
Testing Conformance of EJB 3 Enterprise Application Servers

Sander de Putter, Serguei Roubtsov and Alexander Serebrenik
Department of Mathematics and Computer Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Keywords: Enterprise JavaBeans, Specification Conformance, EJB Application Server.

Abstract: Enterprise JavaBeans (EJB) is a component technology used for enterprise application development. EJB
is currently being implemented by such application servers as GlassFish, OpenEJB, JBoss, WebLogic and
Apache Geronimo. Through the entire history EJB claimed its adherence to the “write once, run anywhere”
philosophy of Java suggesting that an application developed for and deployed on one application server should
be easily portable to a different application server. Therefore, one could have expected different application
servers to adhere to the EJB specification. Adherence to this and related Java EE specifications is subject of the
“Java EE 6 Full Profile” compatibility testing carried by Oracle. However, anecdotal evidence of discrepancies
between the specification and certified implementations such as GlassFish, has been reported in the literature.
In this paper we present an approach allowing one to go beyond the level of anecdotal knowledge and test
requirements for EJB application servers with focus on portability. We apply the approach developed to test
how well two popular “Java EE 6 Full Profile”-compatible EJB application servers, GlassFish and JBoss,
conform to the requirements in the EJB specification. The results are alarming: both application servers failed
on a number of tests, violating the specification. Moreover, in GlassFish conformance to a requirement varies
depending on whether a local or a remote application is used. Lack of conformance to the EJB specification
compromises the portability of the EJB applications, deviates from the portability philosophy of Java, leads to
unexpected behaviour, and hinders the learning process of novice EJB developers.

1 INTRODUCTION

Enterprise JavaBeans™(EJB) is a component tech-
nology used for enterprise application development.
While the first version of the specification was re-
leased in 1998 (Matena and Harper, 1998), its most
recent version has been released in 2009 (EJB 3.1
Expert Group, 2009) and it is currently being im-
plemented by such application servers as GlassFish,
OpenEJB, JBoss AS and WebLogic.

Through the entire history EJB claimed (Matena
and Harper, 1998; EJB 3.1 Expert Group, 2009) its
adherence to the “write once, run anywhere” philos-
ophy of Java (Hamilton, 1996) suggesting that an ap-
plication developed for and deployed on one appli-
cation server should be easily portable to a different
application server. Application portability is essen-
tial for reuse of Enterprise Beans across application
servers (Dorda et al., 1999), helps EJB developers
and users to avoid vendor lock-in and fosters integra-
tion with additional technologies chosen by the cus-
tomer (Krastev and Galletly, 2003). Therefore, one
could have expected different application servers to

adhere to the EJB specification. Adherence to this and
related Java EE specifications is subject of the “Java
EE 6 Full Profile” compatibility testing carried by Or-
acle.1 However, anecdotal evidence of discrepancies
between the specification and certified implementa-
tions such as GlassFish, has been reported in the liter-
ature (Serebrenik et al., 2009).

Conformance of application servers to the EJB
specification is important for understanding EJB ap-
plications. Deviation of the application servers from
the EJB specification is not documented and difficult
to discover. Moreover, these discrepancies can put
in jeopardy specification-based tools and techniques
intended to facilitate the developers’ comprehension.
Thus, testing conformance of an application server to
the EJB specification helps to indicate deviating be-
haviour, and contributes to improving the developers’
understanding of EJB applications.

To address the problem of discrepancies between
the EJB specification and its implementations we
have formulated the following research questions.

1http://goo.gl/qjqa3.

272
de Putter S., Roubtsov S. and Serebrenik A. (2014).
Testing Conformance of EJB 3 Enterprise Application Servers.
In Proceedings of the 16th International Conference on Enterprise Information Systems, pages 272-279
DOI: 10.5220/0004864402720279
Copyright c SCITEPRESS



RQ1. How should one test requirements for EJB
application servers with focus on portability?

Rationale. An application server can be seen as a
meta-program,i.e.,as opposed to traditional software
testing an application server requires designing an in-
put program. Moreover, due to the nature of an ap-
plication server, the input program should be built,
deployed and run as part of the testing process,i.e.,
a novel approach to extracting information from the
running application server is required. Compatibil-
ity testing also implies that input programs should be
application-server independent.

Results. This paper applies the traditional testing
methodology to the client-server architecture of EJB.
To support multiplicity of requirements and applica-
tion servers to be tested we specify application servers
and test cases independently of each other, and pro-
vide a configuration file indicating how an application
server should deploy and run a test case.

RQ2. How well do “Java EE 6 Full Profile”-
compatible EJB application servers conform to
the requirements in the EJB specification?

Rationale. Discrepancy between the specification and
its implementations puts portability in jeopardy, leads
to unexpected behaviour and can be confusing for
novice developers accustomed to a different applica-
tion server. Furthermore, as EJB technology is being
taught and certified worldwide, clear relation between
the specification and the implementation used during
the training is a prerequisite for further successful em-
ployment of the trainees.

Results. We apply our approach to test the EJB
specification conformance of two “Java EE 6 Full
Profile”-compatible EJB application servers: Glass-
Fish version 3.1.22, EJB reference implementation by
Oracle, and JBoss AS version 7.1.13. GlassFish is the
reference implementation of an application server,
i.e.,when novice developers learn EJB they are likely
to encounter GlassFish first. JBoss AS, JavaBeans
Open Source Software Application Server, recently
renamed to WildFly is a popular (Kounev et al.,
2004; Xian et al., 2006) open source application
server. Of 21 tests GlassFish fails 8 and JBoss AS
fails 2. Moreover, in GlassFish conformance to a
requirement varies depending on whether a local
or a remote application is used. In JBoss AS no
local/remote discrepancies have been found.

2https://glassfish.java.net/.
3http://www.jboss.org/jbossas.

RQ3. What are the implications of the (lack of)
conformance observed?

Rationale. The extent to which a given application
server conforms to the specification may have impact
on the portability of applications developed for that
application server. Furthermore, the (lack of) confor-
mance may lead to confusion for developers who are
only familiar with application servers that behave dif-
ferently for certain requirements.

Results. Our results suggest that EJB applica-
tions that do not conform to the EJB specification may
not be portable between different application servers.
Hence, the lack of conformance results in a deviation
from the portability philosophy of Java. Furthermore,
anecdotal evidence indicates that lack of conformance
results in confusion amongst EJB developers, and af-
fects validity of the analysis tools.

The remainder of the paper is organized as fol-
lows. After introducing EJB 3 in Section 2, we dis-
cussRQ1 and present our approach in Section 3. In
Section 4 we present a motivating example. The ap-
proach is evaluated andRQ2 andRQ3 are addressed
in Section 5. Finally, related work is reviewed in
Section 6, while conclusions and directions for future
work are sketched in Section 7.

2 OVERVIEW OF EJB 3

This section presents a brief overview of Enterprise
JavaBeans and the client view interfaces of the EJB
3.1 session bean (EJB 3.1 Expert Group, 2009).

2.1 EJB 3 Alternatives

In addition to EJB 3 additional architectural ap-
proaches have been proposed for the development of
(business) Web applications. Similarly to EJB 3, Win-
dows Communication Foundation (.NET) and Jini/-
JavaSpaces attempt to decouple interface and imple-
mentation, and support service lookup and discov-
ery, as well as transaction management. However,
Windows Communication Foundation does not dis-
tinguish between local and remote applications, while
Jini/JavaSpaces has been reported to have failed to at-
tract a significant market.4 Tomcat is sometimes men-
tioned as an alternative to EJB as it used to offer a
lightweight version of JavaEE. However, since 2011
next to the lightweight version a JavaEE certified ver-
sion of Tomcat is offered as well, deeming the Tomcat

4http://goo.gl/gwZVd0.

Testing�Conformance�of�EJB�3�Enterprise�Application�Servers

273



vs. JavaEE discussion “tired and old”.5

2.2 Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a server-side compo-
nent architecture for development and deployment of
business applications. The business logic of the ap-
plication is implemented in Java classes. Optionally,
a set of EJBs is packaged into larger deployable ap-
plication. Finally, the EJBs are deployed into an EJB
container provided by an application server.

The EJB container is a run-time environment for
EJBs within the application server (Figure 1). The
container can contain one or more EJB modules
which each can contain one or more EJBs. It man-
ages the life cycles of bean objects, provides remote
access, and coordinates distributed transactions.

Client viewEnterprise JavaBean

EJB module

EJB container

invokes accesses
Client

Figure 1: Overview of an EJB container.

The EJB architecture defines three types of EJBs:
the session bean, the message-driven bean, and the
deprecated entity bean. We focus on the first type,
the session bean, because it has more interesting re-
quirements: the specification (EJB 3.1 Expert Group,
2009) lists only a few requirements for the message-
driven bean and entity bean is deprecated.

The session bean implements business methods of
a module. The business methods are exposed through
the client view interfaces of an EJB module. Client
access to an instance of the session bean’s class is me-
diated by the container via the session bean’s client
view. A client view is provided by the session bean
and made available when deployed in the EJB con-
tainer, the container itself is transparent to the client.

2.3 Client Views

Client views provide access to the business methods
of a session bean. There are a total of six client views:
Local, Remote, No-Interface, Web Service, 2.x Local
Home and 2.x Remote Home.

TheLocal client view is location dependent. The
EJB 3.1 specification only requires the support of Lo-
cal clients that are packaged within the same module
as the session bean that provides the Local client view.
However, EJB application servers may also support

5http://goo.gl/3N5jpt.

access to the Local client view of session beans that
are located in a different module.

The Remoteclient view is location independent.
The Remote client may be located in the same Java
Virtual Machine (JVM) or in a different JVM. Argu-
ments and return values of methods of the Remote
client interface are passed by value. Communica-
tion occurs through Java Remote Method Invocation
(RMI) over the Internet Inter-Orb Protocol (IIOP).

TheNo-Interfaceclient view is a variation of the
Local client view. All public methods of the session
bean’s class are exposed to clients.

The Web Serviceclient view provides web ser-
vices access to the exposing session bean. This client
view is specified in a WSDL document describing the
client view interface as a set of endpoints operating on
messages. Communication to this client view occurs
through SOAP or plain XML over HTTP or HTTPS.

Finally, the2.x Local Home and 2.x Remote Home
client views are used to provide Local and Remote
client views in EJB 2.1 and earlier releases. These
client views ensure backwards-compatibility for ap-
plications written for EJB 2.1 or earlier.

3 APPROACH

Discrepancies between the EJB specification and
EJB implementations have been observed in the past
(Dorda et al., 1999; Serebrenik et al., 2009). Such dis-
crepancies may put portability at risk or lead to unex-
pected behaviour. It is therefore important that imple-
mentations adhere to the specification. Furthermore,
testing requirements for multiple application servers
is essential to the EJB component market.

To addressRQ1 we present an application of
the traditional software testing methodology (Interna-
tional Software Testing Qualifications Board, 2011)
to the client-server architecture of EJB. As opposed to
traditional software testing, the testing requirements
on an application server requires designing an input
program and a client of the input program. A test
case consists of the server-side application (the input
program), a client application, and a specification of
the expected behaviour. The input program adheres
to a given requirement iff it exhibits the expected be-
haviour. To indicate an application server’s lack of
conformance to the EJB specification it is sufficient
to present input programs that fail to adhere to the
specification’s requirements.

Our approach consists of the following steps.
First, a server-side test application is built. When a
requirement demands a certain behaviour to be sup-
ported, the server-side test application implementing

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

274



Table 1: Requirements from Section 4.9.7 (EJB 3.1 Expert Group, 2009) and conformance results for GlassFish 3.1.2. and
JBoss AS 7.1.1

Requirement GlassFish JBoss Remarks

1 The interface must not extend thejavax.ejb.EJBObjector javax.ejb.EJBLocalObject interface.

Local fail fail The presence ofEJBLocalObject is ignored.

Remote success fail In GlassFish the application fails to deployed. In JBoss the presence of

EJBObject is ignored.

2 If the business interface is a remote business interface, the argument and return values must be of valid types for RMI/IIOP. The remote business interface

is not required or expected to be ajava.rmi.Remote interface. The throws clause should not include thejava.rmi.RemoteException. The methods of the

business interface may only throw thejava.rmi.RemoteException if the interface extendsjava.rmi.Remote.

Local N/A N/A The requirement is only applicable to remote applications.

Remote success success An exception is thrownafter invocation of the test method in both servers.

3 The interface is allowed to have superinterfaces.

Local success success

Remote success success

4 If the interface is a remote business interface, its methodsmust not expose local interface types, timers or timer handles, or the managed collection classes

that are used for EJB 2.1 entity beans with container-managed persistence as arguments or results.

Local N/A N/A The requirement is only applicable to remote applications.

Remote success successAfter invocation of the test method an error is raised both client-side and

server-side.

5 The bean class must implement the interface or the interfacemust be designated as a local or remote business interface ofthe bean by means of the Local or

Remote annotation or in the deployment descriptor. The following rules apply:

5a If the bean does not expose any other business interfaces (Local, Remote) or No-Interface view, and the bean class implements a single interface, that

interface is assumed to be the business interface of the bean. This business interface will be a local interface unless the interface is designated as a remote

business interface by use of theRemote annotation on the bean class or interface or by means of the deployment descriptor.

Local success success

Remote N/A N/A The requirement is only applicable to local applications.

5b A bean class is permitted to have more than one interface. If abean class has more than one interface — excluding the interfaces listed below — any

business interface of the bean class must be explicitly designated as a business interface of the bean by means of theLocal or Remote annotation on the bean

class or interface or in the deployment descriptor.

Local fail success In GlassFish all interfaces are exposed.JBoss does not deploy the bean.

Remote fail success In GlassFish all interfaces are exposed. JBoss does not deploy the bean.

5c The following interfaces are excluded when determining whether the bean class has more than one interface:java.io.Serializable;

java.io.Externalizable; any of the interfaces defined by thejavax.ejb package.

Local success success

Remote success success

5d The same business interface cannot be both a local and a remote business interface of the bean. It is also an error if theLocal and/orRemote annotations

are specified both on the bean class and on the referenced interface and the values differ.

Local

@Local and@Remote on the BC fail success GlassFish ignores these inconsistentannotations.

@Local on the BC,@Remote on the BI fail success GlassFish ignores these inconsistentannotations.

@Local on the BI,@Remote on BC fail success GlassFish ignores these inconsistent annotations.

@Local and@Remote on the BI fail success GlassFish ignores these inconsistentannotations.

Remote

@Local and@Remote on the BC success success

@Local on the BC,@Remote on the BI success success

@Local on the BI,@Remote on BC fail success GlassFish ignores these inconsistent annotations.

@Local and@Remote on the BI success success

5e While it is expected that the bean class will typically implement its business interface(s), if the bean class uses annotations or the deployment descriptor to

designate its business interface(s), it is not required that the bean class also be specified as implementing the interface(s).

Local success success

Remote success success

Testing�Conformance�of�EJB�3�Enterprise�Application�Servers

275



Client & server-side

application package

Expected behaviour

TestCase

Client application

path

1. Deploy package

3. Compare results with

expected behaviour

Tool

2. Run client

Deploy command

Log file

ASConfiguration

Run client command

4. Print test results

Figure 2: The tool supporting conformance testing.

this behaviour should succeed to indicate requirement
compliance. Similarly, when a requirement prohibits
certain behaviour, the server-side test application im-
plementing this behaviour should fail to indicate re-
quirement compliance. In any case, the server-side
test application should have a test method logging a
message upon invocation.Second, a client application
for the server-side application is designed. The client
application invokes the server-side test method which
logs a message upon invocation.Then, the client ap-
plication and server-side test application are packaged
in a portable archive which is deployed on an applica-
tion server, and the client application is run.Finally,
the test results are compared with the expected be-
haviour. Test results include the messages logged by
the server-side application, as well as error messages
reported by the application server itself.

We extend this approach by treating test cases and
application servers independently of each other. To
facilitate application of the approach we have im-
plemented a tool (Figure 2) which automatically de-
ploys, runs, and analyses results for a set of test
cases and a set of application servers. ATestCase
consists of the packed client and server-side applica-
tions, a path to the client application and the expected
behaviour. AnASConfiguration(application server
configuration) consists of a deployment command, a
command which extracts and runs the client applica-
tion from the package and a path to the server’s log
file. For allTestCasesand allASConfigurationssteps
1 to 4 are performed.

Since test cases do not rely on any application
server they must be portable. In EJB, the portable way
of distributing applications is by packaging the appli-
cation in a portable archive such as a Web Archive
(WAR) or an Enterprise Archive (EAR).

4 MOTIVATING EXAMPLE

To illustrate the approach we show its application for
requirement5d in Table 1:
The same business interface cannot be both a local
and a remote business interface of the bean. It is also

an error if theLocal and/orRemote annotations are
specified both on the bean class and on the referenced
interface and the values differ.

Corresponding to the first step of the approach, we
first develop the server-side application which does
not adhere to the given requirement. For the discus-
sion of the example we focus on violating the require-
ment by means of annotations. The requirement dis-
tinguishes between the locations where a business in-
terface can be declared: on the bean class or on the
business interface. This gives rise to four distinct
ways to construct a server-side application by means
of annotations such that the first part of the require-
ment is violated: both theLocal annotation and the
Remote annotation are declared on the bean class; the
Local annotation is declared on the bean class while
theRemote annotation—on the business interface; the
Local annotation is declared on the business interface
while theRemote annotation—on the bean class; both
theLocal annotation and theRemote annotation are
declared on the business interface.

For the sake of an example, we continue with the
case where theLocal annotation is on the bean class
and theRemote annotation is on the business inter-
face. The business interfaceBI 5d is both a local and
a remote interface of the session beanSB 5d bean: the
Local annotation on the bean class exposing the ref-
erenced as a local business interface, while the inter-
face itself is annotated withRemote exposing the in-
terface as a remote business interface. This clearly
violates requirement5d.

@Remote
public interface BI_5d{

public void testMethod ();
}

@Stateless
@Local(BI_5d.class)
public class SB_5d implements BI_5d{

public void testMethod (){
System.out.println("testM invoked");
}

}

Next, we develop the client applications for this
session bean according to the second step of the ap-
proach. Requirement5d mentions both the local and
the remote business interfaces. Hence, we develop
both a local client and a remote client obtaining eight
distinct test cases in total. We obtain a reference to the
business interface by means of dependency injection
through the@EJB annotation.

The local client LC 5d is a web application
extendingjavax.servlet.http.HttpServlet and
residing in the same jar file as the bean application.
The doGet method is invoked when the server re-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

276



ceives a HTTP GET request. Theremote clientRC 5d
is a plain Java class:

public class LC_5d extends HttpServlet {
@EJB private BI_5d bi;

protected void doGet(...)
throws ServletException {

bi.testMethod ();
}

}

public class RC_5d{
@EJB static private BI_5d bi;
public static void main (...){

bi.testMethod ();
}

}

We package the client application together with
the server-side application and deploy the package
onto the GlassFish 3.1.2 application server. The lo-
cal client application and server-side application are
packaged in a Web Archive (WAR). The remote client
application and server-side application are packaged
together in a Enterprise Archive (EAR).

Next, we run the client applications corresponding
to the fourth step of the approach. The local client is
run by submitting a HTTP GET request to the server.
The remote client is run through theappclientpro-
gram which is required to be present for any EJB 3.1
application server.

Finally, we compare the test results with the ex-
pected behaviour as described in the final step of the
approach. Since the requirement5d prohibits cer-
tain behaviour (“It is also an error. . . ”) if the server-
side application conforms to requirement5d, the test
method should not be invoked. It turns out that de-
ployment fails in the remote client case, therefore,
the test method is not invoked. However, in the lo-
cal client case, we find evidence of the invocation of
the test method,i.e.,“testM invoked” is present in the
server log. Hence, GlassFish passes the test for the
remote client, but fails the test for the local client.

5 CASE STUDY

To answerRQ2 andRQ3 we apply our approach on
a larger scale.

5.1 Setup

We apply the approach to two “Java EE 6
Full Profile”-compatible application servers: Glass-
Fish 3.1.2, and JBoss AS 7.1.1. Both servers are
tested for conformance to the requirements for the

Session bean’s business interface. The exposure of
client view interfaces through the deployment de-
scriptor is not considered. Hence, only the exposures
of client view interfaces through annotations is stud-
ied. Additional client views and exposure of client
views through the deployment descriptor will be con-
sidered in a follow-up study.

A session bean is eitherstateful, statelessor sin-
gleton. In our experiments we consider stateless ses-
sion beans only, and the local and remote client view
interfaces of these beans. The requirements for the
session bean’s business interfaces are shown in Ta-
ble 1. We test every requirement with both a Remote
and a Local client whenever the requirement does not
explicitly mention the client view it applies to.

5.2 Results

AnsweringRQ2 Table 1 presents the results of our
requirements tests. TheRequirementcolumn refers
to Table 1 with the client type used between parenthe-
ses. In theSetup variation column variations of
a test case’s setup are shown. We abbreviatesession
bean’s classto BC andsession bean’s business inter-
faceto BI. Indicationfail means that the test applica-
tion provides evidence that the application server does
not adhere to the specific requirement,success—that
the test application adheres to the specific requirement
with respect to the application server.

Of the 21 test GlassFish 3.1.2 fails at eight tests
corresponding to requirements1, 5b, and 5d. The
JBoss AS 7.1.1 application server fails at two tests
corresponding to requirement1. In the case of re-
quirements1 and5d GlassFish 3.1.2 is inconsistent:
its conformance depends on whether a local or a re-
mote client is used. In the remote case of require-
ment5d the results even show inconsistencies for dif-
ferent combinations of theLocal andRemote annota-
tions on bean class and/or business interface. In JBoss
AS 7.1.1 no such inconsistencies are found.

5.3 Discussion

We proceed with the discussion ofRQ3. We dis-
cuss the implications of the lack of conformance to
requirements1, 5b, and5d. To illustrate the effects
of the lack of conformance on developers we quote
StackOverflow questions as indications of the devel-
opers’ confusion6 and discuss a small use case for
each of the requirements.

Requirement 1. The lack of conformance to re-
quirement1 makes developers doubt whether a busi-

6None of the authors has been involved in asking or an-
swering these questions.

Testing�Conformance�of�EJB�3�Enterprise�Application�Servers

277



ness interface must or must not extendEJBObject
or EJBLocalObject.7 Prohibition ofEJBObject and
EJBLocalObject extension is most crucial for appli-
cations ported from EJB 2.x, as EJB 2.x beans are
required to extendEJBObject or EJBLocalObject.

Use Case. Alice wants to migrate a set of re-
mote EJB applications from JBoss AS to GlassFish.
As both JBoss AS and GlassFish are “Java EE 6 Full
Profile”-compatible application servers she attempts
to deploy the applications on GlassFish. To her sur-
prise the deployment on GlassFish fails while the ap-
plications deploy and run correctly on JBoss AS.

Requirement 5b. GlassFish does not conform to
requirement5b: when a bean class has multiple inter-
faces it allows implicit designation of all implemented
interfaces as Local or Remote. As a results, confused
developers askCan an EJB bean implement multiple
interfaces?8 Moreover, the portability of the applica-
tion is lost.

Use Case:. Bob is a novice EJB developer who
recently became proficient with GlassFish. Work-
ing with GlassFish Bob has learned that it is possi-
ble to expose all interfaces of a bean as local busi-
ness interfaces by adding theLocal annotation with
no arguments, and used this to his advantage. Char-
lotte, Bob’s senior, wants to gain more understand-
ing of the application Bob is developing by calculat-
ing business-method-based metrics (Roubtsov et al.,
2013). The metric tool she uses presents alarming re-
sults when analysing Bob’s application. After a while,
they find out that the metric tool, designed based on
the EJB specification, does not detect the expected
number of business methods. As GlassFish exposes
more business interfaces than the requirements pre-
scribes, the calculated metrics are invalid.

Requirement 5d. Requirement5d states that busi-
ness interface should not be annotated with both the
Local andRemote annotations. However, this incon-
sistent annotation is erroneously accepted by Glass-
Fish. Access via a local client seems to completely
disrespect the requirement. In the remote case adher-
ence even depends on where theLocal andRemote
annotations are specified. Additionally, developers
may feel that a single business interface for both local
and remote access is more convenient9. Nevertheless,
local interfaces pass objects by reference and remote
interface pass objects by value. Evaluation of objects
becomes ambiguous when an interface is both local
and remote. Hence, it is important to separate local
and remote interfaces.

Use Case. Derek has developed a local EJB ap-

7http://goo.gl/awxc3G.
8http://goo.gl/R8iDKT.
9http://goo.gl/A8FbTJ.

plication which is to be deployed on GlassFish. The
business interface of this application is annotated as
Local. Derek receives a request for remote access to
the functionality of a bean implementing the business
interface. Thus, Derek decides to expose the func-
tionality of the bean by annotating the bean with the
theRemote annotation. After successfully testing the
application Derek re-factors his code such that both
annotations are on the bean class. Testing the applica-
tion again reveals that the remote clients can no longer
access the bean for no apparent reason.

The three StackOverflow questions referenced
above have been answered after 2254, 166 and 80
hours,i.e., significantlylonger than the median time
of 11 minutes reported for StackOverflow (Mamykina
et al., 2011) or even the median time of 47 minutes
reported for a subcommunity of StackOverflow ded-
icated to R, a popular statistics software (Vasilescu
et al., 2014). This suggests that questions pertaining
to conformance (or lack thereof) of the EJB 3 applica-
tion servers to the EJB specification are more complex
than the “average” StackOverflow questions.

6 RELATED WORK

Portability problems in EJBhave been identified al-
ready for EJB 1.0 (Dorda et al., 1999): the portability
problems have been caused by the vagueness of the
EJB 1.0 specification. Portability issues in EJB 2.0
are discussed in (Roeser, 2005), and are attributed to
different deployment descriptors and container/server
configurations amongst application servers (Krastev
and Galletly, 2003). Unfortunately, in both cases dis-
cussion stays at the anecdotal level: evidence of porta-
bility problems is provided, but the evidence is ob-
tained by manual inspection. Therefore, complete-
ness of the approach or its automation remain outside
the discussion. As opposed to these results we present
a structured approach based on the EJB-specification
for testing portability of application servers. While
in the case study we focus on the most recent EJB
3.1 specification and two application servers (Glass-
Fish and JBoss AS), the methodology can be applied
to other versions of the specification or other applica-
tion servers.

Outside of the portability domain severaldiscrep-
ancies between the EJB 3.1 specification and the ap-
plication server GlassFish, the reference implemen-
tation, were found in (Serebrenik et al., 2009). How-
ever, this research focused on sequence diagram re-
construction for EJB-based applications with inter-
ceptors and also merely reported on the discrepancies
rather than presenting an approach for the systematic

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

278



discovery of those. As opposed to reconstructing a se-
quence diagram for one business method (Serebrenik
et al., 2009), subsequent research on reverse engineer-
ing sequence diagrams for EJB-based applications
with interceptors (Roubtsov et al., 2011; Roubtsov
et al., 2013) advocated interceptor-based metric (sce-
nario depth) and large-scale empirical studies of the
interceptor use. Specifically, for large-scale empiri-
cal studies of the use of business method interceptors
one first has to identify all business methods within
a given project as only invocations of business meth-
ods can be intercepted by business method intercep-
tors. Identification of business methods, however, re-
quires checking whether a business interface adheres
to the business interface requirements shown on Ta-
ble 1. As shown in Table 1 adherence to require-
ments, and hence, the distribution of scenarios’ depth
is implementation dependent. Hence, when compar-
ing the way interceptors are used in a given system
with benchmark systems one should take the deploy-
ment application server into account.

7 CONCLUSION

In this paper we presented a testing approach for ver-
ifying requirements for EJB applications and EJB ap-
plication servers with focus on portability. Testing
portability required a novel approach to recovering
information from EJB application servers. Using the
approach developed we have established discrepan-
cies between the application server behaviour as pre-
scribed by the specification and as implemented in
two popular “Java EE 6 Full Profile”-compatible EJB
application servers, GlassFish and JBoss. Lack of
conformance to the EJB specification compromises
the portability of the EJB applications, deviates from
the portability philosophy of Java, leads to unex-
pected behaviour. Furthermore, lack of conformance
may cause semantic differences between application
servers, limiting program understanding and hinder-
ing the learning process of novice EJB developers.

A number of directions can be considered asfu-
ture work. The first direction is related to application
of the approach developed to additional requirements
and application servers, and using the information ob-
tained. Application of the approach to additional re-
quirements and application servers will allow us to
obtain a more comprehensive picture of portability in
EJB 3.1. Analysis tools and techniques based on the
EJB specification such as (Sutii et al., 2013) can be
adapted to specifics of different application servers.

Second, the approach itself can be fully automated
by generating test cases based on formally specified

requirements.

REFERENCES

Dorda, S. C., Robert, J., and Seacord, R. (1999). Theory and
Practice of Enterprise JavaBean™: Portability. Tech-
nical Report CMU/SEI-99-TN-005, CMU.

EJB 3.1 Expert Group (2009).EJB 3.1 Expert Group. JSR-
318 Enterprise JavaBeans, Version 3.1.

Hamilton, M. A. (1996). Java and the shift to net-centric
computing.Computer, 29(8):31–39.

International Software Testing Qualifications Board (2011).
Certified Tester Foundation Level Syllabus. Interna-
tional Software Testing Qualifications Board. version
2011.

Kounev, S., Weis, B., and Buchmann, A. (2004). Perfor-
mance tuning and optimization of J2EE applications
on the JBoss platform.Journal of Computer Resource
Management, 113:40–49.

Krastev, A. and Galletly, J. (2003). Do we really need EJB?
In CompSysTech, pages 190–195. ACM.

Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., and
Hartmann, B. (2011). Design lessons from the fastest
Q&A site in the West. InCHI, pages 2857–2866.
ACM.

Matena, V. and Harper, M. (1998).Enterprise JavaBeans.
version 1.

Roeser, T. (2005). Portierbarkeit von J2EE-
basierten Applikationen am Beispiel des mobilen
Gedächtnishilfesystems MEMOS.

Roubtsov, S. A., Serebrenik, A., Mazoyer, A., and van den
Brand, M. G. J. (2011). I2SD: Reverse Engineering
Sequence Diagrams from Enterprise Java Beans with
Interceptors. InSCAM, pages 155–164. IEEE.

Roubtsov, S. A., Serebrenik, A., Mazoyer, A., van den
Brand, M. G. J., and Roubtsova, E. (2013). I2SD:
Reverse Engineering Sequence Diagrams from En-
terprise Java Beans with Interceptors.IET Sofware,
7(3):1–17.

Serebrenik, A., Roubtsov, S. A., Roubtsova, E. E., and
van den Brand, M. G. J. (2009). Reverse engineer-
ing sequence diagrams for Enterprise JavaBeans with
business method interceptors. InWCRE, pages 269–
273. IEEE.

Sutii, A., Roubtsov, S. A., and Serebrenik, A. (2013).
Detecting dependencies in enterprise javabeans with
squavisit. InWCRE, pages 485–486. IEEE.

Vasilescu, B., Serebrenik, A., Devanbu, P. T., and Filkov, V.
(2014). How social Q&A sites are changing knowl-
edge sharing in open source software communities. In
CSCW. ACM.

Xian, F., Srisa-an, W., and Jiang, H. (2006). Investigat-
ing throughput degradation behavior of java applica-
tion servers: a view from inside a virtual machine. In
PPPJ, pages 40–49. ACM.

Testing�Conformance�of�EJB�3�Enterprise�Application�Servers

279


