

Accepted Manuscript

An Exploratory Study on Exception Handling Bugs in Java Programs

Felipe Ebert, Fernando Castor, Alexander Serebrenik

PII: S0164-1212(15)00086-2
DOI: 10.1016/j.jss.2015.04.066
Reference: JSS 9503

To appear in: The Journal of Systems & Software

Received date: 22 August 2014
Revised date: 29 March 2015
Accepted date: 20 April 2015

Please cite this article as: Felipe Ebert, Fernando Castor, Alexander Serebrenik, An Exploratory Study
on Exception Handling Bugs in Java Programs, The Journal of Systems & Software (2015), doi:
10.1016/j.jss.2015.04.066

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jss.2015.04.066
http://dx.doi.org/10.1016/j.jss.2015.04.066

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• We study exception handling bugs from two real systems.

• We survey developers to understand their thoughts about exception handling
bugs.

• Analysis of bug repositories shows small percentages of exception handling
bugs.

• Exception handling bugs seems to be as hard to fix as other kind of bugs.

• We create an exception handling bug classification.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

An Exploratory Study on Exception Handling Bugs in
Java Programs

Felipe Eberta, Fernando Castora, Alexander Serebrenikb

aCentro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Recife, Brazil
bEindhoven University of Technology, Eindhoven, The Netherlands

Abstract

Most mainstream programming languages provide constructs to throw and to han-
dle exceptions. However, several studies argue that exception handling code is
usually of poor quality and that it is commonly neglected by developers. More-
over, it is said to be the least understood, documented, and tested part of the im-
plementation of a system. Nevertheless, there are very few studies that analyze the
actual exception handling bugs that occur in real software systems or that attempt
to understand developers’ perceptions of these bugs. In this work we present an
exploratory study on exception handling bugs that employs two complementary
approaches: a survey of 154 developers and an analysis of 220 exception handling
bugs from the repositories of Eclipse and Tomcat.

Only 27% of the respondents claimed that policies and standards for the imple-
mentation of error handling are part of the culture of their organizations. More-
over, in 70% of the organizations there are no specific tests for the exception
handling code. Also, 61% of the respondents stated that no to little importance
is given to the documentation of exception handling in the design phase of the
projects with which they are involved. In addition, about 40% of the respondents
consider the quality of exception handling code to be either good or very good and
only 14% of the respondents consider it to be bad or very bad. Furthermore, the
repository analysis has shown (with statistical significance) that exception han-
dling bugs are ignored by developers less often than other bugs. We have also
observed that while overly general catch blocks are a well-known bad smell re-
lated to exceptions, bugs stemming from these catch blocks are rare, even though
many overly general catch blocks occur in the code. Furthermore, while devel-

Email addresses: fe@cin.ufpe.br (Felipe Ebert), castor@cin.ufpe.br (Fernando
Castor), a.serebrenik@tue.nl (Alexander Serebrenik)

Preprint submitted to Journal of Systems and Software April 23, 2015

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

opers often mention empty catch blocks as causes of bugs they have fixed in the
past, we found very few bug reports caused by them. On top of that, empty catch

blocks are frequently used as part of bug fixes, including fixes for exception han-
dling bugs.

Based on our findings, we propose a classification of exception handling bugs
and their causes. The proposed classification can be used to assist in the design
and implementation of test suites, to guide code inspections, or as a basis for static
analysis tools.

Keywords: Exception Handling, Bugs, Surveys, Repository Mining.

1. Introduction

Modern software systems must include provisions to handle errors at runtime.
An error is “part of the system internal state which is liable to lead to subsequent
failure”, while “a system failure occurs when the service delivered by the sys-
tem deviates from what the system is aimed at” [23, p. 198]. Errors may stem
from application logic-related erroneous conditions, e.g., an invalid bank account
number, undetected bugs, e.g., null dereferences and arithmetic overflow, or en-
vironmentally triggered erroneous conditions, e.g., impossibility to open a file or
communicate via network. Exception handling mechanisms promote separation
of concerns between the normal execution flow of an application and the execution
flow in which errors are handled.

At the beginning, exceptions were handled just by returning error codes (suc-
cess or failure) [12]. ML [36] was the first programming language that imple-
mented typed exceptions, i.e., it allowed developers to define a new type (within
the language) for each different type of error. Prior to that, different types of er-
rors were defined by values in the language. The use of types is important because
it promotes static checking of exception usage. The throw-catch style of excep-
tion signaling and handling was introduced by LISP [34]. More recently, several
modern programming languages, like Java, Ruby, C#, C++ and Scala, implement
exception handling and a considerable part of the system source code is often
dedicated to error detection and handling [12, 53]. Nonetheless, developers have
a tendency to focus on the normal behavior of the applications, i.e., what it should
do when no errors occur, and deal with error handling only during the system
implementation, in an ad hoc manner [18, 40].

Several studies [18, 40, 48] argue that the quality of exception handling code is
usually poor and that this part of the code is commonly neglected by developers.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Moreover, the exception handling code is often hard to test due to both the nu-
merous exceptional conditions that might occur in a non-trivial application and to
the need to stimulate all possible causes for exceptions during testing [16]. Qual-
ity of exception handling code, lack of developers’ attention, and testing-related
challenges specific to exception handling code can therefore be expected to cre-
ate a fertile ground for bugs. Nevertheless, very few studies analyze exception
handling bugs (EH-bugs) occurring in real software systems and no study has at-
tempted to understand developers’ perceptions about these bugs. We consider an
EH-bug to be a bug whose cause is related to exception handling. It may be a
problem related to the definition, throwing, propagation, handling, or documenta-
tion of exceptions, to situations where an exception should be throw or handled
but is not, and to the use of clean-up actions associated to regions of the code that
may throw exceptions.

In this paper, we address this challenge by conducting an empirical study of
EH-bugs, i.e., bugs caused by the definition, throwing, propagation, handling, or
documentation of exceptions. We aim to gain a better understanding of the causes
of these bugs, their frequency, severity, and difficulty of fixing them. Such un-
derstanding can be beneficial not only for developers but also for tool designers
aiming at supporting software developers in their daily tasks. We complement
the objective information about EH-bugs with an investigation of the develop-
ers’ perceptions about exception handing, in general, and EH-bugs, in particular.
The combination of the empirical study of EH-bugs with the investigation of their
perceptions allows us to triangulate our findings, such a triangulation being con-
sidered an important step in empirical software engineering research [42].

The study involved, therefore, analysis of two data sources: (i) 220 bug reports
related to error handling from the Bugzilla repositories of two large systems, Tom-
cat and Eclipse; and (ii) 154 responses to a survey conducted with software de-
velopers from industry and academia. Furthermore, we have inspected the source
code of patches attached to the aforementioned bug reports, when available. We
have considered the following four research questions:

RQ1 Do organizations and developers take exception handling into account?
Our findings indicate that developers do pay attention to exception handling, even
though their organizations do not. Only 27% of the respondents claimed that poli-
cies and standards for the implementation of error handling are part of the culture
of their organizations. In 70% of the organizations there are no specific tests for
the exception handling code. Furthermore, 61% of the respondents stated that
their organizations give little to no importance to the documentation of excep-
tion handling in the design phase. In contrast, 66% of the respondents claim that

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

they employ exception handling to create ways to tolerate faults and 63% do it
to improve the system functionality (they could select multiple answers). Only
17% use exception handling mainly for debugging and 21% because of organi-
zational policies. In addition, the repository analysis has shown that exception
handling bugs are ignored by developers less often than other bugs. For example,
for Eclipse, 96.65% of EH-bugs have the “Fixed” resolution whereas only 3.26%
have “Wontfix” or “Worksforme” as resolutions.

RQ2 How common are EH-bugs? Developers seem to overestimate the fre-
quency of occurrence of EH-bugs. On the average, they believe that 9.72% of
the bugs in a system are EH-bugs. Analysis of the bug repositories of Eclipse ant
Tomcat yielded much smaller percentages, 0.35 and 1.87%, respectively.

RQ3 Are EH-bugs harder to fix than other bugs? Following the suggestion
of Fonseca et al. [21] we employed the bug fixing time and the number of dis-
cussion messages as proxies for the difficulty of fixing a bug. The analysis of
the bug repositories of Tomcat revealed that there is no significant difference for
both proxies. For Eclipse there was a statistically significant difference only for
the number of discussion messages: it is greater for EH-bugs. This could be an
evidence that EH-bugs are as hard to fix as any other bug but they might generate
lengthier discussions.

RQ4 What are the main causes of EH-bugs? We discovered that bug reports
describing bugs stemming from overly general catch blocks, a well-known bad
smell in programs that use exceptions [12, 41], are rare, even though there are
many opportunities for them to occur and developers report that they have en-
countered this kind of bug in the past. Empty catch blocks, another well-known
bad smell, are not only prevalent, as previously reported in literature [12], but also
commonly used as part of bug fixes, including fixes for EH-bugs. Moreover, de-
velopers often state in the code, by means of comments, that these catch blocks
do not capture exceptions in practice. However, we found very few bug reports
(only 2 among 220) whose causes are empty catch blocks, although developers
often mention empty catch blocks as causes of bugs they have fixed in the past.

In addition to the aforementioned findings, we present a classification of EH-
bugs, on Table 1, and their causes—reported during the survey or obtained by
analyzing bug reports. The proposed classification can be used as a checklist to
design test cases and to assist during code reviews, as well as a basis for static
analysis tools for code defect detection, e.g., similar to FindBugs [5].

The remainder of this paper is organized as follows. Section 2 presents the
methodology used in this work and also the threats to the validity. Section 3
presents the results from the survey and the analysis of the bug repositories and

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Classification of EH-bugs.
Lack of a handler that should exist
Exception not thrown
Error in the handler
Error in the clean-up action
Exception caught at the wrong level
General catch block
Wrong exception thrown
Exception that should not have been thrown
Wrong encapsulation of exception cause
Lack of a finally block that should exist
Error in the exception assertion
Inconsistency between source code and API documentation
Empty catch block
Error in the definition of exception class
catch block where only a finally would be appropriate

also our proposed classification for causes of EH-bugs. Section 5 discusses re-
lated work and Section 6 summarizes the contributions and conclusions of this
work and discusses future work. Finally, Appendix A presents a comprehen-
sive explanation of the comparison between ours and Barbosa et al. [7] EH-bug
classification.

2. Methodology

To explore the reality of both EH-bugs and developers’ perceptions, we com-
bined investigation of bug repositories with a survey of developers’ opinions. Our
study focuses on two large and mature open source applications: Tomcat1 and
Eclipse2. Both systems are written in Java (which comprise Java versions from
1 to 7, but our analysis did not make any distinction based on the Java version),
the language that arguably popularized exception handling, and use Bugzilla as
their bug reporting system, which has powerful search features, facilitating anal-
ysis of bug reports. Moreover, these systems were examined in a number of ear-
lier empirical studies [31, 32, 43, 56]. Our survey targeted developers of Tomcat
and Eclipse. To inquire whether opinions on EH-bugs of the Tomcat and Eclipse

1http://tomcat.apache.org
2http://www.eclipse.org

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

developers can be generalized to software developers in general, we have also ad-
ministered the same survey questionnaire to a diverse group of Brazilian software
developers.

This section is organized as follows. Section 2.1 starts out by discussing the
notion of an “exception handling bug”. Section 2.2 then proceeds to explain how
we analyzed the repositories of Tomcat and Eclipse. Section 2.3 presents the
survey conducted and in the Section 2.4 we explain how we conducted the data
analysis. Finally, we discuss the threats to validity of this work on Section 2.5.

2.1. What is an Exception Handling Bug?

Exception handling is known to be complex; so complex that Black recom-
mends developers to avoid it [10]. Notwithstanding, many modern languages
include exception handling mechanisms and programmers do use them in prac-
tice, which means that EH-bugs are an expected phenomenon [12, 53]. In order
to study EH-bugs, we need first of all to define when a bug is considered an “ex-
ception handling bug”. Despite the fact that EH-bugs have been studied in the
literature in the past (Section 5), no definition of what constitutes an EH-bug is
widely accepted. We chose to focus on bug reports where exception handling is
the cause of the problem as opposed to where the problem manifests itself : e.g.,
an exception that is not thrown when it should have been thrown or a catch block
that captures exceptions that it should not have captured are considered EH-bugs
while division by zero resulting in an exception being thrown is not considered
as an EH-bug. We stress that our definition of the EH-bug differs from the one
used by Sawadpong and colleagues [45], which considered as an EH-bug any bug
report mentioning the words “exception”, “throw”, and “threw” or their deriva-
tives. Division by zero, for instance, would always be considered an EH-bug by
this previous work but not by ours. Also, our definition extends the one by Bar-
bosa et al. [7] by including the cases where the bug occurs in the clean-up action,
when the exception should have been thrown or handled while it is not thrown or
handled.

More precisely, we define EH-bugs as follows:

An Exception Handling Bug is a bug whose cause is related to ex-
ception handling. EH-bugs can occur when the exception is defined,
thrown, propagated, handled or documented; in the clean-up action
of a protected region where the exception is thrown; when the excep-
tion should have been thrown or handled while it is not thrown or
handled.

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

To illustrate the definition, consider code snippets pertaining to two real bugs
from Eclipse. In Figure 1, the cause of the problem is that the exception has not
been handled correctly. The patched snippet on the right-hand side shows the
catch block to log additional information. We consider this bug to be an EH-bug.

monitor.done();

fUpdatedExistingClassButton= true;

} catch (JavaModelException e) {

JUnitPlugin.log(e);

}

}

}

⇓
monitor.done();

fUpdatedExistingClassButton= true;

} catch (JavaModelException e) {

String title= WizardMessages.getString

("NewTestSuiteWizPage.error_tile"); //$NON-NLS-1$

String message= WizardMessages.getString

("NewTestSuiteWizPage.error_message"); //$NON-NLS-1$

ExceptionHandler.handle(e, getShell(), title, message);

}

}

Figure 1: Real EH-bug from Eclipse—bug ID 21018.

Similarly, Figure 2 shows another code snippet from Eclipse (bug repot ID
81417). The problem reported in this case was a NullPointerException being
thrown. The support team discovered that the problem was a null check not
being done. In this case, we can see that the problem was not related to exception
handling although the problem has manifested itself by means of an exception.
We do not consider this bug to be an EH-bug.

2.2. Repository Analysis

To identify the EH-bugs we started our analysis of the Bugzilla repositories of
Eclipse and Tomcat by performing a keyword search using the following query:

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

return declaringType.getTypeParameter(typeVariableName);

}

} else {

// member or top level type

ITypeBinding declaringTypeBinding = getDeclaringClass();

if (declaringTypeBinding == null) {

}

⇓
return declaringType.getTypeParameter(typeVariableName);

}

} else {

if (fileName == null) return null;

// case of a WilCardBinding

// that doesn’t have a corresponding Java element

// member or top level type

ITypeBinding declaringTypeBinding = getDeclaringClass();

if (declaringTypeBinding == null) {

Figure 2: Real non-EH-bug from Eclipse—bug ID 81417.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

catch OR caught OR handl OR exception OR throw OR finally OR
rais OR signal

These terms encompass related terms that might also be relevant, such as “catches”,
“raises”, “thrown”, etc., because Bugzilla considers each search word as a radical
to query the database. We tried to cover most of the bug reports related to EH-bugs
with that search string. We think that all those keywords are likely to be related to
exception handling issues.

Even though Eclipse and Tomcat use Bugzilla, they can have some differences
in their layout in search. For example, they can, and in fact they use different status
and resolution categories. Moreover, search results can be restricted to specific
products or components, or bugs having a certain status, e.g., “new”, “assigned”
or “resolved”, resolution, e.g., “fixed” or “later”, priority or severity.

For Tomcat we included all Tomcat products and all components of these prod-
ucts. We furthermore include bugs with any status except for “unconfirmed” since
we do not consider a bug report to refer to an actual bug as long as it has not been
“confirmed”; and any possible resolution except for “invalid” and “duplicate”.
The search in Tomcat’s bug repository returned 740 bug reports out of a total
of 6,855 (as of January 23, 2013). To identify EH-bugs we have manually ana-
lyzed the 740 bug reports and discovered 128 EH-bugs. The manual analysis was
conducted by analyzing each bug report, reading all comments in the report and
checking the patch code of the bug, when available. This analysis relied on the
subjective judgement of the first and the second authors so as to identify only bugs
whose cause could be clearly identified as being related to exception handling.

As opposed to Tomcat, Eclipse is a much larger project. To make the study
manageable, we focused solely on the Java Development Tools (JDT) product,
its Core (Java IDE headless infrastructure) and User Interface (Java IDE user in-
terface) components. Those two components implement very different function-
alities, are large, each comprising tens of thousands of lines of code, and, as of
January 23, 2013, had 26,002 bugs associated with them. Similarly to Tomcat,
the only status we exclude is “unconfirmed”, while for resolutions we exclude
“invalid”, “duplicate” and “not eclipse”. The search in Eclipse’s bug repository
returned 1,779 bug reports out of 26,002. After manual analysis, we found 92
EH-bugs in the Eclipse Bugzilla repository. Table 2 summarizes these numbers
for both Eclipse and Tomcat.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Eclipse Tomcat
Bugs resulting from the search 1,779 6.84% 740 10.80%
Exception handling bugs 92 0.35% 128 1.87%
Other kind of bugs 25,910 99.65% 6,727 98.13%
Total number of bugs 26,002 100% 6,855 100%

Table 2: Bugs in Eclipse and Tomcat

Bachmann et al. [6] provide some evidence that, in some projects, bugs are re-
ported in mailing lists, instead of using a bug reporting system. Since at least one
of the projects where this practice is in use is maintained by the Apache Foun-
dation, similarly to Tomcat, we investigated whether Tomcat developers do the
same. Therefore, we conducted a search for EH-bugs in two mailing lists of Tom-
cat: the tomcat-dev (development list) and the tomcat-announce (the list where
security vulnerabilities are announced). The search string used was the same as
the one used in the analysis of the Bugzilla repositories, with an additional item
to exclude automatic emails related to Bugzilla entries. The search returned 8,573
emails from the development mailing list and only 8 emails from announce list.
For the development list, after removing the responses and the svn automatic mes-
sages, 860 unique emails remained. We read all those email messages and in the
end we found only 7 emails pertaining to EH-bugs. For other bugs, there were 60
emails. Furthermore, from those 860 emails, there are 35 emails where Tomcat
experts explicitly say that a Bugzilla entry should always be created for patches
and fixes, we present an example3 on Table 3. From the announce list, 5 emails are
announcements and 3 related to other bugs (security). We did not find EH-bugs
within this list. Considering the small number of relevant messages (5.5% of the
number of EH-bugs found by investigating the Bugzilla repository), we decided
to remain focusing on the Bugzilla entries.

“As with any patch, open a bugzilla item and attach it there.
Patches attached to mailing list messages tend to get lost.”

Table 3: Tomcat developer’s citation about Bugzilla usage.

3http://www.mail-archive.com/dev%40tomcat.apache.org/msg27325.html

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.3. Survey

The questionnaire used in this work4 was designed according to the recom-
mendations of Groves et al. [25] and Kitchenham and Pfleeger [30]. Firstly, we
defined the topics for the questions which resulted in four groups of questions:
experience, documentation, testing, and bugs. In addition to questions about ex-
ception handling and EH-bugs, we have asked how project design, documentation
and testing are carried out in the respondents’ organizations. We hypothesize that
the software development processes and the policies of the organizations could
have affected developers’ perception of the importance of bugs, in general, and
EH-bugs, in particular.

In the first topic we are interested in knowing the respondents’ development
experience and the languages they are familiar with. We also included documen-
tation and testing as topics because of the well-known paper by Cristian [18],
which states that the exception handling code of a system is in general the least
documented, tested, and understood part. To obtain evidence pertaining to this
claim, we posed questions that aimed to understand how the exception handling
documentation is developed at the respondents’ organizations. It contains seven
questions. The questions in the testing topic aim to obtain insights about the
testing procedures of the developers’ organizations, with emphasis on testing of
exception handling code. It is important to understand how their testing process
is conducted because bugs are usually discovered in the testing phase. The last
and largest topic (with eleven questions) is related to bugs themselves. It aims
to measure how developers deal with and what are their insights about exception
handling bugs and other kinds bugs.

Prior to deploying the questionnaire we have validated it by means of discus-
sion with experts from the Software Productivity Group 5 as well as by apply-
ing the survey in two pilot studies. Based on the experts’ feedback and results
of the pilot studies, questions have been added, removed and revised. After the
revisions, the questionnaire was composed of 24 questions ranging from yes-no
questions through five-point Likert scale multiple choice questions (never, rarely,
sometimes, most of the times, always) to open questions, designed to obtain deeper
insights into developers’ use of exception handling. Table 4 presents all the ques-
tions on the questionnaire.

Our target population consists of developers with practical experience in Java,

4http://goo.gl/RM8VR8
5http://twiki.cin.ufpe.br/twiki/bin/view/SPG/WebHome

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Summary of survey questions.
Experience

1. For how long have you been a Java developer?
2. What is the approximate size of the project you are currently working on (LoC estimate)?
3. Which programming languages have professionally worked with?

Context
4. In the design phase of your projects, what is the importance given to the documentation of exception handling?

Documentation
5. Are there any specifications, documented policies or standards that are part of your organization’s culture

related to the implementation of error handling?
5.1. If you answered yes to the previous question, please describe the policies adopted by your organization

6. How often are bugs reported at your organization?
7. How often are bugs related to exception handling reported at your organization?
8. Does your organization use any tool for reporting and keeping track of bugs?

8.1. If you answered yes in the previous question, please describe these tools
Testing

9. Is there any testing process implemented in your organization?
9.1. If you answered yes to the previous question, please describe this process
10. Are there specific tests for the exception handling code in your organization?

Bugs
11. How often do you find bugs related to exception handling?
12. How often do you find bugs that are not related to exception handling?
13. Estimate the percentage of bugs related to exception handling code in your projects (estimate a value between

0 and 100%).
14. Have you ever needed to fix bugs related to exception handling?

14.1. If you answered yes to the previous question, please describe some of these situations.
15. Select the main causes of bugs related to exception handling you have ever needed to fix, analyze or have found

documented (you can select more than one answer).
16. What is the average level of difficulty to fix bugs related to exception handling?
17. What is the average level of difficulty to fix other bugs that are not related to exception handling?
18. What is the average priority/severity of reported bugs related to exception handling code?
19. Why do you use exception handling in your projects? (you can select more than one answer)
20. What is your opinion about the quality of exception handling code in your projects compared to other parts of

the code?

and specifically Eclipse and Tomcat developers. To contact the developers we
have used email addresses found in Bugzilla issue trackers of these projects. To
verify whether our findings can be generalized to Java developers beyond these
projects, we have also contacted a number of Brazilian software developers and
asked them to fill in the questionnaire translated to Portuguese. Translation has
been carried out by the first author and verified by the second author. We sent the
questionnaire to known points of contact and asked them to redistribute it within
their organizations. Over a period of 2 months we sent more than 4,000 emails. In
total we obtained 154 responses, 58 from developers of Eclipse and Tomcat, and
96 from the Brazilian developers.

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.4. Data Analysis
The bug reports from Bugzilla were downloaded as a set of XML files. Then,

as explained in Section 2.2, we manually analyzed those bug reports to identify
EH-bugs. The coding process [46] was used to classify each bug report. Each time
we found an EH-bug, we tried to define a classification code for it. In the end, we
had several classification codes which represent our EH-bug classification.

Then, we employed a Java program to prepare the data set for statistical anal-
ysis to be run in R (version 3.1.1) [1] on an Intel Core i7-2640M 2.80GHz with
6.GB of RAM and Windows 8.1 Pro. With this analysis we want to compare the
distributions of EH-bugs and other kinds of bugs. First we check the distributions’
normality with Shapiro-Wilk [49] test. If both distributions are normal, then we
use the Student’s t-test [37] to compare distributions; however if at least one of the
distributions is not normal then we use the Mann-Whitney-Wilcoxon [54] test.

For the survey analysis, we also want to compare the distribution of the re-
sponses for pairs of questions, i.e., we would like to understand whether an an-
swer to the first question impacts an answer to the second question. To achieve
that, the analysis was conducted in three phases. Firstly, we built contingency
tables for all question pairs deemed a priori interesting. Secondly, following the
guidelines of Agresti [2] we analyzed the dependence between the answers using
Fisher’s test [20] and determined correlation between the answers using Kendall’s
test [29]. Since we have performed multiple hypothesis tests, it was necessary
to adjust the p-values with Benjamini-Hochberg [9] method to reduce the false
positive p-values.

2.5. Threats to Validity
As any empirical study our work is subject to a number of threats to validity.

We identified three kinds of threats to its validity: internal, external and construct,
all of which are discussed below.

Internal Validity. One threat to internal validity is the search string that
we employed for preliminary identification of EH-bugs. We tried to cover well-
known terms that appear in exception handling literature [24, 17, 3]. Moreover,
the search string included terms that are associated with the Java language, since
we analyzed the bug repositories of two applications written in Java. As a con-
sequence, the search string is more specific than that employed in a previous
study [45].

We have performed manual analysis of the bug reports retrieved by the key-
word search. There were several bug reports that did not contain enough informa-
tion to identify whether they referred to EH-bugs. In some cases, we could mit-

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

igate the problem by studying the attached patches and by analyzing the source
code and the documentation of the system. In general, however, bugs that did not
contain enough information were classified as non-EH-bugs.

Unlike previous work [45], we did not rely solely on the search string to iden-
tify exception handing bugs. We have manually analyzed the more than 2,000 bug
reports that the search produced as results. This manual inspection revealed that
the search returns a large number of false positives, most of them mention excep-
tions but not EH-bugs. Because the inspection was manual, two kinds of mistake
may have been committed: (i) a regular bug being classified as an EH-bug; and
(ii) an EH-bug not being classified as such. To reduce the chance of this occurring,
two of the authors examined many of the bug reports independently. Moreover, a
third examiner also analyzed many of the bug reports, which were later reviewed
by the authors.

External Validity. The threats to external validity are related to the general-
izability of the study results. The first of these threats is that we have only ana-
lyzed bug reports referring to two applications, Eclipse and Tomcat. Moreover,
for Eclipse, we only examined bug reports associated with two (large-scale) com-
ponents: Core and UI. The conflicting results discussed in this section highlight
this point: software development culture, community, and technical characteris-
tics of each project have a strong impact on the results of a study such as this one.
In a similar vein, since the two applications are written in the Java language, it
would not make sense to extrapolate our findings to applications written in other
languages. Further studies are necessary to establish whether some of the findings
of our study, e.g., that bugs stemming from overly general catch blocks are rarely
reported, apply to Java development in general.

Our survey involved 154 respondents. This number is small and limits the
generalizability of the results. Nonetheless, respondents of the survey came from
different professional and cultural backgrounds. Furthermore, the largest study
to date on the viewpoints of developers about exception handling [48] involved
only 15 respondents (they were interviewed instead of responding to a survey).
Therefore, we can say that our study is an improvement over the current state-of-
the-art.

Another threat is the proportionally low number of EH-bugs found in each
system. Even though we analyzed more than 200 bugs, this number is small in
comparison to the overall number of bug reports in the repositories of Eclipse and
Tomcat. We believe that this is not a fault of our study. Instead, as reinforced by
the results of the survey, developers and organizations seem to pay less attention
to EH-bugs: they document less and test the system less for their occurrence.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Moreover, as highlighted by previous work on exception handing [12, 14, 41],
many EH-bugs are simply never identified by developers and testers.

Construct Validity. The threats to construct validity are related to how prop-
erly a measurement actually measures the concept being studied. One threat to
the validity of our study is that our survey was conducted with an online, self-
administered questionnaire. In the instructions section of this questionnaire we
tried to explain the definition of EH-bug to the respondents. Nonetheless, it is
possible that they may have misunderstood this definition and answered the ques-
tions based on a different understanding of the meaning of EH-bug. We tried to
reduce the probability of occurrence by providing some simple examples in the
instructions. Moreover, some of the questions include specific information that
points out some of the kinds of bugs that we consider to be EH-bugs.

Additionally, our questionnaire might not have covered all questions that could
have been asked of the respondents. Nonetheless, the final questionnaire was the
result of several discussions between the authors (one of whom is a specialist in
exception handling) and with a number of software developers and academics.
Moreover, we ran at least two small pilot studies before finally making the ques-
tionnaire public. Moreover, respondents may have been influenced in the survey
by the options offered in Questions 15 and 19. As the options from Question 15
were provided by the repository study and the options from Question 19 were
based on the work of Shah et al. [48]. To a certain extent, questions 14 and 14.1
address this problem because the latter asks for spontaneous answers and it is
placed before the one where possible answers are suggested (Question 15), thus
partially avoiding a potential bias created by question 15. As pointed out else-
where, the order of related questions may influence survey respondents [52].

There are also threats to the validity of the EH-bug classification. First, it
might not cover all possible causes of EH-bugs. Also, we drew that classification
from a relatively small amount of data, which means that we cannot statistically
validate it. Finally, we might have misread some of the causes, based on the in-
formal comments made by the survey respondents and the text of the bug reports.
But we tried to minimize this threat by creating a classification based on both data
sources: bug repository analysis and the survey. Moreover, the classification was
reviewed by two of the authors.

Another threat to the validity of our work is how we calculate the fix time.
Bugzilla does not record the status’ history of a bug, so we calculated the fix time
by calculating the difference between closing date and opening date of each bug.
Hence, a bug could have been reopened and closed again during that time and we
would not take that event into account. If that information were available, it could

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

be used by itself as a third proxy for the difficulty of fixing a bug

3. Study Results

In this section we present the results for both the repository analysis and the
survey based on the four research questions stated in the Introduction.

For the survey we have obtained 154 responses. Table 5 summarizes the re-
spondents’ professional experience (Questions 1–3). On average, respondents had
between 7 and 10 years of software development experience. More than 40% of
them work on large projects with 100KLoC or more. Finally, almost all of them
identified themselves as Java programmers (98.70%), with the second most pop-
ular language being Javascript (61.69%). Approximately 66% of the respondents
have worked professionally with at least three programming languages (mean of
3.29).

We found a statistically significant difference between the Brazilian develop-
ers and Eclipse/Tomcat developers in terms of Java experience and the size of
the current project. Fisher’s test returned a p-value less than 0.0001 for Java ex-
perience and less than 0.01 for the size of the project. The former result shows
that origin of the respondent impacts the experience, and the latter one shows that
origin of the respondent also impacts the size of the project. Furthermore, the
odds ratio [2] for Java experience was 0.062136 and for the size of the project
was 0.352. These results indicate that open-source developers tend to have more
experience and also work on larger projects than Brazilian respondents. Indeed,
Eclipse and Tomcat themselves are huge projects, so Eclipse/Tomcat developers
can be expected to indicate that they already have worked on big projects. For
most of the questions, however, the answers of developers in the two groups were
not statistically different. Hence, in the reminder of this section, except where
otherwise noted, we treat the survey respondents as a single population.

Table 5: Professional experience of the survey participants
Question 1 Question 2 Question 3

Java experience Current project Professional experience with
(years) (LOC) programming languages

<2 7.14% <20K 24.03% Java 98.70% PHP 22.73%
2–5 20.78% 20K–50K 20.13% Javascript 61.69% Python 15.58%
5–7 14.94% 50K–100K 13.64% C++ 38.31% Perl 13.64%
7–10 20.13% 100K–200K 9.09% C 32.47% Ruby 9.74%
>10 37.01% >200K 33.12% C# 30.52% Objective-C 6.49%

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The main goal of the repository analysis is to discover causes of EH-bugs. As
stated in Section 2.2, we found 92 EH-bugs in Eclipse and 128 in Tomcat.

The remainder of this section is organized as follows. In Sections 3.1–3.4 we
address the four research questions first by analyzing the survey data and then
bug reports. Section 4 contrasts the two data sources, discusses the findings and
presents the classification of causes for EH-bugs derived from both data sources.

3.1. RQ1: Do organizations and developers take exception handling into ac-
count?

3.1.1. Survey
The survey included seven questions whose goal was to determine whether de-

velopers worry about exception handling when they are not directly implementing
the system, e.g., during system design or testing.

For the question “there are any specifications, policies or standards that are
part of your organization’s culture related to the implementation of error han-
dling” (Question 5), we could not compare all answers together because we found
a statistically significant difference between the Brazilian developers and Eclipse/-
Tomcat developers. Fisher’s test returned the p-value = 0.00843. This result
shows that origin of the respondent impacts the existence or not of such specifi-
cations or policies in their organizations. So, for Brazilian respondents we found
more than 80% saying that there are no such specifications or policies in their
organizations. For Eclipse/Tomcat developers, the percentage drops to 60%.

An illustrative example of an organizational policy pertaining to exception
handling has been provided by a Tomcat/Eclipse developer can be show in Table 6.
Although developers say there should be some comments within the ignored catch
block, we could find violations of that policy in the repository analysis of Eclipse
and Tomcat bugs. For example, in the latest version of Tomcat, we observed
that, among the 12 empty catch blocks in the system (110 catch blocks total), we
identified 5 that did not include a comment, thus violating said policy.

“any exception should be either rethrown or logged, but
not both to avoid duplicate logging of the same exception.

If the exception will definitely not be thrown,
the ignoring catch block should include a comment in a
specific format that tells static code analysis tools that

this situation is expected and no warning should be raised here.”

Table 6: Developer’s citation about organizational policy.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The organizations of 69% of the respondents have a testing processed imple-
mented (Question 9). In this case, we could group together all the respondents.
Nevertheless, when asked whether there are specific tests for exception handling
code in their organizations (Question 10), the two groups of respondents provided
different answers. Fisher’s test yielded a p-value of 0.015. This result shows that
origin of the respondent impacts the presence of specific tests for exception han-
dling code. For Question 10, 79% of the Brazilian respondents claimed that there
are no specific tests for exception handling code while that percentage dropped to
60% for the Eclipse/Tomcat developers.

Moreover, when discussing the importance given to the documentation of ex-
ception handling in the design phase (Question 4), 61% of the respondents indi-
cated no to little importance, almost four times more than respondents indicating
much to very much importance being given. These results suggest that organiza-
tions usually do not pay attention to the exception handling code.

About 40% of the respondents consider the quality of exception handling code
to be either good or very good (Question 20) and only 14% of the respondents
consider it to be bad or very bad. This suggests that while exception handling is
treated at the implementation level rather than at the design level, the respondents
are overall satisfied with the quality of the exception handling code.

Inspired by the work of Shah et al. [48], we asked the respondents to select the
reasons why they use exception handling (Question 19). The options of Question
19 were created based on the work of Shah et al.. We created a list based on their
findings while interviewing novice and expert developers. Our intention with this
question is not to discover every possible cause for developers to use exception
handling. Instead, we would like to elicit some of the strongest reasons and, at the
same time, validate the findings of Shah et al. [48]. The respondents also had an
opportunity to indicate additional reasons, but less than 4% of them have used this
opportunity. Table 8 presents reasons most frequently selected by the respondents.
Most of the respondents indicated that creating ways to tolerate faults and improv-
ing the quality of a functionality are the main reasons to use exception handling.
One of the survey respondents provided a particularly interesting spontaneous an-
swer shown in Table 7. It suggests he/she believes that using exception handling
is akin to other common activities and practices in software development and not
something special.

Only 17% of the respondents said that they use exception handling for debug-
ging purposes. In contrast, in the work of Shah et al. [48], which interviewed a
group of 8 novice developers and 7 experts, most of the novice developers claimed
to use exception handling mostly for debugging and because of language require-

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

“exception handling is part of code flow—not using
exception handling for some arbitrary reason would be

like not using ‘if’ blocks, or not having your code compile.”

Table 7: Developer’s citation about the reasons to use exception handling.

ments. Expert developers on the other hand, claimed that they use exception han-
dling mainly to convey understandable failure messages. This latter result agrees
with our findings presented in Table 8, and indeed most of the respondents can be
considered experts (cf. Table 5).

Furthermore, Table 8 indicates that 21% of the respondents use exception
handling because of organizational policies, slightly lower than the 27% of the
respondents indicating the presence of specifications, policies or standards per-
taining to the implementation of error handling. It is interesting to note that 28
respondents who indicated the presence of specifications, policies or standards
pertaining to the implementation of error handling in their organizations did not
cite organizational policies as a cause to use exception handling. On the other
hand, 19 respondents who claimed that their organizations do not have specifi-
cations, policies or standards pertaining to the implementation of error handling
did cite organizational policies as a cause to use exception handling. In Question
19, the term “organizational policies” appears as one of the possible answers. At
the same time, Question 5 cites “policies [..] that are part of your organization’s
culture”. A possible interpretation for this apparent discrepancy is that developers
use exception handling because of the policies of their organizations require them
to, but these organizations do not provide directions or guidance in this regard.

Finally, it is worth noting that 2% of the respondents who claimed not to use
exception handling have only worked professionally with languages that imple-
ment exception handling and all of them have worked professionally with Java.

Table 8: Why do developers use exception handling?
To create ways to tolerate faults 66%
To improve the quality of a functionality 63%
Importance of functionality 53%
Language requirement 43%
Organizational policies 21%
To debug a specific part of the code 17%
Does not use exception handling 2%

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.1.2. Repository Analysis
Previous studies [11, 12, 13, 45, 50, 53] have shown empirically that develop-

ers do pay attention to error handling. Assessing whether they also pay attention
to EH-bugs is harder, since many EH-bugs are probably never uncovered due to
insufficient or non-existent testing procedures. Nevertheless, we can use bug re-
port information to analyze the bugs that do get reported. If EH-bugs and other
bugs are reported in similar ways, then developers are likely to consider EH-bugs
equally important to other bugs. Table 9 compares bug reports pertaining to EH-
bugs and other bugs in terms of their priorities, severities, resolutions, status, and
the presence of attachments (which usually are patches of the source code or the
exception’s stack trace) for Eclipse and Tomcat.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 9: Priorities, severities, resolutions, status, and the presence of attachments for EH-bug-
reports and non-EH-bug-reports for Eclipse and Tomcat.

Category
Eclipse Tomcat

EH-bugs Other EH-bugs Other
Attachment With 49 (53.26%) 6,799 (26.24%) 38 (29.69%) 1,901 (28.26%)

Without 43 (46.74%) 19,111 (73.76%) 90 (70.31%) 4,826 (71.74%)
Priority Blocker 1 (1.09%) 116 (0.45%) 2 (1.56%) 223 (3.31%)

Critical 0 (0.00%) 537 (2.07%) 4 (3.13%) 392 (5.83%)
Enhancement 2 (2.17%) 4,440 (17.14%) 10 (7.81%) 1,055 (15.68%)
Major 8 (8.70%) 1,762 (6.80%) 30 (23.44%) 863 (12.83%)
Minor 4 (4.35%) 1,463 (5.65%) 9 (7.03%) 548 (8.15%)
Normal 74 (80.43%) 17,101 (66.00%) 73 (57.03%) 3,467 (51.54%)
Regression n/a 0 (0.00%) 58 (0.86%)
Trivial 3 (3.26%) 491 (1.90%) 0 (0.00%) 121 (1.80%)

Resolution – (open) 1 (1.09%) 3,251 (12.55%) 3 (2.34%) 219 (3.26%)
Fixed 88 (96.65%) 15.597 (60.20%) 108 (84.38%) 4,429 (65.84%)
Later n/a 2 (1.56%) 141 (2.10%)
Moved n/a 0 (0.00%) 1 (0.01%)
Remind n/a 0 (0.00%) 21 (0.31%)
Wontfix 2 (2.17%) 3.775 (14.57%) 10 (7.81%) 1,182 (17.57%)
Worksforme 1 (1.09%) 3.287 (12.69%) 5 (3.91%) 734 (10.91%)

Severity P1 1 (1.09%) 581 (2.24%) 7 (5.47%) 535 (7.95%)
P2 5 (5.43%) 1,60 (6.21%) 52 (40.63%) 2,834 (42.13%)
P3 85 (92.39%) 22,327 (86.17%) 66 (51.56%) 3,173 (47.17%)
P4 1 (1.09%) 899 (3.47%) 1 (0.78%) 59 (0.88%)
P5 0 (0.00%) 494 (1.91%) 2 (1.56%) 126 (1.87%)

Status Assigned 0 (0.00%) 1,283 (4.95%) 0 (0.00%) 1 (0.01%)
Closed 0 (0.00%) 444 (1.71%) 6 (4.69%) 237 (3.52%)
Needinfo n/a 1 (0.78%) 15 (0.22%)
New 1 (1.09%) 1,881 (7.26%) 2 (1.56%) 181 (2.69%)
Reopened 0 (0.00%) 87 (0.34%) 0 (0.00%) 22 (0.33%)
Resolved 28 (30.43%) 13,349 (51.52%) 119 (92.97%) 6,268 (93,18%)
Verified 63 (68.48%) 8,866 (34.22%) 0 (0.00%) 3 (0.04%)

In Eclipse, EH-bug reports carry attachments more often than other bug re-
ports: the percentage is twice as high for EH-bugs (53.26% vs. 26.24%). In
Tomcat, the percentage of bug reports that carry attachments is very close for ex-
ception handing bugs and other bugs (29.69% vs. 28.26%). The choice of adding
or not an attachment is made by the developer who is working on the bug and there
may be more than one attachment for each bug report. Furthermore, we found a
interesting relationship for EH-bugs when comparing the bugs with attachments

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and the number of discussion messages. EH-bugs with attachments have more
discussion messages than EH-bugs without attachments for both Eclipse (p-value
3.322 × 10−6) and Tomcat (p-value 4.177 × 10−7).

Also, it is less common for an EH-bug to be an enhancement than for other
bugs. We believe that this is a sign that developers do not consider an exception
handling fix to be an enhancement, i.e., they do not consider it as an improvement
to the system. Moreover, the default normal priority is the most common in both
systems for EH-bugs as well as non-EH-bugs, and the severities of EH-bugs and
non-EH-bugs for both Eclipse and Tomcat are similar.

For the two analyzed systems, wontfix and worksforme are more common as
resolutions for other bugs than for EH-bugs, e.g., in Tomcat the percentage of
wontfix bugs is more than twice higher. It is also interesting to note that, for both
systems, proportionally more EH-bugs have the fixed resolution than other bugs,
e.g., 96.65% vs. 60.20% in Eclipse. When examined in conjunction, these two
results suggest that reported EH-bugs are ignored less often than other bugs. To
verify this observation we conducted the χ2 test [2] of independence to check the
relationship between ignored bugs (the ones marked as worksfome and wontfix)
and non-ignored bugs (the ones marked as fixed). The results of the test were
statistically significant for any commonly used confidence level (for Eclipse the
p-value 1.903×10−8, for Tomcat 2.425×10−5) indicating that the bug’s resolution
depends on whether it is an EH-bug or non-EH-bug.

Finally, we have observed a difference in the usage of Bugzilla for Eclipse and
Tomcat. Eclipse developers usually employ the status verified to mark a bug as
fixed and properly working, as recommended by Bugzilla6. However, this does
not seem to be the case for Tomcat developers who usually add a comment in the
bug report itself stating that the bug has been fixed and the system operates as
expected. That would explain why there are almost no bugs marked as verified for
Tomcat i.e., more than 90% of the Tomcat bugs are at the resolved state compara-
ble to Eclipse, which has more than 98% EH-bugs (resolved + verified) and more
than 85% for non-EH-bugs (resolved + verified). It is also interesting to note that
68.48% of the EH-bugs are labeled as “verified” in Eclipse, i.e., supposedly one
of the developers verified the patch after the bug was fixed. For non-EH-bugs, the
percentage is much lower, 34.22%.

The remaining categories have similar values for the two kinds of bugs. Since
there is no obvious difference, we believe that it is possible to say that develop-

6https://bugzilla.mozilla.org/page.cgi?id=fields.html

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ers do pay attention to documented EH-bugs at least as much as they do to any
other bug. This observation agrees with the comment of one of the Brazilian sur-
vey respondents (translated from Portuguese from Question 14.1) as showed in
Table 10:

“Of course I already fixed errors inside exception
handling blocks, just like I already fixed errors

in all places of the source code. The exception handling
block is just like any other piece of source code.”

Table 10: Developer’s citation about fixing EH-bugs.

3.2. RQ2: How common are EH-bugs?

We want to know how usual EH-bugs are. This is an area where there is much
room for divergence between the two data sources.

3.2.1. Survey
To assess how common developers believe EH-bugs to be, we asked how of-

ten bugs (Question 6) and specifically EH-bugs (Question 7) are reported in their
organisations, and how often are they found by the respondents themselves (Ques-
tions 11 and 12).

Responses to Questions 6 and 7 are summarized in Table 11. We put the re-
sponses to these questions on a numeric scale (from 1-never to 5-always). As we
found a statistically significant difference between the responses of the Brazilian
developers and the Eclipse/Tomcat developers for Question 7, we analyzed the
responses for Questions 6 and 7 separately. Fisher’s test comparing distributions
of the answers to Questions 6 and 7 for Brazilian respondents resulted in the p-
value 3.828 × 10−4, implying that the answers to these questions are dependent:
the frequency that Brazilian developers report bugs impacts the frequency they
report EH-bugs. The same happened for Eclipse/Tomcat developers, Fisher’s test
comparing distributions of the answers to Questions 6 and 7 for those respondents
resulted in the p-value 2.106×10−9. It also implies that the answers to these ques-
tions are dependent: the frequency that Eclipse/Tomcat developers report bugs
impacts the frequency they report EH-bugs

We used Fisher’s exact test to analyze Questions 11 and 12 (responses are
summarized in Table 12), i.e., to check whether the kind of bug (EH-bugs or
“other”) affects perceived frequency of their finding (how often each kind of bug
is found). The test indicated that the p-value is too small to be calculated exactly

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 11: Frequency of bugs found and reported.
Question 6 and 7

How often are bugs reported?
Respondents Brazilian Eclipse/Tomcat Brazilian Eclipse/Tomcat
Finding frequency EH-bugs EH-bugs Other Other
Never 14.58% 3.45% 4.71% 1.72%
Rarely 15.63% 58.62% 8.33% 6.90%
Sometimes 30.21% 25.86% 20.83% 37.93%
Most of the time 17.71% 10.34% 28.13% 31.03%
Always 21.88% 1.72% 38.54% 22.41%

(p < 2.2 × 10−16) meaning that the kind of the bug indeed affects the perceived
frequency of their finding.

Table 12: Frequency of bugs found.
Question 11 and 12

How often do you find bugs?
Finding frequency EH-bugs Other
Never 1.30% 0.65%
Rarely 38.96% 4.55%
Sometimes 53.90% 29.22%
Most of the time 5.84% 59.74%
Always 0.00% 5.84%

Considering that developers rarely seem to find EH-bugs, we wondered whether
this might be explained by few bugs being related to exception handling. There-
fore, we asked the respondents to estimate the percentage of bugs related to ex-
ception handling code in their projects as a value between 0 and 100% (Ques-
tion 13). Figure 3 shows the histogram and the kernel density estimator [51] of
the responses to this question, a method used to estimate the density of the data
according to a central value (the kernel). Two respondents declined to answer,
reducing the total number of answers for this question to 152. We observe that
the estimates range between 0% and 90% with the mean being 9.66%, and the
median—5%. In the next subsection we compare these estimates provided by the
survey respondents with the results of the repository analysis.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Estimates of the percentage of EH-bugs.

3.2.2. Repository Analysis
Reported EH-bugs are rare. As mentioned in Section 2, we obtained 92 and

128 EH-bugs for Eclipse and Tomcat, or 0.35% and 1.87% of all the bugs, respec-
tively. In spite of this, according to previous studies [12, 53], between 3% and 7%
of the lines of code of mature Java applications implement exception handling.
This result suggests that either EH bugs are less likely to occur than other kinds
of bugs or that they are underreported in the bug repositories.

Previous work has provided evidence that exception handling code is fertile
ground for bugs that are difficult to detect [12, 41, 53]. Hence, we expect that
EH-bugs are more common than one would assume by looking at the bug reports.
Indeed, the survey respondents provided much higher estimates of the number of
EH-bugs. The difference between the respondents’ estimates and the results of the
repository analysis might be attributed to some EH-bugs not being recognized as
such either due to limitations of the keyword-based search or due to limitations
of the manual analysis following the search. Indeed, many bug reports do not
explicitly mention the cause, thus hindering identification of EH-bugs.

3.3. RQ3: Are exception handling bugs harder to fix than other bugs?

Although there is evidence that EH-bugs are hard to detect [12, 41, 53], little
is known about how hard they are to fix. In this section, we attempt to address
this issue by inquiring the two data sources about the difficulty of fixing reported
EH-bugs.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 13: How difficult is it on average to fix a bug?
Difficulty EH-bugs Other
Very easy 9.09% 0.00%
Easy 34.42% 7.14%
Medium 46.10% 65.58%
Hard 10.39% 25.97%
Very hard 0.00% 1.30%

3.3.1. Survey
To understand whether fixing EH-bugs is more or less difficult than non-EH-

bugs, we have asked the respondents to indicate the average level of difficulty
of fixing bugs related to exception handling (Question 16) and bugs that are not
related to exception handling (Question 17).

Based on the answers to Questions 16 and 17, we have conducted the Fisher’s
test that resulted in the p-value equal to 4.997 × 10−14. This result suggests that
the kind of the bug (whether EH-bugs or non-EH-bugs) influences the level of the
difficulty to fix.

Table 13 shows the percentages of the responses for Questions 16 and 17. EH-
bugs are easier to be fixed (easy or very easy), according to 43.51% of respondents.
In sharp contrast, only 7% of the respondents say the same about other kinds of
bugs.

Finally, in order to understand importance of EH-bugs to the project, we also
asked the respondents about the priority/severity of EH-bugs (Question 18). Re-
sponses to this question are summarized in Table 14. Most of the respondents
answered that the priority / severity of EH-bugs is medium. This result confirms
the priority found for EH-bugs in Eclipse and Tomcat from Table 9, where the
most often reported priority was normal.

Table 14: The average priority / severity of reported EH-bugs?
Very low 5.84%
Low 18.18%
Medium 45.45%
High 25.32%
Very high 5.19%

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.3.2. Repository Analysis
We complemented the survey by means of repository analysis. Since difficulty

of bug fixing is not explicitly represented in the repository, we used two measure-
ments as proxies for the difficulty to fix a bug: the number of discussion messages
associated with the bug report, and the time to fix the bug, measured in days.
Both proxies have been employed with this goal in previous studies [21]. It is
important to stress that the fix time was calculated considering bug-repot closing
date minus the opening date. Unfortunately Bugzilla does not record the history
of the bug’s status. Hence, there is no way to account for bugs that are closed
and then reopened. Table 15 summarizes basic descriptive statistics for these two
measurements. Figure 4 presents vioplots [26] for the fix time and the number of
comments for Eclipse and Tomcat. Vioplots can be seen as combinations of box
plots and kernel density plots.

Table 15: Fix time in days and number of discussion messages for EH-bugs and for other bugs.
Fix time (days) Number of discussion messages

EH-bugs Non-EH-bugs EH-bugs Non-EH-bugs
Eclipse Min. 0 0 2 1

1st Qua. 13 6 5 3
Median 36 38 7 4
Average 184.3 344.6 7.902 6.285
3rd Qua. 111.5 245 10 7
Max. 2,690 4,021 36 206
SD 466.3 671.3 5.1 6.5

Tomcat Min. 0 0 1 1
1st Qua. 45.5 39 2 2
Median 586.5 512 3 3
Average 588.8 637.5 4.07 4.534
3rd Qua. 864 1,092 5 5
Max. 3,257 4,406 15 97
SD 601.4 637.0 2.7 4.4

We employed the Wilcoxon test to check whether the measurements differ
significantly between EH-bugs and other bugs. In Eclipse, the number of discus-
sion messages is significantly smaller for non-EH-bugs than for EH-bugs (p '
2.28 × 10−8). However, no such difference could be established for the fix time
(p ' 0.899). In Tomcat, for both measurements, the fix time and the number
of discussion messages, no statistically significant difference has been found be-
tween EH-bugs and non-EH-bugs. For the fix time the p-value associated with

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the Wilcoxon test was 0.5584 and for the number of discussion messages p-value
was 0.5937.

Combining results of the survey with the results of the repository analysis we
tend to answer RQ3 negatively, i.e., there is not enough evidence to suggest that
fixing EH-bugs is harder than fixing other bugs. Indeed, in Eclipse there was
no significant difference in the bug fixing time while the number of discussion
comments of EH-bugs is greater. At the same time, no statistically significant
difference could be observed for Tomcat. Moreover, developers think that EH-
bugs are easier to fix. In Section 4 we further revisit differences between the
survey results and the repository analysis.

3.4. RQ4: What are the main causes of exception handling bugs?

Based on the two data sources, we have devised a classification for EH-bugs.
In this section we analyze the results for the survey and the repository analysis
independently.

3.4.1. Survey
To uncover the main causes of EH-bugs according to the survey respondents,

we asked the developers whether they have ever needed to fix EH-bugs (Ques-
tion 14) and if so, why (Questions 14.1). We also asked them to select the main
causes of bugs related to exception handling they have ever needed to fix, analyze,
or have found documented (Question 15). When answering Question 15, the re-
spondents were allowed to select zero or more causes from a list that mentioned
a number of causes but also could suggest additional ones. We started the repos-
itory analysis before designing the questionnaire because this latter was used to
confirm the findings of the repository analysis. Hence, we created an initial clas-
sification of exception handling bugs by following a coding process [47], which
is a technique for preparing qualitative data to be analyzed quantitatively. This
initial classification was used as a basis for Question 15.

Table 16 summarizes these results. The top four causes were provided to re-
spondents, and the remaining ones were suggested by the respondents themselves.
The most commonly cited causes for EH-bugs were lack of a handler that should
exist, no exception thrown in a situation of a known error and programming error
in the catch block.

It is also interesting to note some relationships that were not statistically sig-
nificantly different. For example, the size of the project developers worked on
(Question 2) compared with i) the existence of organizational EH-bug policies
(Question 5), ii) the importance of EH-bug documentation (Question 4) and iii)

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the existence of EH-bug testing (Question 10). For all three comparisons we could
not say that answers to Question 2 impacts any of the others questions.

Table 16: What are the main causes of EH-bugs?
Bug Classification Quantity

Lack of a handler that should exist 108
No exception thrown in a situation of a known error 85
Programming error in the catch block 84
Programming error in the finally block 47
Exception caught at the wrong level 2
catch block where only a finally would be appropriate 1
Exception that should not have been thrown 1
Wrong encapsulation of exception cause 1
Wrong exception thrown 1
Lack of a finally block that should exist 1
Error in the exception assertion 1

To better understand developers’ perception of the causes of EH-bugs, we also
posed Questions 14 and 14.1. 83% of the respondents to Question 14 have had
to fix an EH-bug at some point. 113 out of 154 survey respondents (73.38%)
answered Question 14.1. The answers varied widely and many of them refer
to specific technologies, frameworks and applications. Besides the causes high-
lighted by Table 16 (which are from Question 15), the responses to Question 14.1
cited various additional causes. For example, 16 responses mentioned exceptions
caught at the wrong level (14.16% of the answers) and 19 responses mentioned
empty catch blocks as common causes of EH-bugs (16.81% of the answers). Fur-
thermore, three respondents cited both causes (exceptions caught at the wrong
level and empty catch blocks) in their answers.

3.4.2. Repository Analysis
Table 17 presents the causes of bugs identified while examining the bug re-

ports. For Eclipse, the three most common causes of EH-bugs are (i) exception
not handled (34.78%), (ii) error in the handler (29.35%), and (iii) exception that
should not be thrown (14.13%). For Tomcat, the most common causes are (i) error
in the handler (37.50%), (ii) exception not handled (19.53%), and (iii) exception
not thrown (16.41%).

Figure 5 shows an example of exception not handled and Figure 6 shows an
example of error in the handler, both from Eclipse.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 17: EH-bug classification according to repository analysis.
Bug Classification Tomcat Eclipse

Exception not handled 25 19.53% 32 34.78%
Exception not thrown 21 16.41% 6 6.52%
Exception that should not have been thrown 4 3.13% 13 14.13%
Wrong exception thrown 10 7.81% 5 5.43%
Error in the handler 48 37.50% 26 28.26%
Error in the finally block 1 0.78% 4 4.35%
General catch block 2 1.56% 1 1.09%
Inconsistency between source code and API 0 0.0% 3 3.26%
Empty catch block 1 0.78% 1 1.09%
Error in the definition of exception class 0 0.0% 1 1.09%
Invalid or non-existent root cause 16 12.50% 0 0.0%

Figure 7 shows an example of exception that should not be thrown and Figure 8
shows an example of exception not thrown, both from Tomcat.

It is interesting to note the differences between the two systems. On the one
hand, exception not thrown is a common cause of EH-bugs in Tomcat but not in
Eclipse. On the other hand, exception that should not have been thrown, the third
most common cause of EH-bugs in Eclipse, does not rank among the top 5 most
common causes in Tomcat. Furthermore, invalid or non-existent root cause is the
originator of 12% of the EH-bugs in Tomcat but no bugs in Eclipse.

Another interesting point is the rareness of empty catch blocks as causes of
bugs: only one for each application. Empty catch blocks are in widespread use
in large-scale, mature applications [12, 40]. Notwithstanding, developers seem
to believe that they create many problems [35, 38, 39, 40, 44] because they can
make bugs subtler and hinder debugging. Indeed, empty catch blocks ignore
exceptions, and therefore the problems that the ignored exceptions signalize can
only be detected indirectly. Moreover, since there is no stack trace and, in fact,
no exception, finding the root cause of the problem becomes particularly difficult.
Finally, we have seen comments stating that empty catch blocks are used when
developers are certain that a given exception cannot be thrown, indicating that the
catch block can never be reached. However, as a consequence of software main-
tenance, the preconditions that guaranteed the impossibility of the exception being
thrown can be violated, thus introducing bugs that are hard to detect. Therefore,
we believe that empty catch blocks constitute a maintenance risk. It is surprising
therefore that only few bug reports mention empty catch blocks as their cause.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A similar case can be made for catch clauses and generic exception types,
such as Throwable or Exception. There is convincing evidence [14, 22, 41]
that they are often sources of bugs. Despite of this, overall, we only found three
bug reports with this cause. Even though empty catch blocks are a well-known
bad smell, we found ten bugs whose patches use empty catch blocks. Figures 9
and 10 show one example from Eclipse and one from Tomcat, respectively. Even
more patches for EH-bugs might use empty catch blocks as not every bug report
is explicitly associated with the corresponding patch.

4. Discussion

Contrasting the actual bugs that we identified in the repositories with the bugs
that developers have had to fix, we notice that a number of problems have rarely
been documented in bug reports. Some of these problems have been mentioned by
several respondents, e.g., exceptions caught at the wrong place. Moreover, there is
ample opportunity for problems stemming from inadvertently caught exceptions
to manifest. For example, the trunk version of Tomcat 7.0 in April 24th 2013 had
280 catch(Throwable...) blocks and more than 520 catch(Exception...)

blocks. Previous studies [14, 41] using static analysis tools have shown that gen-
eral catch blocks do capture exceptions they were not intended to in practice.

Summarizing the preceding discussion we can say that (i) developers claim to
have fixed bugs with causes that rarely appear in bug reports; (ii) bugs with these
causes are known to be hard to find without proper testing, e.g.,exceptions caught
at the wrong place; and (iii) exception handling code is rarely tested. These hard-
to-find bugs manifest only indirectly and tracking the cause is difficult. One of the
survey respondents summarized this situation when asked ”have you ever needed
to fix bugs related to exception handling? (if yes, please describe some of these
situations)” (Question 14.1):

“Exceptions caught too early allowing the program to proceed with
invalid data, e.g., returning null from a method instead of throwing
a meaningful exception. This usually causes another related excep-
tion soon, but in hairy cases may cause data corruption and other
irregularities”.

There are diametrically different opinions on the subject of empty catch blocks.
As discussed in Section 3.4, a number of developers seem to believe that empty
catch blocks are problematic. Out of the 113 survey respondents who described

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

EH-bugs they had to fix in the past, 19 claimed to have fixed bugs where empty
catch blocks were either potential or actual bug causes, exemplified by the fol-
lowing comment (translated from Portuguese, Question 14.1):

“Many developers consider that ‘swallowing’ exceptions is normal,
so that the system does not show errors to the user. However, the
system behavior becomes unpredictable. ‘Swallowed’ exceptions are
the worst problem that I used to find in the systems.”

Nevertheless, examination of the bug reports for the two target applications
revealed only two bugs due to empty catch clauses. In addition, some survey
respondents seem to radically disagree, in spite of admitting that ‘swallowed’ ex-
ceptions hinder debugging:

“I’m also an Eclipse committer (on Platform/UI). On 4.2 we’ve changed
how parts (e.g., editors and views) are rendered. Our new system
silently swallows otherwise-uncaught exceptions. Tracing what hap-
pens when an EditorPart or ViewPart throw an uncaught exception is
a teensy bit annoying.”

catch(Throwable t) {

if (t instanceof ThreadDeath) {

throw (ThreadDeath) t;

}

if (t instanceof VirtualMachineError) {

throw (VirtualMachineError) t;

}

// All other instances of Throwable

// will be silently swallowed

}

Figure 11: The implementation of many handlers for Throwable in Tomcat.

The catch block in Figure 11 is not strictly speaking empty. Notwithstanding,
in practice, any exception (and most errors) caught by a catch block with this
implementation, including any instance of Exception, will be simply ignored, as
if the catch block was empty. The comment at the end of the code snippet makes

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 18: Merged classification terms.
Survey Repository Analysis

Lack of a handler that should exist Exception not handled
No exception thrown in a situation of a known error Exception not thrown
Programming error in the catch block Error in the handler
Programming error in the finally block Error in the clean-up action
Wrong encapsulation of exception cause Invalid or non-existent root cause

it clear that this behavior has been intended. This approach is used mostly in
situations where it is difficult to know what to do with an exception, for example,
in a finally block responsible for freeing resources. It is surprising, however, to
see that the exception is not even logged.

The respondents of the survey and the bug reports also did not agree on the
difficulty to fix EH-bugs. The former seem to believe that these bugs are easier
to fix than other bugs. In spite of this, analysis of the repository data has shown
that there is no obvious answer. EH-bugs seem to be as difficult to fix as other
bugs. Whether this false sense of security has any impact on the overall system
reliability is something to be discovered in future work.

According to the respondents of the survey, the median estimated percentage
of EH-bugs is 5%. However, from the repository analysis we found only 1.87%
of EH-bugs for Tomcat and 0.35% for Eclipse. Even considering conservative
estimates for the amount of exception handling code in a system, e.g., 3% of
the LoC [12], the number of EH-bugs does not seem to be proportional to the
amount of exception handling code. This discrepancy might be attributed to (i)
exception handling code being less bug-prone; (ii) some detected EH-bugs not
being reported; or (iii) some EH-bugs going undetected. As discussed earlier in
this section, there is evidence that the latter is more probable.

4.1. Classification of EH-bugs

We followed the coding process [46] to create our EH-bug classification. We
started the repository analysis with no classification in mind, and while checking
all EH-bugs from Bugzilla, we started to code them into categories which orig-
inated the classification (which was used afterwards to build Question 15 of the
survey). The source of information from Bugzilla was: the comments themselves
and the source code attached or pasted in the comments. Then we got the classi-
fication from the survey, and merged it with the classification from the repository
analysis. Bugs that did not contain enough information neither source code at-

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tached were not considered to be related to exception handling, as we could not
identify their causes. It is also important to emphasize that the classification of
Barbosa et al. [7] did not influence ours.

Using the lists of causes for EH-bugs obtained from the survey (Section 3.4.1)
and the repository analysis (Section 3.4.2), it is possible to derive a comprehen-
sive classification of causes for EH-bugs. To compile this classification, we first
analyzed the results from the two lists in order to identify different terms with
the same meaning. We merged these terms as shown in Table 18. We then pro-
ceeded to include in the final classification terms appearing in both lists and terms
appearing in only one of them.

Figure 19 presents the final classification. A general list of causes for EH-bugs
can assist testers in devising thorough test suites and can be used as a checklist
to guide code inspections. It can also serve as a basis for the construction of
static analysis tools. Even though there already some static analysis tools [27, 41]
that can identify some EH-bugs, they only cover a small subset of the items in
Figure 19.

Table 19: Comprehensive classification of EH-bugs.
Lack of a handler that should exist
Exception not thrown
Error in the handler
Error in the clean-up action
Exception caught at the wrong level
General catch block
Wrong exception thrown
Exception that should not have been thrown
Wrong encapsulation of exception cause
Lack of a finally block that should exist
Error in the exception assertion
Inconsistency between source code and API documentation
Empty catch block
Error in the definition of exception class
catch block where only a finally would be appropriate

Most of the items in Figure 19 are self-explanatory, e.g., lack of a handler that
should exist. Nevertheless, some of them need additional clarification:

• Exception caught at the wrong level: An exception is caught unintention-
ally. The exception is being handled by handler that is not the one intended

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

by the developers of the system, either because it is handled too early or too
late;

• General catch block: This is a subcase of Exception caught at the wrong
level. In this case the handler catches a generic exception, such as Exception
or Throwable rather than a specific one;

• Exception that should not have been thrown: An exception is thrown in a
situation where it should not have been thrown. This kind of EH-bug usually
means that either the program should do something other than throwing an
exception when an error is detected, such as returning null; or that part of
the program should not even try to detect the error, possibly because it will
be detected somewhere else;

• Wrong encapsulation of exception cause: An exception is caught and, as
a consequence, a second one is thrown. However, the second exception does
not encapsulate the first one. Due to wrong encapsulation the root cause of
the error is lost, hindering debugging;

• Error in the exception assertion: There is a bug within an assertion. This
is an EH-bug because assertions are responsible for detecting errors;

• Inconsistency between source code and API documentation: This is the
case where the documentation is not up-to-date with the software function-
ality;

• Error in the definition of exception class: This is the case where a defini-
tion of exception class is not done correctly, for example, an exception class
is a subclass of Error when it should be a subclass of RuntimeException.

5. Related Work

Cristian [18] was the first to state that exception handling code is the least
documented, tested, and understood part of source code of an application. Since
his seminal work going back to 1989, a number of studies have reconsidered this
statement and assessed its implications.

Marinescu [32] conducted an empirical study targeting three releases of Eclipse
with the goal of analyzing the defect-proneness of classes that use exception han-
dling. The study inspected both the source code and the bug repository for the

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

versions of Eclipse and associated the reported bugs with classes that they men-
tion. The analysis revealed that indeed classes that throw or handle exceptions are
more defect-prone than others classes that do not throw and do not handle excep-
tions. However, this study did not attempt to uncover the causes of these bugs, i.e.,
they may be unrelated to exception handling. Also, it does not study developers’
perceptions about the analyzed bugs. Therefore, this work is complementary to
ours.

Recently, Marinescu has extended [33] the aforementioned work [32]. She
has shown that classes using exceptions are more complex than those not using
exceptions. Moreover, classes that handle exceptions in an improper manner show
a higher probability of exhibiting defects than classes which handle them prop-
erly. Marinescu has taken a slightly different perspective on bugs and exception
handling by considering complexity and defect-proneness of classes handling ex-
ceptions. Moreover, Marinescu considers “improper handling of exceptions” (i.e.,
bug) to be general catch blocks (e.g., catch Exception) and general throws clauses
(e.g., throws Exception). As opposed to this work [33] we did not have a pre-
conceived notion of what constitutes an EH-bug prior to the repository analysis,
which was conducted before the survey. While analyzing Bugzilla, we created the
first EH-bug classification following the coding process. Then we conducted the
survey with an initial EH-bug classification.

Sawadpong et al. [45] performed the first study on EH-bugs by looking at bug
reports. Their study aimed to determine whether the usage of exception handling
is relatively risky by analyzing the defect densities of exception handling code and
the overall source code. The source code and bug repository of six Eclipse releases
were analyzed. In the bug repository, the study looked specifically for EH-bugs,
performing a search using the keywords “exception”, “throw”, and “threw”. The
main finding of the study is that the exception handling defect density of exception
handling constructs is approximately three times higher than overall defect den-
sity. We believe that the definition of EH-bug (“defect” in their study) employed
in this work is too coarse-grained. It assumes that every bug report returned by the
repository search pertains to exception handling. The problem with this assump-
tion is that it confuses bugs whose manifestation is an exception being thrown
with bugs whose cause is associated in some way with exceptions (cf. Section 2).
One would hardly, if ever, classify a typical division by zero or invalid cast as an
EH-bug. As stated in the last section of their paper, “Our goal was to determine
whether using exception handling is risky...”. This indicates that this earlier study
has goals different from ours, since we want to understand the characteristics of
bugs whose causes are in some way related to the use of exception handling. Fur-

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

thermore, Sawadpong et al. [45] did not study developers’ perception of EH-bugs.
A number of other studies have investigated developer habits pertaining to

exception handling. To understand how exception handling is being perceived in
the industry, Shah et al. [48] conducted a series of semi-structured interviews with
8 novices (2 years of development experience on average) and 7 experts (5+ years
of professional software development). The results show that novice developers
neglect exception handling until they are forced to address it by the programming
language or until a system failure is noticed and needs to be fixed. Furthermore,
most of the novices use exception handling only for debugging purposes and do
not like it when exception handling is imposed by the programming language.
As opposed to the novice developers, experienced developers consider exception
handling to be a very important part of software development. We postpone a
detailed comparison of these findings with our results to Section 3. It is important
to stress that the work of Shah et al. did not focus on exception handling bugs and
that their study involved only 15 respondents.

Cabral and Marques [12] examined 32 systems written in Java (including
Eclipse and Tomcat) and C#. By manual examination of the exception handling
code of those systems the authors aimed at understanding how developers use
exception handling mechanisms. Cabral and Marques discovered that the total
amount of exception handling code is less than expected, even in Java programs
that force developers to handle checked exceptions. For example, Java Stand-
Alone applications (including Eclipse) have only 3.11% of exception handling
code. Server applications, such as Tomcat, reach 7% of exception handling code.
Another interesting result is that most of the time the handlers are empty or ex-
clusively dedicated to logging, re-throwing the caught exception, or exiting the
method or program. In contrast, we did not focus on the source code. Instead, we
examined bug report data from Eclipse and Tomcat, including associated patches,
and conducted a survey.

Another study that investigated the use of exception mechanisms in Java ap-
plications was conducted by Reimer and Srinivasan [40]. The authors analyzed 7
applications and identified various antipatterns of exception handling usage. Ac-
cording to them, improper usage of exception handling reduces the maintainability
of these systems. The antipatterns they found were: (i) exception being ignored
with empty catch blocks; (ii) single catch block for multiple exceptions, i.e.,
overly general catch block; (iii) exceptions not being handled at the appropriate
level, and (iv) logging verbosity in catch blocks. In our work we found that some
of these antipatterns are indeed causes of bugs. Counter-intuitively, we also found
that some of these antipatterns are being used as bug patches (cf. Section 3).

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Coelho et al. [15] created a bug pattern catalogue for exception handling in
aspect-oriented programs. Based on a previous study [14] and analysis of three
applications with both Java and AspectJ versions available, the bug pattern cat-
alogue lists for each bug its symptoms, causes, a code example, cures, and pre-
vention techniques. By analyzing source code the authors identified exceptions
thrown and not caught, and exceptions caught at the wrong level as the most com-
mon causes of EH-bugs in aspect-oriented programs. These two patterns have
also been reported by the developers surveyed in the current study. Since our
study used a completely different methodology (analysis of bug reports and sur-
vey as opposed to analysis of the source code) and different systems, we can say
that the work of Coelho et al. [15] complements our results.

Robillard and Murphy [41] focused on the control flow aspects of exceptions.
They developed a static analysis tool that can show the paths that exceptions tra-
verse from the methods that throw them to the ones the handle them, if any. They
then employed the tool to identify bugs in three target systems. The problems
identified by the tool stemmed from uncaught exceptions that should be captured
and from exceptions caught accidentally, often as a consequence of catch blocks
that are overly general, placed at the wrong level, or both.

Zhang and Elbaum [55] studied bug reports of five popular open source appli-
cations for the Android phone platform. By searching for “exception”, “throw”,
and “catch” in the bug tracker and manually reviewing the results, the authors
have identified 282 bug reports. Almost a third of the bugs that led to code fixes
have been recognized as being caused by poor implementation of exception han-
dling constructs. Furthermore, the authors also suggested an approach for ampli-
fying existing tests to validate exception handling code associated with external
resources.

More recently, Kechagia and Spinellis [28] examined crash stack traces from
1,800 Android applications. They were interested in finding Android API meth-
ods with undocumented exceptions that are part of application crashes. This work
is complementary to ours as EH-bugs do not necessarily result in crashes, and
while crashes studied originated from unchecked exceptions, i.e., exceptions rep-
resenting bugs [4], those are not necessarily EH-bugs.

Neither of the aforementioned studies analyzes issues such as whether EH-
bugs are easier to fix than other kinds of bugs. Moreover, only the studies of
Coelho et al. [14] and Robillard and Murphy [41] attempt to analyze the causes
of EH-bugs. Nevertheless, since both employ static exception flow analysis tools,
they are only able to identify bug causes related to exception control flow. These
studies have also not accounted for the perceptions of developers about EH-bugs.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Barbosa et al. [7] conducted study similar to ours. They created a categoriza-
tion of EH-bugs based on Apache Tomcat7 and the Hadoop8 framework. They first
collected the full revision history of the target systems from their version control
systems and then looked for the word “exception” in the comments of each revi-
sion history. Thus, they looked for the bug reports related to those revisions and
finally they did a manual analysis of all those artifacts (code, comments, and bug
reports). They found 28 EH-bugs for each system and created a categorization
with 10 bug patterns. This work differs from ours for a number of reasons. It
studies a much smaller number of bugs, does not conduct any statistical analysis,
uses a slightly different definition of EH-bug, and does not attempt to analyze de-
velopers’ perceptions about exception handling and EH-bugs. It does, however,
present some categories that we have not encountered in our study. We compare
our EH-bug classification to theirs in Table 12. For a comprehensive explanation
of the comparison please see Appendix Appendix A.

In a previous paper [19], we have presented the results of the survey we con-
ducted with developers. This work did not analyze bug reports nor patches and,
hence, could not contrast developers perceptions with their actions. Furthermore,
in the current submission we have performed a more rigorous statistical analysis
of the data obtained and reconsidered some of the earlier observations in light of
the new statistical results.

Additionally, our questionnaire might not have covered all questions that could
have been asked of the respondents. Nonetheless, the final questionnaire was the
result of several discussions between the authors (one of whom is a specialist in
exception handling) and with a number of software developers and academics.
Moreover, we ran at least two small pilot studies before finally making the ques-
tionnaire public. Moreover, respondents may have been influenced in the survey
by the options offered in Questions 15 and 19. As the options from Question 15
were provided by the repository study and the options from Question 19 were
based on the work of Shah et al. [48]. Finally, questions 14 and 14.1 alleviate this
problem, since the latter asks for spontaneous answers.

6. Conclusion

In 1989, Flaviu Cristian [18] stated that “...since exceptions are expected to
occur rarely, the exception handling code of a system is in general the least doc-

7http://tomcat.apache.org
8http://hadoop.apache.org/

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

umented, tested, and understood part”. In the same paper, he claimed that “Most
of the design faults existing in a system seem to be located in the code that han-
dles exceptional situations”. More than 20 years later, we can say that these two
statements are debatable. Our study has shown that there are many contradic-
tions pertaining to exception handling. We summarize these contradictions and
the results of our study below.

Based on the responses to the survey, we can say that organizations usually
do not take exception handling into account. Policies for exception handling are
uncommon, as are tests and documentation for exception handling code. However,
developers do employ exception handling in practice [13, 12, 45, 50, 53] and their
motivations seem to go beyond issues such as language requirements: most of
them them use it because they want to improve their programs (Section 3.1.1).

We could note that EH-bugs are less frequent than others kind of bugs accord-
ing to the survey and much less frequent according to repository analysis. For
Eclipse and Tomcat, only 0.35 and 1.84% of the bug reports pertain to EH-bugs,
respectively. In contrast, they are ignored less often than other bugs, for both
systems.

Many developers seem to think that empty catch blocks and general catch
blocks cause EH-bugs. Nevertheless, they are often used, even in patches for EH-
bugs. Also, bug reports describing bugs stemming from overly general catch
blocks are rare, although there are many opportunities for them to occur.

We also presented a comprehensive classification of EH-bugs based on the
study results. We verified from both repository analysis and the survey that the
most common causes of EH-bugs are: lack of a handler that should exist, no
exception thrown in a situation of a known error, programming error in the catch
block, and exception that should not have been thrown.

The results of this study emphasize that the views of developers and organiza-
tions about EH-bugs are conflicting. To improve the quality of software systems
these views must be reconciled so that exception handling code can receive more
attention. The presented classification of EH-bugs can provide assistance in this
task, e.g., by working as a checklist for code inspections, a guide in the design of
test cases, or a group of bugs that can be targeted by static analysis tools.

For future work we intend to expand this study by analyzing other kinds of
data. For example, combining bug report data with the information stored in ver-
sion control systems can help us to more precisely pinpoint the impact of a bug and
its fix. We also plan to conduct interviews with developers since very useful infor-
mation in our study came from spontaneous answers provided by the respondents
of the survey. Through interviews we can get personal viewpoints that would be

41

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

hard to get from a survey. Furthermore, we plan to try to understand why develop-
ers from Eclipse and Tomcat state that there should be ignoring comments within
empty catch blocks but in fact there are some case where there is not and also why
there are some developers who answered the survey saying that they do not use
exception handling in Java.

It is common for developers to employ empty catch blocks in circumstances
where the implementation of the system guarantees that the exception will not be
thrown. However, software maintenance can break those guarantees. Tools ca-
pable of assisting developers in identifying whether that has occurred would be
useful. Furthermore, we need better support to help developers decide what to
do in the presence of exceptions. If not, they will continue to use empty catch

blocks as if they were a good solution. We believe that the development of recom-
mendation systems capable of suggesting exception handling strategies based on
the existing code base is a goal worth pursuing [8]. Finally, the empirical results
presented in this work, in particular the list of causes of EH-bugs, can help future
research in prediction and localization of EH-bugs.

References

[1] R, January 1993. http://www.r-project.org/.

[2] Alan Agresti. Categorical Data Analysis. Wiley Series in Probability and
Statistics. Wiley-Interscience, 2nd edition, 2002.

[3] Thomas Anderson and Peter A. Lee. Fault Tolerance: Principles and Prac-
tice. Springer, 2nd edition, 1990.

[4] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Addison Wesley Professional, New York, NY, USA, 4th edition,
2005.

[5] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgen-
thaler, and John Penix. Using static analysis to find bugs. Software, IEEE,
25(5):22–29, Sept 2008.

[6] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu,
and Abraham Bernstein. The missing links: Bugs and bug-fix commits. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, pages 97–106, New York,
NY, USA, 2010. ACM.

42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[7] Eiji Adachi Barbosa, Alessandro Garcia, and Simone D. J. Barbosa. Cate-
gorizing faults in exception handling: A study of open source projects. In
Proceedings of the 28th Brazilian Symposium on Software Engineering, Oc-
tober 2014. To appear.

[8] Eiji Adachi Barbosa, Alessandro Garcia, and Mira Mezini. A recommen-
dation system for exception handling code. In Proceedings of ICSE’2012
Workshop on Exception Handling, June 2012.

[9] Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):289–300, 1995.

[10] Andrew P. Black. Exception Handling: The Case Against. PhD thesis,
University of Oxford, January 1982.

[11] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. Discovering faults in
idiom-based exception handling. In Proceedings of the 28th International
Conference on Software Engineering, pages 242–251, May 2006.

[12] Bruno Cabral and Paulo Marques. Exception handling: a field study in
java and .net. In Proceedings of the 21st European conference on Object-
Oriented Programming, pages 151–175. Springer-Verlag, 2007.

[13] Fernando Castor, Nélio Cacho, Eduardo Figueiredo, Alessandro Garcia,
Cecı́lia M. F. Rubira, Jefferson Silva de Amorim, and Hı́talo Oliveira
da Silva. On the modularization and reuse of exception handling with as-
pects. Softw., Pract. Exper., 39(17):1377–1417, 2009.

[14] Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Cutigi Ferrari,
Nélio Cacho, Uirá Kulesza, Arndt von Staa, and Carlos José Pereira de Lu-
cena. Assessing the impact of aspects on exception flows: An exploratory
study. In Proceedings of the 22nd European Conference Object-Oriented
Programming, pages 207–234, Paphos, Cyprus, Julho 2008.

[15] Roberta Coelho, Awais Rashid, Arndt von Staa, James Noble, Uirá Kulesza,
and Carlos Lucena. A catalogue of bug patterns for exception handling in
aspect-oriented programs. In Proceedings of the 15th Conference on Pattern
Languages of Programs, PLoP ’08, pages 23:1–23:13, 2008.

43

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[16] Roberta Coelho, Arndt von Staa, Uirá Kulesza, Awais Rashid, and Carlos
Lucena. Unveiling and taming liabilities of aspects in the presence of excep-
tions: A static analysis based approach. Inf. Sci., 181(13):2700–2720, July
2011.

[17] Flaviu Cristian. A recovery mechanism for modular software. In Proceed-
ings of the 4th ICSE, pages 42–51, 1979.

[18] Flaviu Cristian. Exception handling. In Dependability of Resilient Comput-
ers, pages 68–97. Blackwell Science, 1989.

[19] Felipe Ebert and Fernando Castor. A study on developers’ perceptions about
exception handling bugs. In Proceedings of the 29th IEEE International
Conference on Software Maintenance, September 2013.

[20] Ronald A. Fisher. Statistical methods for research workers. Edinburgh
Oliver & Boyd, 1925.

[21] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. A study
of the internal and external effects of concurrency bugs. In Proceedings of
the 2010 IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 221–230, June/July 2010.

[22] Chen Fu and Barbara G. Ryder. Exception-chain analysis: Revealing ex-
ception handling architecture in java server applications. In Proceedings of
the 29th International Conference on Software Engineering, pages 230–239,
May 2007.

[23] Alessandro F. Garcia, Cecı́lia M. F. Rubira, Alexander B. Romanovsky, and
Jie Xu. A comparative study of exception handling mechanisms for build-
ing dependable object-oriented software. Journal of Systems and Software,
59(2):197–222, 2001.

[24] John B. Goodenough. Exception handling: Issues and a proposed notation.
Communications of the ACM, 18(12):683–696, December 1975.

[25] Robert M Groves, Floyd J Fowler, Mick P Couper, James M Lepkowski,
Eleanor Singer, and Roger Tourangeau. Survey Methodology. Wiley, 2nd
edition, 2009.

44

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[26] Jerry L. Hintze and Ray D. Nelson. Violin plots: A box plot-density trace
synergism. The American Statistician, 52(2):181–184, May 1998.

[27] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN No-
tices, 39(12):92–106, December 2004.

[28] Maria Kechagia and Diomidis Spinellis. Undocumented and unchecked: Ex-
ceptions that spell trouble. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, pages 312–315, New York,
NY, USA, 2014. ACM.

[29] Maurice G. Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[30] Barbara Kitchenham and Shari L. Pfleeger. Personal opinion surveys. In For-
rest Shull, Janice Singer, and Dag I. K. Sjoberg, editors, Guide to Advanced
Empirical Software Engineering, pages 63–92, 2008.

[31] Wei Li and Raed Shatnawi. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution. J. Syst.
Softw., 80(7):1120–1128, July 2007.

[32] Cristina Marinescu. Are the classes that use exceptions defect prone? In
Proceedings of the 12th International Workshop on Principles of Software
Evolution, pages 56–60, September 2011.

[33] Cristina Marinescu. Should we beware the exceptions? an empirical study
on the eclipse project. In Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2013 15th International Symposium on, pages 250–
257, Sept 2013.

[34] John McCarthy. History of lisp. SIGPLAN Not., 13(8):217–223, August
1978.

[35] Tim McCune. Exception-handling antipatterns, 2006. Address:
http://today.java.net/pub/a/today/2006/04/06/ exception-handling-
antipatterns.html – Last access: May 10th 2013.

[36] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1990.

45

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[37] Douglas C. Montgomery and George C. Runger. Applied Statistics and
Probability for Engineers. Wiley, 2th edition, 2006.

[38] Andreas Muller and Geoffrey Simmons. Exception handling: Common
problems and best practice with java 1.4. In Proceedings of NetObject
Days’2002, October 2002.

[39] Ian Nelson. Empty catch blocks, June 2009.
http://www.ianfnelson.com/blog/empty-catch-blocks.

[40] Darrel Reimer and Harini Srinivasan. Analysing exception usage in large
Java applications. In Proceedings of ECOOP Workshop on Exception Han-
dling in Object-Oriented Systems, pages 10–19, July 2003.

[41] M. Robillard and G. Murphy. Static analysis to support the evolution of ex-
ception structure in object-oriented systems. ACM Transactions on Software
Engineering and Methodology, 12(2):191–221, April 2003.

[42] Per Runeson and Martin Hst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[43] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical study
of reported bugs in server software with implications for automated bug di-
agnosis. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pages 485–494, May 2010.

[44] Dustin Sallings. Empty catch blocks are always wrong, June
2007. http://www.rockstarprogrammer.org/post/2007/jun/15/empty-catch-
blocks-are-always-wrong/.

[45] Puntitra Sawadpong, Edward B. Allen, and Byron J. Williams. Exception
handling defects: An empirical study. 9th IEEE International Symposium
on High-Assurance Systems Engineering, pages 90–97, October 2012.

[46] Carolyn B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Trans. Softw. Eng., 25(4):557–572, July 1999.

[47] Carolyn B. Seaman. Variable kernel density estimation. IEEE Transactions
on Software Engineering, 25(4):557–572, 1999.

46

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[48] Hina B. Shah, Carsten Gorg, and Mary Jean Harrold. Understanding excep-
tion handling: Viewpoints of novices and experts. Software Engineering,
IEEE Transactions on, 36(2):150–161, 2010.

[49] Samuel Sanford Shapiro and Martin B. Wilk. An analysis of variance test
for normality (complete samples). Biometrika, 52(3/4):591–611, Dec. 1965.

[50] Thiago B. L. Silva and Fernando Castor. New exception interfaces for java-
like languages. In Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing, pages 1661–1666, 2013.

[51] George R. Terrell and David W. Scott. Variable kernel density estimation.
The Annals of Statistics, 20(3):1236–1265, 09 1992.

[52] Emma Tosch and Emery D. Berger. Surveyman: Programming and automat-
ically debugging surveys. SIGPLAN Not., 49(10):197–211, October 2014.

[53] Westley Weimer and George C. Necula. Exceptional situations and program
reliability. ACM Trans. Program. Lang. Syst., 30(2):1–51, 2008.

[54] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 12 1945.

[55] Pingyu Zhang and S. Elbaum. Amplifying tests to validate exception han-
dling code. In In Proceedings of 34th International Conference on Software
Engineering, pages 595 –605, june 2012.

[56] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting de-
fects for eclipse. In Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, 2007.

Appendix A. Comparison of EH-bugs Classification

In this appendix we provide a deep explanation of our EH-bug classification
to the one created by Barbosa et al. [7]. They created a classification with ten
categories of EH-bugs while analyzing Hadoop and Tomcat (versions 6.0.x and
7.0.x). They analyzed both their source code, their bug repositories, and patches
corresponding to these bugs. For two categories they found some frequent pat-
terns, so for those two they also created subcategories. Below we describe their
categorization and compare it with our own.

47

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Information Swallowed: This category occurs because of lack of proper
information provided with a given exception. It was divided into six sub-
categories:

– Uninformative or Wrong Error Message: It occurs when exceptions
are raised without proper information about the cause or context of
their occurrence. This category is equivalent to wrong encapsulation
of exception cause in our classification.

– Swallowed Exception: It occurs when a catch block catches an ex-
ception and ignores its occurrence. In our classification, swallowed
exceptions occur as a consequence of exceptions caught at the wrong
level, general catch blocks, empty catch blocks, or combinations of
these categories.

– Suppressed Exception: It occurs when the original exception raised
in the context of a method is suppressed by another exception raised in
the same context. This category does not have an equivalent category
in our classification.

– Missing Log: It occurs when the catch block handled an exception,
but did not register proper information in the log system. This category
is an instance of the error in the handler category of our classification.

– Destructive Remapping: It occurs when an exception is caught by
a catch block, remapped to a different exception type and rethrown.
This category is equivalent to wrong encapsulation of exception cause
in our classification.

– Uninformative Generic Type Thrown: It occurs when an exception
with an overly generic type is thrown and, therefore, module clients
cannot implement proper handling actions. This category is an in-
stance of the wrong exception thrown category of our classification.

• Improper Continuation of Execution: This category occurs when the sys-
tem continues its execution on an inconsistent state. It was divided into 4
subcategories:

– Missing Throwing Condition: It occurs when an exception is not
thrown because a specific condition (typically corner cases) was not
checked in the source code. This category is equivalent to the excep-
tion not thrown category of our classification.

48

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

– Wrong Context Configuration: It occurs when the system reaches
some point at its normal execution flow where its context should be
in an expected state but, for some unknown reason, it is not. This
category does not have an equivalent category in our classification.

– Wrong Location of Execution Resumption: It occurs when the state-
ments after the catch block should not be executed if an exception
occurs. This category is related to exception caught at the wrong level
in our classification.

– Missing Termination Action: It occurs when termination actions are
not taken when exceptions occur. This category is equivalent to lack
of a finally block that should exist in our classification.

• Resource leak: It occurs when previously allocated resources are not deal-
located in the occurrence of exceptions. This category does not have an
equivalence in our classification, although it is closely related to the lack of
a finally block that should exist.

• Uncaught Exception: It occurs when an exception reaches the entry point
of the program and is not handled by any handler. This category is equiva-
lent to lack of a handler that should exist in our classification.

• Overly-generic catch-block: It occurs when a catch block has as ar-
gument an exception with an overly-generic exception type, inadvertently
catches an exception by subsumption and leads the system to an unexpected
state of error. This category is equivalent to general catch block in our clas-
sification.

• Premature Termination: It occurs when an exception handler captures an
exception and terminates the execution of the method without retrying the
execution of the failed action. This category is an instance of the error in
the handler category of our classification.

• Throwing wrong type: It occurs when a method throws an exception that
adheres to its exceptional interface, but do not adhere to other specification.
This category is equivalent to wrong exception thrown in our classification.

• Overly protective try-block: It occurs when a try block is very long and
protects the occurrence of many different exceptions, i.e., when the scope
of try block is too its associated catch blocks may capture exceptions that

49

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

should be caught by other handlers. This category is an instance of the
exception caught at the wrong level category of our classification.

• Exceptional loop-break: It occurs when the block of a loop statement is
not protected and an exception inadvertently breaks this loop, e.g., when the
try block should be inside the loop and it is outside. This category does not
have an equivalent category in our classification, but it is related to some
categories, e.g., lack of a handler that should exist and exception caught at
the wrong level.

• Excessive Throwing Condition: It occurs when an exception is thrown by
a condition that is not actually an exceptional condition. This category is
equivalent to exception that should not have been thrown in our classifica-
tion.

As we can see, there are similarities and differences between the classifica-
tions. As a general trend, we can observe that the categories proposed by Barbosa
et al. are more specific than the ones we propose. Only five categories were not
found in ours, though three of them, exceptional loop-break, wrong location of
execution resumption and resource leak are similar to categories that we identi-
fied. On the other hand, we identified four categories not pointed out in the work
of Barbosa et al.: error in the clean-up action (which is related to resource leak
and suppressed exception from the classification of Barbosa et al.), inconsistency
between source code and API documentation, error in the definition of exception
class and catch block where only a finally would be appropriate. Overall, we be-
lieve that developers should combine the two classifications in order to achieve
the best results.

50

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Vioplots of bug fixing time (top) and the number of discussion messages (bottom)
51

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

classFile.completeCodeAttribute(codeAttributeOffset);

}

⇓
try {

classFile.completeCodeAttribute(codeAttributeOffset);

} catch(NegativeArraySizeException e) {

throw new AbortMethod(this.scope.

referenceCompilationUnit().compilationResult, null);

}

Figure 5: An example of “exception not handled” from Eclipse—bug ID 298250.

52

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

} catch (ClassFormatException e) {

// ignore

this.document.removeAllIndexEntries();

Util.log(e, "ClassFormatException in " + this.document.

getPath() + ". Please report this issue to JDT/Core

including the problematic document"); //$NON-NLS-1$ //

$NON-NLS-2$

} catch (RuntimeException e) {

...

this.document.removeAllIndexEntries();

Util.log(e, "Indexer crashed on document " + this.document.

getPath() + ". Please report this issue to JDT/Core

including the problematic document"); //$NON-NLS-1$ //

$NON-NLS-2$

}

⇓
} catch (ClassFormatException e) {

// ignore

this.document.removeAllIndexEntries();

if (JavaCore.getPlugin().isDebugging()) {

Util.log(e, "ClassFormatException in " + this.

document.getPath() + ". Please report this issue

to JDT/Core including the problematic document");

//$NON-NLS-1$ //$NON-NLS-2$

}

} catch (RuntimeException e) {

...

this.document.removeAllIndexEntries();

if (JavaCore.getPlugin().isDebugging()) {

Util.log(e, "Indexer crashed on document " + this.

document.getPath() + ". Please report this issue

to JDT/Core including the problematic document");

//$NON-NLS-1$ //$NON-NLS-2$

}

}

Figure 6: An example of “error in the handler” from Eclipse—bug ID 195823.

53

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

public Principal authenticate(String username,

String credentials) {

...

// If not a "Socket closed." error then rethrow.

if (e.getMessage().indexOf("Socket closed") < 0)

throw(e);

⇓
public Principal authenticate(String username,

String credentials) {

// if code removed

Figure 7: An example of “exception that should not be thrown” from Tomcat—bug ID 18698.

public void include(String relativeUrlPath)

throws ServletException, IOException {

⇓
public void include(String relativeUrlPath)

throws ServletException, IOException {

...

if (resourceStream == null) {

throw new IllegalArgumentException

(‘‘Included resource not found: ’’

+ relativeUrlPath);

}

Figure 8: An example of “exception not thrown” from Tomcat—bug ID 8200.

54

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TjavadocContents = extractJavadoc(declaringType,

javadocContents);

⇓
try {

javadocContents = extractJavadoc(declaringType,

javadocContents);

} catch(JavaModelException e) {

// ignore

}

Figure 9: A patch containing an empty catch block from Eclipse, bug ID 139160.

session.expire();

⇓
try {

session.expire();

} catch (Throwable t) {

;

}

Figure 10: A patch containing an empty catch block from Tomcat, bug ID 24368.

55

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 12: EH-bugs classification comparison.
Our Classification Barbosa’s et al. Classification

Lack of a handler that should exist Uncaught Exception
Exception not thrown Missing Throwing Condition
Error in the handler Missing Log

Premature Termination
Error in the clean-up action —
Exception caught at the wrong level Wrong Location of Execution Resumption

Overly protective try-block
General catch block Overly-generic catch-block
Wrong exception thrown Uninformative Generic Type Thrown

Throwing wrong type
Exception that should not have been thrown Excessive Throwing Condition
Wrong encapsulation of exception cause Uninformative or Wrong Error Message

Destructive Remapping
Lack of a finally block that should exist Missing Termination Action
Error in the exception assertion —
Inconsistency between source code and API documentation —
Empty catch block Wrong Context Configuration
Error in the definition of exception class —
catch block where only a finally would be appropriate —

56

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Biography

Felipe Ebert is a Ph. D. student at the Informatics Center (CIn), Federal University of

Pernambuco (UFPE), where I also completed my Masters degree there. My advisor is prof.

Fernando Castor.

Fernando Castor is a tenured assistant professor at the Informatics Center, Federal University

of Pernambuco. Prior to this, I held positions as assistant professor at the Department of

Computing and Systems of the University of Pernambuco, and postdoctoral researcher at the

Department of Computer Science of the University of Sao Paulo.

Alexander Serebrenik is a part‐time visiting researcher at the Software Analysis and

Transformation group of CWI, lead by Jurgen J. Vinju. From September till December 2012 he

was on sabbatical at the Software Engineering lab of University of Mons, headed by Prof. Tom

Mens.

