a conceptual replication (cf.
[18]) of the work of Herrmannsdörfer et al. [8]. We perform
our case study by investigating to what extent the evolution
of the twenty-two CARM DSLs can be specified using the
reusable operators from Edapt.

To do so, we require a specification of the evolution of the
DSLs in the CARM ecosystem. We use EMFCompare [19]
to determine differences in subsequent versions pairs of the
DSLs, obtained from the subversion (SVN) repository of
ASML. This yields a collection of pairwise differences (=
changes) between all subsequent DSL versions in the history
of the ecosystem, which we refer to as the evolution history.

A known threat to validity of construction of the evolution
history is the accuracy of EMFCompare [8]. To mitigate this
threat, we have manually verified a subset of the EMFCompare
results [20]. The results of EMFCompare were found to be
perfect, with the exception of detecting renames.

To answer RQ2, we classify the operator deficiencies of
Edapt with respect to CARM, using the classification presented
by Herrmannsdörfer et al. [8], presented in Fig. 10. We observe
that most challenges are related to the lowest automatability
class: model-specific [8]. To overcome these challenges, we
extend Edapt following the approach of Herrmannsdörfer et
al. [9].

IV. RESULTS

In this section, we present and discuss our findings with
regard to the previously posed research questions.

A. Reusable Operators

For RQ1 we study to what extent the reusable operators of
Edapt cover the evolution of the CARM case study. More
specifically, we investigate what operators are required to
specify the evolution of the CARM ecosystem during the four
year development history, and asses whether Edapt supports
these operators.

The evolution history consists of 3405 DSL changes, such
as “Rename Class Person to Employee”, that can be described
using 70 operators, such as “Rename Class”. We observe
that only 28 (40%) of these 70 operators are supported by
Edapt. However, plotting the number of DSL changes per
operator in the evolution history, as shown in Fig. 9, reveals
that Edapt supports most of the frequently used operators.
Closer inspection reveals that of the 3405 DSL changes in
the evolution history, 827 (24%) are not supported at all by
Edapt, and 138 changes (4%) are only partially supported.
For instance, one of the 70 operators required by the CARM
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Fig. 9: Number of applications per operator required to
specify the evolution history, where operators supported,
partially supported, and not supported are colored green,
yellow, and red respectively.
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Fig. 10: A classification of DSL evolutions with respect
to their model co-evolution automatability [8]: meta-model-
independent (MMI), meta-model-only (MMO), meta-model-
specific (MMS) and model-specific (MS)

evolution history is “change upperbound of an attribute”.
However, Edapt only supports increasing the upper bound
of an attribute, rather than changing it in general. Hence,
we consider the operator “change upper bound” to only be
partially supported by Edapt.

The 2440 changes that are supported by an operator in
the library of Edapt constitute 72% of the evolution history,
contrasting the earlier claim that Edapt can cover over 90%
of DSL changes [15].

B. Qualification of DSL changes

Forty-two of the operators used in the evolution history are
not supported by Edapt. For example, creating a new literal
in an enumeration, or specializing the bounds of an attribute
(increasing the lowerbound or decreasing the upperbound). To
identify how challenging automation of these operators will be,
we classify them with respect to their automatability, using the
classification of Herrmannsdörfer in Fig. 10 [8], and answer
RQ2.

Herrmannsdörfer has identified the following automatability
classes:

• Meta-model-only3 operators do not require a model co-
evolution. These operators perform a conservative exten-
sions of a DSL with respect to its models.

• Coupled operators do require models to co-evolve to
reflect changes. Herrmannsdörfer distinguishes between

– Meta-model-independent4 operators have a charac-
teristic co-evolution specification, which can be ap-
plied to any DSL. Additionally, the co-evolution
specification can be used to co-evolve any model.
As a result, meta-model-independent changes have a
very high potential for automation.

– Meta-model specific5 operators require a co-
evolution specifiation that is specific to the meta-
model. Therefore the co-evolution specification can-
not be re-used, but can be used to co-evolve all
models for the particular meta-model.

– Model-specific operators form the biggest challenge
in co-evolution. The co-evolution specification varies
between models, because model-specific information
injection is required to obtain the co-evolution for
each model. Note that it is possible to have model-
specific operators that can be applied to multiple
DSLs.

Of the operators identified under RQ1, we disregard oper-
ators related to reordering, and EOperations, as these do not
influence model conformance. Furthermore, operators pertain-
ing to EAnnotations were not implemented, as they are not
essential in defining the structure of DSLs. Of the remaining
operators, we implement all operators that have more than
one occurrence in the evolution history. These, top fourteen,
operators are presented in Table I, and include seven meta-
model-only (MMO), one meta-model-independent (MI), and
six model-specific (MS) operators.

The qualification of the operators was performed manually
and is thus susceptible to error. To validate its quality, the
qualification was performed by the first and the second authors
independently. Both qualifications were compared and no
discrepancies were found.

We observe that the majority of the 72% not supported by
Edapt and 4% partially supported by Edapt (Section IV-A) are
reusable model-specific operators. This contrasts the claim that
Edapt supports > 90% of DSL evolutions with reusable oper-
ators, and leads us to extend Edapt with additional operators.

C. Model-Specific Operators with User Interaction

As mentioned in Section IV-A, we identified six model-
specific operators required by the CARM evolution history,
that are absent from Edapt. The main characteristic of these
operators is that each model (may) require a different co-
evolution. Therefore, an information injection is required to

3DSL-only: a meta-model described a DSL
4DSL-independent: a meta-model described a DSL
5DSL-specific: a meta-model described a DSL



TABLE I: A summary of operators missing from the library
of Edapt that have been implemented by us.

Operator Name Element Parameters Class
Create
EEnumLiteral

EEnum name:EString,
literal:EString,
value:EInt

MMO

Change EENum-
LiteralValue

EEnumLiteral value:EInt MMO

Set Opposite
Reference

EReference eOpposite:EReference MMO

Change Default
Value Literal

EAttribute defaultValueLiteral
:EString

MMO

Drop Attribute
ID

EAttribute id:EBoolean MMO

Make non-
abstract

EClass isAbstract:EBoolean MMO

Change interface EClass isInterface:EBoolean MMO
Change NS Pre-
fix

EPackage nsPrefix:EString MMI

Specialize
Attribute bounds

EAttribute lowerBound:EInt, up-
perBound:EInt

MS

Set Supertype EClass supertype:EClass MS
Set Keys EReference eKeys:List,

EAttribute
MS

Set Attribute ID EGenericType eClassifier:eClassifer MS
Add
TypeArgument

EGenericType eTypeArgument :
EGenericType

MS

indicate how to co-evolve each model. To allow for reusability
of the model-specific operators, they have to be specified in
a generic way, such that they can be configured for any DSL
and can be used to co-evolve any model of that DSL. This
is achieved with configurable parameters to select the relevant
DSL concepts.

For example, consider an operator that specializes the
bounds of a (multi-valued) attribute, e.g., a class Person
which has any number of hobbies (attribute). Using an
operator, the class Person is now restricted to having either
one or two hobbies. When this operator is applied, the models
that have an instance of Person with too few or too many
hobbies will no longer conform to the evolved DSL. As the
operator must be able to co-evolve every model of the DSL,
but there is no way for the operator to know beforehand which
values should be removed or added, additional information is
required (i.e., information injection). We consider this to be the
primary challenge in extending the library of Edapt (RQ2).

To overcome this challenge, we adopt the approach of
Herrmannsdörfer et al. based on user interaction during co-
evolution as described in [9]: “the migration algorithm auto-
matically migrates the model as far as possible, and whenever
it needs supplementary information, it asks the language
user to provide the missing information”. The user should
have the possibility to either inject the information for each
model individually, or give an expression that refines the co-
evolution specification such that implicit information (e.g.,,
naming conventions) can be used to co-evolve all models. In
[9], Herrmannsdörfer et al. demonstrates a user interface for
interactive coupled operators in COPE. Because this interface
is not part of Edapt, we prototyped a similar concept. In
this prototype, if conformance is broken during co-evolution,

the user is provided with a dialog to provide the relevant
information for restoring conformance. These extensions to
Edapt allow us to automatically co-evolve our models in
response to 98% of the DSL evolutions in our four year history.

V. CONCLUSIONS

In this paper, we have evaluated the extent to which Edapt
can perform evolution and co-evolution of DSLs and models in
a large-scale industrial ecosystem of DSLs. We observe that, in
contrast to the earlier claims of Edapt with respect to supported
evolutions (> 90%), only 72% of DSL evolutions are fully
supported. Another 4% is partially supported (RQ1). This
discrepancy is primarily caused by a large demand for model-
specific operators in our case study, while such a demand is
absent from earlier case studies by Herrmannsdörfer et al. [15],
[8]. We conjecture that this increase in demand for model-
specific operators is caused by the larger number of languages,
and the longer maintenance history of our case study. These
larger numbers may account for an increase in less frequent
evolutions, requiring model-specific operators.

To cope with the operator deficiencies in Edapt, we have
implemented the most frequently occurring model-specific
coupled operators using the methodology described by Her-
rmannsdörfer et al. [9] (RQ2).

After the addition of these (model-specific) coupled opera-
tors, Edapt was able to specify 98% of the coupled evolution
in the CARM case study. The remaining two percent consists
of a large number of operators that have a limited number of
occurrences over the course of four years. Thus, we conclude
that the model co-evolution features provided by Edapt make it
suitable for the maintenance of DSLs and models in industry.
Provided that Edapt is extended with additional reusable op-
erators and support for model-specific operators (for instance
by means of user interaction).
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