
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Refactoring Community Smells in the Wild:
The Practitioner’s Field Manual

Gemma Catolino
University of Salerno

Fisciano, Italy
gcatolino@unisa.it

Fabio Palomba
University of Salerno

Fisciano, Italy
fpalomba@unisa.it

Damian A. Tamburri
Jheronimus Academy of Data Science
s’Hertogenbosch, The Netherlands

d.a.tamburri@tue.nl

Alexander Serebrenik
Eindhoven University of Technology

Eindhoven, The Netherlands
a.serebrenik@tue.nl

Filomena Ferrucci
University of Salerno

Fisciano, Italy
fferrucci@unisa.it

ABSTRACT
Community smells have been defined as sub-optimal organiza-
tional structures that may lead to social debt. Previous studies have
shown that they are highly diffused in both open- and closed-source
projects, are perceived as harmful by practitioners, and can even
lead to the introduction of technical debt in source code. Despite
the presence of this body of research, little is known on the prac-
titioners’ perceived prominence of community smells in practice
as well as on the strategies adopted to deal with them. This paper
aims at bridging this gap by proposing an empirical study in which
76 software practitioners are inquired on (i) the prominence of four
well-known community smells, i.e., Organizational Silo, Black
Cloud, Lone Wolf, and Radio Silence, in their contexts and (ii)
the methods they adopted to “refactor” them. Our results first reveal
that community smells frequently manifest themselves in software
projects and, more importantly, there exist specific refactoring prac-
tices to deal with each of the considered community smells.

KEYWORDS
Community Smells; Social Debt; Empirical Software Engineering.

ACM Reference Format:
Gemma Catolino, Fabio Palomba, Damian A. Tamburri, Alexander Sere-
brenik, and Filomena Ferrucci. 2018. Refactoring Community Smells in the
Wild: The Practitioner’s Field Manual. In ICSE 2020: IEEE/ACM International

Conference on Software Engineering, May 23–29, 2020 - Seoul, South Korea.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Social aspects of software engineering, like communication among
developers or their coordination, may have a substantial impact on
project’s success [24, 44], especially because developers are often
separated by physical and cultural distance [22, 30, 48], expertise

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2020, May 23–29, 2020, Seoul, South Korea

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

or power difference [21, 28, 40, 47]. The sum of negative and un-
foreseen costs/consequences given by sub-optimal social relations
among developers has been named community smells, namely orga-
nizational and socio-technical situations that hamper or altogether
impede the straightforward production, operation, maintenance,
and evolution of software [41, 52, 58]. As a matter of fact, commu-
nity smells represent one of the main causes of social debt [54]
and, as such, threaten the entire management of software systems
since they may substantially decrease the level of trust within a
community or the degree to which it is immature or unable to tackle
a certain development problem [37].

Recently, community smells have received growing attention
from the research community. Researchers have studied perceived
harmfulness of community smells [9, 58], their relation to socio-
technical metrics [57, 58] (e.g., socio-technical congruence [7]), and
their negative impact on technical aspects of software systems [41].
At the same time, research effort has been devoted to the definition
of methods to reduce the likelihood of their introduction [8, 10] as
well as automated approaches that can detect them [58] or exploit
them in the context of software evolution [41].

Nonetheless, there is still a notable lack of studies targeting the
problem of removing community smells from software commu-
nities. In particular, little is known on the strategies adopted by
practitioners to deal with the presence of community smells: We re-
fer to these strategies as “refactoring”, inspired by the name coined
by Fowler for removal of code smells [16].

In this paper, we aim at bridging this gap of knowledge by pre-
senting an empirical study aimed at eliciting refactoring operations
applied by practitioners in presence of four well-known community
smells, namely Organizational Silo, Black Cloud, Lone Wolf,
and Radio Silence. We design an online survey, recruit 76 practi-
tioners, and inquiry them on (i) the relevance of community smells
in their context and (ii) the corrective actions performed to remove
them. Key results show how, according to the practitioner’s view-
point, all investigated community smells typically affect software
communities having a larger amount of people and, in particular,
Lone Wolf and Black Cloud are the smells that more frequently
arise in industry. Perhaps more importantly, our analysis enables
the definition of a taxonomy of refactoring strategies to deal with
those community smells. In particular, common strategies for all
the analyzed community smells rely on mentoring, the creation
of a communication plan, and restructuring the community. Such

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2020, May 23–29, 2020, Seoul, South Korea Catolino et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a taxonomy can be a valuable instrument for project managers,
to learn how to increase the health of development communities,
researchers, to investigate how to support practitioners with refac-
toring of community smells, and developers themselves, to improve
their communication.

To summarize, this paper provides three main contributions:
(1) Empirical evidence of the practical relevance of all commu-

nity smells investigated from the practitioner’s perspective;
(2) An empirically grounded taxonomy of refactoring strategies

suitable to deal with the four community smells considered;
(3) A publicly available replication package [11] reporting the

data collected in our study, the categorization analysis and
the structure of the survey which may be useful for re-
searchers to want to replicate the study or explore the prob-
lem of community smell refactoring using a practitioner’s
perspective.

Structure of the paper. In Section 2 we report the design of the
empirical study and the way we attracted participants, while Sec-
tion 3 analyzes the results achieved. Practical implications of our
findings are discussed in Section 4 and the threats to validity in
Section 5. Section 6 overviews the related literature, explaining how
our work extends the state of the art. Finally, Section 7 concludes
the paper and outlines our future research agenda on the topic.

2 RESEARCH METHODOLOGY
The goal of the empirical study is twofold: on the one hand, it aims
at understanding the practitioners’ perception with respect to the
relevance of community smells in practice; on the other hand, it
aims to elicit a set of strategies that practitioners adopt in practice
to mitigate and remove community smells. The purpose is to (i)
gather the relevance of community smells in practice and (ii) un-
derstand how community-related problems are currently mitigated.
The perspective is of both software engineering researchers and
project managers. The former are interested in understanding how
relevant are community smells for practitioners and, perhaps more
importantly, what kind of mechanisms can be leveraged to support
developers when mitigating or even removing community smells.
The latter are interested in learning what is the prominence of
community smells in other environments as well as how to resolve
them based on the successful stories of other project managers who
have dealt with community smells in the past.

2.1 Research Questions
To address the goals of our study, we design two main research
questions (RQs). In the first place, we assess the relevance of com-
munity smells from the practitioners’ perspective with the aim of
understanding their viewpoint on the actual prominence of the
problem. This leads to our first research question:

RQ1.What is the relevance of community smells in practice?

In order to address the first research question, we took into
account the experience of practitioners, defining an online survey
asking whether situations related to the presence of community
smells happened to them. After studying their perceived relevance,

we then focus on how practitioners get rid of community smells
and, particularly, which are the refactoring strategies they use. For
this reason we set ourselves the following research question:

RQ2. What are the refactoring strategies applied by practitioners

to deal with community smells?

Based on the answers of our participants we defined a taxonomy
of refactoring strategies to mitigate community smells. In the next
subsections, we describe objects and subjects of the study, i.e., the
specific community smells and professional developers taken into
account, as well as the methodology adopted when designing and
analyzing the survey study.

2.2 Objects of the Empirical Study
The objects of the study are represented by a set of known com-
munity smells for which we want to study their relevance and
refactoring strategies. We select four community smell types: Or-
ganizational Silo, Black Cloud, Lone Wolf, Bottleneck or
“Radio-silence". We opt for these smells since they have been
shown to have a strong negative impact on both social aspects
of software communities [54, 55] and the resulting technical pro-
cesses and products [9, 10, 41]: they are, hence, critical forms of
community smells to deal with. Moreover, the relevance of these
community-related issues has been previously investigated in open-
source [58] and, thus, our study with industrial practitioners can be
used to confirm or refine previous findings. We follow the definition
provided by Tamburri et al. [58] to describe each smell type:

(1) Organizational Silo Effect:This form of social debt refers
to the presence of siloed areas of the developer community
that do not communicate, except through one or two of their
respective members;

(2) Black Cloud Effect: This community smell reflects an
information overload due to lack of structured communica-
tions or cooperation governance;

(3) Lone Wolf Effect: This smell appears in cases where the
development community presents unsanctioned or defiant
contributors who carry out their work with little considera-
tion of their peers, their decisions and communication;

(4) Bottleneck or “Radio-silence" Effect: This is an instance
of the “unique boundary spanner" [63] problem from social-
networks analysis: one member interposes herself into every
formal interaction across two or more sub-communities with
little or no flexibility to introduce other parallel channels.

2.3 Subjects of the Empirical Study
The subjects of our study are professionals having a solid experi-
ence in software project development and management. Indeed, to
acquire significant data on the relevance and refactoring strategies
adopted when dealing with community smells, we have to recruit
people that naturally have a broader view of a software system,
its management, and its social activity with respect to individual
developers who may be just focused on specific sub-teams.

For this reason, we proceeded with a convenience sample re-
cruitment strategy [45]. Rather than spreading our survey over
social networks (e.g., Twitter), we first sent it out to a selection

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Refactoring Community Smells in the Wild:
The Practitioner’s Field Manual ICSE 2020, May 23–29, 2020, Seoul, South Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

of our personal contacts (e.g., former industrial colleagues, friends
of ours working as project managers in industry). In the second
place, we involved project manager’s associations, like the Project
Management Institute

1 and similar.
Unfortunately, we cannot have a definitive answer with respect

to the total number of invitations sent. This because some of the
project managers contacted have subsequently privately shared the
survey with further colleagues, thus making an estimation hard to
do. In any case, we finally collected 76 fully compiled questionnaires
that we used to address our research questions.

As for the characterization of our sample, 43% of the respondents
are women: in our case, this is an extremely relevant factor since
people of different genders may have different ways of solving
communication/coordination problems [5, 64] and a more balanced
participation allows us to (i) draw more generalizable conclusions
and (ii) assess whether gender influences the application of cer-
tain refactoring strategies. Furthermore, our participants have high
experience when it comes to project management (65% of them eval-
uate themselves as highly or very highly experienced) and software
development (81% rated themselves as highly experienced): this
confirms that our recruitment strategy has been pretty successful,
since we could attract the practitioners we were actually looking
for. More than 30% hold a management position, 28% are profes-
sional developers while the rest report such jobs as consultant,
software analyst, software architect and SCRUM master. Finally,
38% of the respondents currently work in a large company (more
than 2,000 employees/contributors) and 45% work within smaller
teams composed of 5 to 10 developers.

From these basic descriptive statistics, we can claim that the
opinions collected are likely to provide us with reliable insights
into community smells in practice and their corrective strategies.

2.4 Collecting Practitioner’s Opinions
To collect the opinions of our participants, we design an online
survey composed of five main sections. Following the guidelines of
Flanigan et al. [15], we consciously keep the survey anonymous,
short, and prevent our influence on the answer: when preparing
the survey, we estimated a completion time of ≈10 minutes.

The first four sections of the survey describe a vignette-based
scenario [14] corresponding to the community smell. For example,
for Black Cloud the survey contains the following scenario:

“Suppose your development team is working on the definition of

a web-based application for the scheduling of resources. During

the development, you recognize that the community members

suffer of an information overload due to lack of structured

communication (e.g., communications among team members

are not performed over official channels).”

We analyze four community smells and have one scenario for
each section—the remaining scenarios can be found in the online
appendix [11]. We stress that, as not to bias the participants we
never explicitly mentioned that we were studying the problem of
community smells. After showing the participants a scenario, we
ask two questions:

1https://www.pmi.org

(1) Has this situation ever happened to you?

(2) If you found it problematic, how did you deal with it?

The first question can be answered ‘yes’ or ‘no’. The second one
is an open question that practitioners can answer by writing down
their opinions and experience with respect to the specific strategies
adopted to deal with community smells.

The last section of the survey is finally reserved to demographic
information. We include questions related to gender, job, program-
ming/management experience as well as about the size of the com-
pany and their team. We implement the survey as a Google form.

2.5 Data Analysis
To analyze the data coming from the practitioners’ answers to our
survey, we first count how many times they answered ‘yes’ to the
first question: this allows us to address RQ1 and have a measure
of how relevant the considered community smells are from the
practitioners’ viewpoint.

As for RQ2, we apply Straussian Grounded Theory [12] to ana-
lyze the practitioners’ open answers: this is a systematic methodol-
ogy that involves the construction of theories through methodical
gathering and analysis of data. In our case, this methodology is
required given the exploratory nature of the open question asked to
practitioners. Furthermore, the selection of a Straussian Grounded-
Theory methodology is driven by one main reason: it does not
assume the presence of any previous theory to be tested over the
data but rather it adopts a constructivist theory-proving approach
wherefore a theory is directly and purely generated from the data.

We conduct the data analysis as follow:

Microanalysis. In the first place, one of the authors of this paper
(i.e., hereafter, the inspector) labels survey responses by applying
a single label per every piece of text. In particular, the inspector
splits sentences using standard text separators (e.g., commas or
semicolons) and then assigns initial labels based on the content of
the text. Subsequently, other three inspectors validate the initial
labels and provide suggestions on how to improve them, e.g., if it
makes sense to split one of them or aggregate some. After this first
step, the inspectors compute the inter-rater agreement using the
Cohen’s k coefficient [2]: with respect to other measurements,
this is considered to be a more robust statistical test since it
takes into account the possibility that an agreement is occurred
by chance [2]. The k coefficient measure 0.49, which can be
interpreted as moderate [2].

Categorization. In a second phase, the feedback coming from the
first step is taken into account by the first inspector in order to
cluster labels which are semantically similar or even identical. To
this aim, the inspector applies the semantic similarity principle
[25]. The result of this step consists of the renaming of labels to
better reflect the various categories identified.

Saturation. The main inspector, together with the other three,
iterate over the labels assigned so far until they can reach an
agreement with respect names andmeanings of all of them. These
results in a theoretical saturation [62], namely the phase in which
the analysis of the labels does not propose newer insights and
all concepts in the theory are well-developed.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2020, May 23–29, 2020, Seoul, South Korea Catolino et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Taxonomy building. Finally, based on the labels assigned to the
practitioners’ answers, we can proceed with building a taxonomy
of refactoring strategies for each community smell considered
in the study. In Section 3 we represent and discuss the tree of
categories and labels that allow us to visualize the grounded-
theory extracted from our survey responses.

3 ANALYSIS OF THE RESULTS
In this section, we report and discuss the results of our study, by
considering each research question independently.

3.1 RQ1. What is the relevance of community
smells in practice?

To assess relevance of community smells to industrial practice we
have asked the respondents whether they have experienced the
situation described in the vignette corresponding to the smells.

The most commonly reported smell among the four we have con-
sidered is the Lone Wolf: 66% (50/76) of the respondents reported
having encountered this smell in practice. This finding concurs with
the previous observation that this smell is also very common in
open-source communities and is seen by developers as an important
source leading to social debt [58].

The second most commonly recognized community smell is the
Black Cloud, reported by 57% (43/76) of the respondents. Impor-
tance of this smell for the industrial Integra project has been
previously observed by Tamburri et al. [56], while a more recent
interview study of open-source developers indicates that all in-
terviewees recognize presence of Black Cloud instances in their
communities [58]. Thus, our findings confirm and reinforce previ-
ous results on the relevance of this smell in practice.

Organisational Silo has been experienced by almost half of
the respondents (49%, 37/76), while Radio Silence by more than
a third of them (35%, 27/76). Hence, we can also argue that these
last two smells are diffused in practice, triangulating what has been
recently found on their diffuseness in open-source projects [58].

To broaden the scope of the analysis, we also considered whether
certain types of community smells are more prominent in larger
or smaller communities. As expected, all the smells appear more
frequently in larger companies: indeed, 57% of the respondents
who experienced a community smell (43/76) belong to companies
having between 250 and 2,000 employees. Similarly, 63% of them
(48/76) reported to be in larger teams composed by 10 to 20 people.
Specifically, we observed that Organizational Silo and Black
Cloud are most often reported by participants working in larger
companies, while Radio Silence and LoneWolf are equally promi-
nent independently from the size of companies. Also in this case,
our findings concur with the results reported previously [58]. To
statistically verify the relation between larger companies/teams and
presence of community smells, we ran the Pearson’s Chi-square
Test for Independence [36], which in our case indicates how expec-
tations (i.e., the distribution of sizes of companies/teams) compare
to actual observed data (i.e., presence of specific types of community
smells). As expected, the test indicated a p-value lower than 0.05,
thus indicating a statistical significance of our observations, for the
relations that larger companies and teams have with the emergence
of Organizational Silo and Black Cloud, while the p-value

measured 0.16 and 0.23 when considering size of companies/teams
with Radio Silence and Lone Wolf, respectively.

Finding 1. According to the collected opinions, Lone Wolf

and Black Cloud are the community smells that more fre-

quently arise in industry. Nevertheless, the prominence ofOr-

ganizational Silo and Black Cloud is not negligible, es-

pecially in larger software communities.

3.2 RQ2. What are the refactoring strategies
applied by practitioners to deal with
community smells?

To address our second research question we asked participants to
discuss the strategies they adopted when dealing with community
smells. Next, we discuss the refactoring strategies for each commu-
nity smell. Note that, when analyzing our data, we did not observe
differences in the answers provided by men and women.

3.2.1 Organizational Silo. Table 1 summarizes the refactoring strate-
gies discussed by participants when considering the Organiza-
tional Silo smell. 35 practitioners (out of the total 37 who experi-
enced this smell) reported seven different refactoring actions.

Restructure the community. The first and most popular refac-
toring (13 mentions) is that of restructuring the community with
the aim of improving communication among team members. Ac-
cording to our participants, this may happen in different ways. 7
practitioners claimed that they solved the problem by changing
the composition of sub-teams and, particularly, by organizing
them so that the heterogeneity increases and the communication
improves. For instance, participant #19 reported that:

“[I solved the issue by] organizing the sub-teams heteroge-

neously (including all levels of seniority in each of them, for

example juniors and experts).”

As shown, the practitioner tried to put novice programmers with
experts that can advise them, possibly improving the way the
entire sub-team communicates. Other three practitioners got rid
of the community smells by splitting large teams in smaller ones,
thus increasing the chance team members have to communicate
with each other. Finally, the last three practitioners followed
a “continuous” approach in which team members are swapped
periodically, for instance every task or sprint.

Create communication plan. Seven practitioners declared that
a good way to remove Organizational Silo instances is to
create a detailed communication plan in which the appropriate
channels and protocols are discussed and put in place. According
to them, in cases where all the communication channels are prop-
erly working and delivering efficiently messages, the problems
related to the presence of the smell are generally well mitigated -
as reported, for example, by participant #41.

Mentoring. The third most common solution to this community
smell (7 mentions) is mentoring. In particular, practitioners ex-
plained that communication problems can be solved by project

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Refactoring Community Smells in the Wild:
The Practitioner’s Field Manual ICSE 2020, May 23–29, 2020, Seoul, South Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Refactoring strategies for the Organizational Silo smell.

Strategy Definition #
Restructure the community Organizing sub-teams heterogeneously, splitting larger teams in smaller

ones, swapping team members every task/story/sprint.
13

Create communication plan Creating appropriate communication channels and protocols. 7
Mentoring Talking with the team members, trying to solve communication prob-

lems.
7

Cohesion exercising Doing exercises in order to improve the cohesion of the team (e.g.,
brainstorming, number of meetings).

4

Monitoring Monitoring closely how team members communicate and share infor-
mation.

2

Introduce a social-rewarding mecha-
nism

Providing benefits to team members who work and communicate ap-
propriately. (e.g., credits)

1

Not relevant Opinions not related to refactoring strategies. 3

managers by talking to developers and being sure that every-
one is taught on the basic rules to share information about team
members and communicate with the rest of the community.

Less common strategies. Besides the three most common refac-
toring actions discussed so far, a smaller number of practition-
ers mentioned alternative strategies. Specifically, four of them
explained that exercising the cohesion of the community may
represent an important factor to mitigate the Organizational
Silo smell: this includes, for example, a higher number of meet-
ings aimed at increasing communication. Other strategies refer
to the monitoring of the developer’s discussions (2 mentions),
and providing rewarding mechanisms for the developers who
communicate well (1 mention). Finally, the last three practition-
ers expressed opinions that did not refer to solutions, but rather
just better explained that problems connected to the presence of
the community smell.

3.2.2 Black Cloud. Table 2 lists the refactoring strategies for the
Black Cloud smell. In this case, practitioners reported a lower
number of actions when compared to the other smells:

Create communication plan. 80% of the participants who sug-
gested how to remove this smell (28/34) reported that the cre-
ation of a good communication plan and revise it periodically
represents the best solution to mitigate the lack of structured
communication. For example, practitioner #2 reported that Black
Cloud instances may depend on size and experience of the de-
velopment community and the only way to remove them is to
define a communication plan in advance and keep revising it in
order to take it up to date.

Less common strategies. The last six practitionerswho commented
on the refactoring of this smell referred to two alternative meth-
ods. In the first place, five of them mentioned that restructuring
the community, e.g., by splitting large teams into smaller ones
or defining more precise/structured rules for communication,
mitigated the effects of the smell in their experience. Finally,
one practitioner referred to the introduction of a social sanc-
tioning mechanism: this is a strategy in which members of the
community that do not respect the common rules defined in the
communication plan are penalized and obliged to attend mentor-
ing sessions with senior developers or project managers.

3.2.3 Radio Silence. The refactoring strategies elicited for this
smell are summarized in Table 3. Here 19 participants commented
on their experience and presented six different actions.

Mentoring. One of the most cited strategy is that of mentoring.
Five practitioners reported that to mitigate the presence of a team
member that interposes him/herself into every formal commu-
nication is to let the project manager of other senior developers
to mentor him/her. In this way, the bottleneck would gradually
change his/her behavior, leading to a healthier development com-
munity.

Cohesion exercising. Five practitioners also reported that putting
in place activities that increase the cohesion of the community
may be a useful mechanism to mitigate the presence of the smell
and improve the communication among team members. Accord-
ing to our participants, a higher cohesion would help team mem-
bers in sharing knowledge and exchange critical information,
thus reducing the likelihood of having people that interpose
themselves between sub-teams.

Create communication plan. The definition of rules for sharing
knowledge and communicate with other team members repre-
sents the second most cited strategy to remove an instance of
Radio Silence. As an example, participant #14 explained that
“ educating developers in group work and proper communication

management is always a necessary step to mitigate this problem”.

Less common strategies. Seven participants proposed alterna-
tive methodologies. These include a restructuring of the com-
munity aimed at changing role to the bottleneck or monitoring
closely how s/he communicates with other people. Finally, one
practitioner mentioned that the introduction of a social sanction-
ing mechanism led to the removal of the problem.

3.2.4 Lone Wolf. Table 4 overviews the refactoring strategies de-
scribed by the 50 practitioners who commented on the removal of
this smell. The list includes 5 main actions:

Mentoring. This is the most popular strategy by far (42% of partici-
pants). According to the opinions left by practitioners, mentoring
and helping the lone wolf to better communicate and work with
other people represents a key action to mitigate the negative

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2020, May 23–29, 2020, Seoul, South Korea Catolino et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Refactoring strategies for the Black Cloud smell.

Strategy Definition #
Create communication plan Creating appropriate communication channels and protocols. 28
Restructure the community Organizing sub-teams heterogeneously, splitting larger teams in smaller

ones, swapping team members every task/story/sprint.
5

Introduce a social sanctioning mecha-
nism

Motivating people to act as expected. 1

Table 3: Refactoring strategies for the Radio Silence smell.

Strategy Definition #
Cohesion Exercising Doing exercises in order to improve the cohesion of the team (e.g.,

brainstorming, number of meetings).
5

Mentoring Talking with the team members, trying to solve communication prob-
lems.

5

Create communication plan Creating appropriate communication channels and protocols. 4
Restructure the community Organizing sub-teams heterogeneously, splitting larger teams in smaller

ones, swapping team members every task/story/sprint.
4

Monitoring Monitoring closely how team members communicate and share infor-
mation.

2

Introduce a social sanctioning mecha-
nism

Motivating people to act as expected. 1

Table 4: Refactoring strategies for the Lone Wolf smell.

Strategy Definition #
Mentoring Talking with the team members, trying to solve communication prob-

lems.
24

Restructure the community Organizing sub-teams heterogeneously, splitting larger teams in smaller
ones, swapping team members every task/story/sprint.

12

Monitoring Monitoring closely how team members communicate and share infor-
mation.

7

Cohesion Exercising Doing exercises in order to improve the cohesion of the team (e.g.,
brainstorming, number of meetings).

7

Introduce a social sanctioning mecha-
nism

Motivating people to act as expected. 3

effects this smell can present. For example, participant #23 re-
ported that s/he “talked to the person to verify the reasons [behind
his/her behavior] and understand if the problem can be solved”.

Restructure the community. A second popular refactoring for
this smell is the restructuring of the community (mentioned by 12
participants). In particular, the action concerns with making the
lone wolf closer to the other developers of the community and
able to communicate/work with them more effectively. For this
reason, practitioners suggested to let him/her work in different
sub-teams, so that the lone wolf is “enforced” to communicate
more in order to be updated with the status of the module being
developed by that sub-team.

Less common strategies. While the refactoring actions discussed
above are by far the most widely used in practice, other practi-
tioners presented different alternatives, all of them referred to the
improvement of communication in different manners. First, an ef-
fective monitoring of how team members communicate has been

mentioned by seven practitioners, who explained that keeping
under control the way team members share information repre-
sents not only a method to avoid the emergence of the smell in
the first instance, but also to gradually remove the effect of a lone
wolf instance. Seven participants mentioned the involvement
of the lone wolf in more social activities that can increase the
overall cohesion of the community and the engagement of the
lone wolf. Finally, three practitioners reported the introduction
of social sanctioning mechanisms to deal with this smell.

Finding 2. Practitioners mentioned the existence of refac-

toring strategies that increase cohesion of the development

team. Common strategies include mentoring, creation of a

communication plan, and restructuring the community.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Refactoring Community Smells in the Wild:
The Practitioner’s Field Manual ICSE 2020, May 23–29, 2020, Seoul, South Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4 DISCUSSION AND IMPLICATIONS
Our findings provide a number of discussion points and implications
for practitioners and research community.

4.1 Key Observations
The results suggest a consistent presence of refactoring strategies
that practitioners are enacting. On the one hand, some of the afore-
mentioned strategies are consistent with the state of the art in or-
ganizations and project management research. On the other hand,
several of the strategies are socio-technical, namely they imply short-
and longer-term modifications to the community structure as well
as the technical structure of the software project.

From the perspective of the state of the art in organizations
research as well as management research, we conducted a “loosely-
structured focus group" with 3 senior researchers in both fields
and identified several interesting contact points with that state
of the art and the “refactoring" strategies therein; indeed, several
strategies we identify have extremely valuable equivalents. For ex-
ample, the cohesion-based strategies we identify reflect an interest
in structural cohesion practices dating back to the 80’s (e.g., see the
work by Burt [6] or even more recent computational methods to
measuring structural cohesion such as Lozano et al. [34]). Similarly,
communications protocols and practices we identify based on such
protocols have been studied in social-networks analysis literature,
also through automated means [59]. For example, Sommerfeld et

al. [50] studied the effect of social protocols to identify the effects
(whether positive or negative) of indirect reciprocity, namely, the
eventual consistency in the manifestation of a certain social rela-
tion between two or more parties and the costs connected to such
eventuality. Furthermore, the effectiveness of some of the strategies
we isolated is still well under debate [49, 61] in their own fields of
research [49]. For example, the social sanctioning strategies we pre-
viously showcased have seen research in both social networks anal-
ysis and organizations research but the negative long-term effects
of such sanctioning onto the social and organizational structure
around specific products or artifacts [61] is still largely unknown
[27] and, back to our software engineering domain, could very well
be an underlying social phenomenon connected to the staggering
numbers of turnover [46] in software engineering communities of
practice (e.g., open-source communities). Overall, this state of the
art and informal comparison we operated strongly motivates us in
furthering our knowledge around the practices we identified, the
sub-optimal structures that they are designed to mitigate and the
effects on the long-term sustainability of a software organization.

Furthermore, from the perspective of our current understand-
ing over software processes and software engineering as a socio-
technical system, the results of this study reflect a complex phe-
nomenon with its own self-organizative, and emerging approaches
to managing and addressing community sustainability [17]. What
we remark, however, is a severe gap in the state of practice in terms
of (i) software engineering education around such management
structural issues and the strategies to mitigate them as well as (ii)
industrial-strength practices and tools to measurably improve the
short-, medium-, and long-term influences of the structural issues,
on one side, and the strategies addressing them, on the other side.
From an educational perspective, a quick glance at the current

state of the art in software engineering education—as reflected by
a quick 3-year review of the software engineering education track
(SEET) at the International Conference on Software Engineering
(ICSE)—is by far immature to address these gaps since the topic
is touched upon only marginally and with little to no systematic
studies as of yet. However, this constitutes an opportunity for the
community to pursue such research with a more structured ap-
proach, possibly picking up from the results and challenges that
this paper showcases.

It is important to note that we are aware that we need to triangu-
late our results e.g., using semi-structured interviews; however, we
consider these achievements as a first step to going deeper into the
definition of the strategies, as also confirmed by our focus group.

4.2 Practical Impact
As for practitioners, the contents of this article serve as a show-
case of what to do in case of “nasty" manifestation of phenomena
consistent with community smells. It should be noted that smells
themselves, be it in their social or technical manifestation, are not
necessarily bad, but rather they constitute sets of phenomena to
be taken into account while designing, developing, and operating
software. That being said, the catalog we offer can be used by prac-
titioners as a cookbook to structure their emergent approach at
community management, possibly reusing and improving upon the
strategies that we have elicited. From yet another perspective, that
of open-source communities, the practices reported can be used as
a basis to structure contribution policies or similar community sus-
tainability and governance bylaws. With the ever-growing mass of
open-source contribution, it is very common nowadays to see such
community management and engagement protocols; the results
we report could well be used to structure those protocols starting
from a solid and proven basis. To gain evidence of this usefulness,
we analyzed a selected sample of gray literature2 discussing the
phenomenon of open-source community forking—namely, when
a community is split into two or multiple sub-communities push-
ing forward disjoint products and technical spaces—and its conse-
quences along the lines of community survivability (e.g., see the
seminal work by Gameliesson et al. [18]). From this preliminary
analysis it is clear that community smells are relevant factors in
the phenomenon of community forking; in this scope, some of
the strategies we have identified might have mitigated the conse-
quences of the forking or aid in avoiding it altogether.

4.3 Relation with Previous Practices
Although the strategies we reported in this manuscript were elicited
with rigorous empirical means and through the engagement of in-
dustrial stakeholders, the attempt at gathering socio-technical miti-
gation approaches is not novel per se. For example, as previously
mentioned, previous work on the emerging role of community-
shepherding software architects [53] has put forth a number of
architecture-based strategies to refactor products (and the organiza-
tional structures around them) in line with mitigating community
smells other than the ones we report in this paper. Examples of
such strategies reflect the use of daily standups, architecture dis-
cussion groups or architecture knowledge-sharing practices. On
2http://tiny.cc/asrdfz

7

http://tiny.cc/asrdfz

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2020, May 23–29, 2020, Seoul, South Korea Catolino et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

the one hand, the strategies in this manuscript can be seen as more
generically-applicable and smell-specific approaches which do not
directly relate to any one specific software or organizational ar-
tifacts. On the other hand, strategies reported previously have a
domain-specific connotation, e.g., Noll et al. [38] work in the scope
of general barriers to communication and collaboration in Global
Software Engineering (GSE) scenarios or even earlier in time Joiner
touches upon management smells akin to community smells spe-
cific to software reuse and strategies to reduce the connected risks
[33]. Overall, the key message is that this organisational-strategic
approach should become a practitioners’ field manual in support of
their organizational and socio-technical activities with structured
and tested-true approaches.

5 THREATS TO VALIDITY
A number of threats might have influenced our findings. In this
section, we summarize and explain how we mitigated them.

Threats to construct validity. Threats in this category refer to
the relationship between theory and observation. In our study, this
may mainly concern the way we have measured (i) how relevant
community smells are in practice and (ii) what are the refactoring
strategies associated to them. In the former case, we asked practi-
tioners to answer through a ‘yes’/‘no’ option since we just wanted
to inquiry them on whether certain situations actually happened
to them. In the latter case, we let practitioners write down their
opinions and experience: this was required to let them express their
thoughts on the matter without biasing them with pre-defined an-
swers. Moreover, we referred to community smells as “situations",
thus did not bias the participants to believe that those represent
a problem. In our future research agenda, we include a partial
replication of our study aiming at measuring the experience of
practitioners through semi-structured interviews, which can poten-
tially help and complement the analysis of the refactoring strategies
applied when dealing with community smells.

Threats to conclusion validity. As for the concerns between
treatment and outcome, a major threat refers to the way we ana-
lyzed data coming from the practitioners’ answers. To address RQ1,
we computed basic statistics reporting the number of times they
answered that community smells appeared in their experience. As
for RQ2, we relied on a Straussian Grounded Theory [12] approach
when analyzing the practitioners’ open answers. As explained in
Section 2, this research approach does not assume the presence of
any previous theory to be tested over the data: this perfectly fits
our goal of extracting knowledge on community smell refactoring
starting from the practitioners answers. Nevertheless, we recog-
nize that further replications of the empirical study might provide
additional insights and stronger conclusion validity.

Threats to external validity. These mainly concern with the
generalizability of the reported findings. In our case, we aimed at
collecting opinions from practitioners having a solid background
in both software development and management. This constraint
naturally limits the survey population, i.e., not all practitioners
may be invited to answer our survey as they may have not the
required experience to answer our questions. However, we ended
up with a total amount of 76 professionals: most of them had prac-
tical experiences with managing software teams and, perhaps more

importantly, most of them dealt with community smells in the past,
thus being able to provide us with valid insights to address our
research questions properly. Furthermore, we were able to collect
answers from both women and men: this was an important require-
ment since women and men may have had different ways of solving
socio-technical problems arising in software communities [5, 64].
The two aspects discussed above, i.e., management experience and
gender diversity, make us confident of the generalizability of our
findings. Nonetheless, we are aware that more responses may have
led to slightly different results or even highlighted additional refac-
toring strategies. For this reason, we aim at replicating our study
taking into account a larger set of experienced practitioners.

6 RELATEDWORK
The presence of community smells reflects both the health of the
organization as well as the quality of the software produced (and
also its life cycle). [42]. So, in the context of our work, we had to
deal with both software engineering and organizational research. In
this section, we outline related work in (i) establishing, measuring,
tracking or otherwise improving the health or status of software
engineering communities and (ii) empirically assessing the effects
of community smells on social and technical aspects of source code.

Software communities health. On the software engineering
side of the topic spectrum, several works provided fundamental in-
sights into the problem, including the widely known socio-technical
congruence [7] research, but without ever offering a theoretically-
and empirically-established quality model. For instance,research
community concentrated on establishing the link between several
organizational structure qualities (e.g., hidden-subcontractors in
the organizational structure [1, 3], awareness [4, 39], distance and
coordination [23, 26], etc.) with respect to software quality [57].

Jansen [31] proposed a framework for open-source ecosystems
health, based on the study of the literature; in particular, the pro-
posed framework was focused on parameters for ecosystem health
without considers organizational structures or anti-patterns emerg-
ing thereto. Similarly, the work of Crowston and Howison [13]
offered anecdotal evidence of the need for empirically-proven qual-
ity models for open-source communities. They argued that informal
open-source communities are healthier since they aremore engaged.
Our work could be seen as a second step of their proposals, since
we propose an empirically-grounded catalog of strategies that prac-
titioners can be use successfully to mitigate their encounters with
specific community smells.

At the other end of the spectrum, organization and social-network
research proposed a plethora of organizational anti-patterns [43,
51], as well as (a few) best practices to address them [29, 60], with
even fewer exceptions for open-source software communities [55].
For example, Giatsidis et al. [20] elaborated on collaboration struc-
tures with high-edge social network analysis. They concluded that
organizationally-specific k-structured networks are more efficient
than others, so there exists an organizational structure which best
fits a pre-specified purpose. Similarly, the same authors investigated
on the impact of communication, collaboration and cooperation
over community structure qualities [19]. Insights from both papers
would offer a valuable basis for argument over organizational struc-
ture research in software engineering. However, in our work, we

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Refactoring Community Smells in the Wild:
The Practitioner’s Field Manual ICSE 2020, May 23–29, 2020, Seoul, South Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

face the problem asking practitioners to share us their knowledge
and experience about sub-optimal situation; thus might lead to
achieving more practical insights.

Research on community smells. In the last years, community
smells have begun to receive particular attention [41, 58]; one of
the motivation resides in the development of the tool able to detect
them called CodeFace by Joblin et al. [32]. Indeed, the aforemen-
tioned tool was first augmented with heuristics capable of detecting
community smells [58] and then adopted to investigate the impact
of community smells over code smells [41]. In the first place, Tam-
burri et al. [58] assessed the detection capabilities of the proposed
augmented tool, named CodeFace4Smells by surveying practition-
ers, who confirmed that the results given by the tool are accurate
and meaningful. Also, the authors investigated (i) the diffuseness
of four community smells in open-source and (ii) their relation
with known socio-technical factors: their results provided evidence
that smells are highly diffused and can be foreseen by taking cer-
tain socio-technical indicators under control. At the same time,
Palomba et al. [41] discovered that community smells represent
top factors preventing from refactoring; moreover, they are key
features when it comes to predicting the severity of specific code
smells. Similar works have concentrated on establishing the impact
of community smells on other dimensions of software engineering
(e.g., architecture debt [35] and organization structure types [57]).

On another note, Catolino et al. [10] analyzed that in certain cases
the emergence of community smells may be potentially reduced by
increasing gender diversity. In their extended work [8], however,
they found how practitioners do not perceive gender diversity
and presence of women in software teams as relevant factors to
avoid community smells, while they believe that other aspects, like
developer’s experience or team size, may make a community more
prone to be affected by smells.

The works presented in this section is complementary to those
discussed above, as it does not focus on the emergence of commu-
nity smells or their impact, but rather on how practitioners deal
with them and, particularly, on the strategies employed in prac-
tice to get rid of community smells. Nevertheless, it is important
to point out that Tamburri et al. [58] have developed a mining
study in which they assessed the diffuseness of community smells
in open-source projects; our analysis of the perceived relevance
of community smells can nicely triangulate the findings of Tam-
burri et al. [58] and potentially show preliminary insights into the
awareness of practitioners with respect to community smells.

7 CONCLUSION
Community smells are critical socio-technical situations that may
lead to increase social debt and overall project’s costs [37, 54].While
the research community has mainly focused on understanding their
properties [8, 10, 57, 58] and detecting them [41, 58], a few studies
have investigated how practitioners remove them and increase the
health status of software communities.

In this paper, we have done the first step toward the definition
of refactoring strategies for four well-known community smells
such as Organizational Silo, Black Cloud, Lone Wolf, and
Radio Silence. We have designed a survey study and recruited
76 experienced professionals, with most of them who observed

community smells in their career, to address two research questions
related to (i) the perceived relevance of community smells and (ii)
the corrective actions performed. On the one hand, key results of
our study confirm that community smells are relevant problems for
practitioners; in particular Lone Wolf and Black Cloud are the
smells that more frequently arise in industry. On the other hand,
we devised and discussed a brand new taxonomy of refactoring
strategies that can be used by practitioners as a field manual to deal
with community smells in practice.

Our research agenda includes first to complement the findings
with semi-structured interviews and longitudinal studies. Then, we
want to replicate the study aimed at considering a larger amount
of practitioners and confirming the results achieved so far.

ACKNOWLEDGMENTS
Fabio gratefully acknowledges the help and financial support of
the Swiss National Science Foundation through the SNF Project No.
PZ00P2_186090 (TED). Furthermore, Damian’s work is supported
by the European Commission grants no. 787061 (H2020), ANITA,
no. 825040 (H2020), RADON, and no. 825480 (H2020), SODALITE.

REFERENCES
[1] Vito Albino and A Claudio Garavelli. 1998. A neural network application to

subcontractor rating in construction firms. International Journal of Project Man-

agement 16, 1 (1998), 9–14.
[2] Mousumi Banerjee, Michelle Capozzoli, Laura McSweeney, and Debajyoti Sinha.

1999. Beyond kappa: A review of interrater agreement measures. Canadian

journal of statistics 27, 1 (1999), 3–23.
[3] David P Baron and David Besanko. 1992. Information, control, and organizational

structure. Journal of Economics & Management Strategy 1, 2 (1992), 237–275.
[4] James M Bloodgood and JL Morrow Jr. 2003. Strategic organizational change:

exploring the roles of environmental structure, internal conscious awareness and
knowledge. Journal of Management Studies 40, 7 (2003), 1761–1782.

[5] Sarah Lynne Bowman. 2010. The functions of role-playing games: How participants

create community, solve problems and explore identity. McFarland.
[6] Ronald S. Burt. 1987. Social contagion and innovation: Cohesion versus structural

equivalence. The American Journal of Sociology 92, 6 (1987), 1287–1335. https:
//doi.org/doi:10.1086/228667

[7] Marcelo Cataldo, James D. Herbsleb, and Kathleen M. Carley. 2008. Socio-
technical congruence: a framework for assessing the impact of technical and
work dependencies on software development productivity. In Empirical soft-

ware engineering and measurement. ACM, New York, NY, USA, 2–11. https:
//doi.org/10.1145/1414004.1414008

[8] Gemma Catolino, Fabio Palomba, Damian Tamburri, Alexander Serebrenik, and
Filomena Ferrucci. 2019. Gender Diversity and Community Smells: Insights from
the Trenches. IEEE Software (2019).

[9] Gemma Catolino, Fabio Palomba, Damian Andrew Tamburri, Alexander Sere-
brenik, and Filomena Ferrucci. 2019. Gender Diversity and Community Smells:
Insights from the Trenches. IEEE Software (2019), to appear.

[10] Gemma Catolino, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik,
and Filomena Ferrucci. 2019. Gender diversity and women in software teams:
How do they affect community smells?. In Proceedings of the 41st International

Conference on Software Engineering: Software Engineering in Society. IEEE Press,
11–20.

[11] Gemma Catolino, Fabio Palomba, Damian Andrew Tamburri, Alexander Sere-
brenik, and Filomena Ferrucci. 2019. Refactoring of Community Smells: The
Practitioner’s Strategies - Online Appendix - https://doi.org/10.6084/m9.figshare.
10075406.

[12] Juliet M Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative sociology 13, 1 (1990), 3–21.

[13] Kevin Crowston and James Howison. 2005. The social structure of free and open
source software development. First Monday 10, 2 (2005).

[14] Janet Finch. 1987. The vignette technique in survey research. Sociology 21, 1
(1987), 105–114.

[15] Timothy S Flanigan, Emily McFarlane, and Sarah Cook. 2008. Conducting survey
research among physicians and other medical professionals: a review of cur-
rent literature. In Proceedings of the Survey Research Methods Section, American

Statistical Association, Vol. 1. 4136–47.

9

https://doi.org/doi:10.1086/228667
https://doi.org/doi:10.1086/228667
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.1145/1414004.1414008
https://doi.org/10.6084/m9.figshare.10075406
https://doi.org/10.6084/m9.figshare.10075406

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2020, May 23–29, 2020, Seoul, South Korea Catolino et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[16] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[17] Christian Fuchs. 2017. Sustainability and community networks. Telematics and

Informatics 34, 2 (2017), 628–639. http://dblp.uni-trier.de/db/journals/tele/tele34.
html#Fuchs17

[18] Jonas Gamalielsson and Björn Lundell. 2014. Sustainability of Open Source
software communities beyond a fork: How and why has the LibreOffice project
evolved? Journal of Systems and Software 89 (2014), 128–145.

[19] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2011. Evalu-
ating cooperation in communities with the k-core structure. In 2011 International

conference on advances in social networks analysis and mining. IEEE, 87–93.
[20] Christos Giatsidis, Dimitrios M Thilikos, andMichalis Vazirgiannis. 2013. D-cores:

measuring collaboration of directed graphs based on degeneracy. Knowledge and
information systems 35, 2 (2013), 311–343.

[21] Daniel J. Greenhoe. 2016. Properties of distance spaces with power triangle
inequalities. PeerJ PrePrints 4 (2016), e2055. http://dblp.uni-trier.de/db/journals/
peerjpre/peerjpre4.html#Greenhoe16a

[22] Lucas Gren. 2019. On Gender, Ethnicity, and Culture in Empirical Software
Engineering Research. CoRR abs/1904.09820 (2019). http://dblp.uni-trier.de/db/
journals/corr/corr1904.html#abs-1904-09820

[23] Rebecca E Grinter, James D Herbsleb, and Dewayne E Perry. 1999. The geog-
raphy of coordination: dealing with distance in R&D work. In Proceedings of

the international ACM SIGGROUP conference on Supporting group work. ACM,
306–315.

[24] Anna Hannemann, Hans-Jorg Happel, Matthias Jarke, Ralf Klamma, Steffen
Lohmann, Walid Maalej, and Volker Wulf. 2009. Social Aspects in Software
Engineering.. In Software Engineering (Workshops) (LNI), Vol. 150. GI, 239–242.
http://dblp.uni-trier.de/db/conf/se/se2009w.html#HannemannHJKLMW09

[25] Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. 2015.
Semantic Similarity from Natural Language and Ontology Analysis. Synthesis
Lectures onHuman Language Technologies, Vol. 8. Morgan&Claypool Publisers.

[26] James D Herbsleb and Rebecca E Grinter. 1999. Architectures, coordination, and
distance: Conway’s law and beyond. IEEE software 16, 5 (1999), 63–70.

[27] B Herrmann, C Thoni, and S Gachter. 2008. Antisocial Punishment Across
Societies. Science 319, 5868 (2008), 1362 – 1367.

[28] Gert Jan Hofstede, Catholijn M. Jonker, and Tim Verwaart. 2008. Modeling Power
Distance in Trade.. In MABS (Lecture Notes in Computer Science), Nuno David
and Jaime Simao Sichman (Eds.), Vol. 5269. Springer, 1–16. http://dblp.uni-
trier.de/db/conf/mabs/mabs2008.html#HofstedeJV08

[29] Kei Ito, Hironori Washizaki, and Yoshiaki Fukazawa. 2016. Handover anti-
patterns. In Proceedings of the 5th Asian Conference on Pattern Language of Pro-

grams (Asian PLoP 2016), Taipei, Taiwan.
[30] Hannu Jaakkola. 2012. Culture Sensitive Aspects in Software Engineering.. InCon-

ceptual Modelling and Its Theoretical Foundations (Lecture Notes in Computer Sci-

ence), Antje Dusterhoft, Meike Klettke, and Klaus-Dieter Schewe (Eds.), Vol. 7260.
Springer, 291–315. http://dblp.uni-trier.de/db/conf/birthday/thalheim2012.html#
Jaakkola12

[31] Slinger Jansen. 2014. Measuring the health of open source software ecosystems:
Beyond the scope of project health. Information and Software Technology 56, 11
(2014), 1508–1519.

[32] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From Developer Networks to Verified Communities: A Fine-grained
Approach. In Proceedings of the 37th International Conference on Software En-

gineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 563–573.
http://dl.acm.org/citation.cfm?id=2818754.2818824

[33] Harry F. Joiner. 1992. Management Barriers to Software Reuse.. In TRI-Ada,
Charles B. Engle Jr. (Ed.). ACM, 295–298. http://dblp.uni-trier.de/db/conf/sigada/
triada92.html#Joiner92

[34] Sergi Lozano, Javier Borge, Alex Arenas, and Jose Luis Molina. 2008. Beyond
Nadel’s Paradox. A computational approach to structural and cultural dimensions
of social cohesion. http://arxiv.org/abs/0807.2880

[35] Antonio Martini and Jan Bosch. 2017. Revealing Social Debt with the CAFFEA
Framework: An Antidote to Architectural Debt.. In ICSA Workshops. IEEE Com-
puter Society, 179–181. http://dblp.uni-trier.de/db/conf/icsa/icsaw2017.html#
MartiniB17

[36] Mary L McHugh. 2013. The chi-square test of independence. Biochemia medica:

Biochemia medica 23, 2 (2013), 143–149.
[37] Nils Brede Moe and Darja Šmite. 2008. Understanding a lack of trust in Global

Software Teams: a multiple-case study. Software Process: Improvement and Practice

13, 3 (2008), 217–231.
[38] John Noll, Sarah Beecham, and Ita Richardson. 2010. Global software development

and collaboration: barriers and solutions. ACM Inroads 1 (August 2010), 66–78.
Issue 3. https://doi.org/10.1145/1835428.1835445

[39] AHJ Oomes. 2004. Organization awareness in crisis management. In Proceed-

ings of the international workshop on information systems on crisis response and

management (ISCRAM).

[40] Premalatha Packirisamy. 2017. Managing Power Distance to Retain Talent:
Evidence from India. IJHCITP 8, 3 (2017), 49–67. http://dblp.uni-trier.de/db/
journals/ijhcitp/ijhcitp8.html#Packirisamy17

[41] Fabio Palomba, Damian Andrew Andrew Tamburri, Francesca Arcelli Fontana,
Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. 2018. Beyond technical
aspects: How do community smells influence the intensity of code smells? IEEE

Transactions on Software Engineering (2018).
[42] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia, and

Rocco Oliveto. 2016. Smells like teen spirit: Improving bug prediction perfor-
mance using the intensity of code smells. In 2016 IEEE International Conference

on Software Maintenance and Evolution (ICSME). IEEE, 244–255.
[43] Anne Persson and Janis Stirna. 2006. How to transfer a knowledge management

approach to an organization–a set of patterns and anti-patterns. In International

Conference on Practical Aspects of Knowledge Management. Springer, 243–252.
[44] Paul Ralph, Mike Chiasson, and Helen Kelley. 2016. Social theory for software

engineering research.. In EASE, Sarah Beecham, Barbara A. Kitchenham, and
Stephen G. MacDonell (Eds.). ACM, 44:1–44:11.

[45] Oliver C Robinson. 2014. Sampling in interview-based qualitative research: A
theoretical and practical guide. Qualitative research in psychology 11, 1 (2014),
25–41.

[46] Gregorio Robles and Jesus M Gonzalez-Barahona. 2006. Contributor turnover in
libre software projects. In IFIP International Conference on Open Source Systems.
Springer, 273–286.

[47] Victor Sanchez-Anguix, Tinglong Dai, Zhaleh Semnani-Azad, Katia P. Sycara, and
Vicente J. Botti. 2012. Modeling Power Distance and Individualism/Collectivism
in Negotiation Team Dynamics.. In HICSS. IEEE Computer Society, 628–637.
http://dblp.uni-trier.de/db/conf/hicss/hicss2012.html#Sanchez-AnguixDSSB12

[48] Helen Sharp, Hugh Robinson, and Mark Woodman. 2000. Software Engineering:
Community and Culture. IEEE Software 17, 1 (2000), 40–47. http://dblp.uni-
trier.de/db/journals/software/software17.html#SharpRW00

[49] Karl Sigmund, Christoph Hauert, Arne Traulsen, and Hannelore De Silva. 2011.
Social Control and the Social Contract: The Emergence of Sanctioning Systems
for Collective Action. Dynamic Games and Applications 1, 1 (2011), 149–171.
http://dblp.uni-trier.de/db/journals/dga/dga1.html#SigmundHTS11

[50] R Sommerfeld, H Krambeck, D Semmann, and M Milinski. 2007. Gossip as an
alternative for direct observation in games of indirect reciprocity. P Natl Acad
Sci USA 104, 44 (2007), 17435–17440.

[51] Janis Stirna and Anne Persson. 2009. Anti-patterns as a means of focusing on
critical quality aspects in enterprise modeling. In Enterprise, Business-Process and

Information Systems Modeling. Springer, 407–418.
[52] D. A. Tamburri. 2019. Software Architecture Social Debt: Managing the Incom-

municability Factor. IEEE Transactions on Computational Social Systems 6, 1 (Feb
2019), 20–37. https://doi.org/10.1109/TCSS.2018.2886433

[53] Damian A. Tamburri, Rick Kazman, and Hamed Fahimi. 2016. The Architect’s
Role in Community Shepherding. IEEE Software 33, 6 (2016), 70–79.

[54] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2013.
What is social debt in software engineering?. In Cooperative and Human Aspects

of Software Engineering (CHASE), 2013 6th International Workshop on. 93–96.
https://doi.org/10.1109/CHASE.2013.6614739

[55] Damian Andrew Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet.
2015. Social debt in software engineering: insights from industry. J. Internet
Services and Applications 6, 1 (2015), 10:1–10:17. http://dblp.uni-trier.de/db/
journals/jisa/jisa6.html#TamburriKLV15

[56] Damian Andrew Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet.
2015. Social debt in software engineering: insights from industry. J. Internet
Services and Applications 6, 1 (2015), 10:1–10:17.

[57] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman.
2019. Discovering community patterns in open-source: A systematic approach
and its evaluation. Empirical Software Engineering 24, 3 (2019), 1369–1417.

[58] Damian Andrew Andrew Tamburri, Fabio Palomba, and Rick Kazman. 2019.
Exploring Community Smells in Open-Source: An Automated Approach. IEEE
Transactions on Software Engineering (2019).

[59] Jordi Torrents and Fabrizio Ferraro. 2015. Structural Cohesion: Visualization
and Heuristics for Fast Computation. Journal of Social Structure 16 (2015), 8.
http://dblp.uni-trier.de/db/journals/joss/joss16.html#TorrentsF15

[60] Ariel Tseitlin. 2013. The Antifragile Organization. Commun. ACM 56, 8 (2013),
40–44.

[61] Daniel Villatoro, Sandip Sen, and Jordi Sabater-Mir. 2010. Of Social Norms and
Sanctioning: A Game Theoretical Overview. IJATS 2, 1 (2010), 1–15. http:
//dblp.uni-trier.de/db/journals/ijats/ijats2.html#VillatoroSS10

[62] Janiece L Walker. 2012. Research column. The Use of Saturation in Qualitative
Research. Canadian Journal of Cardiovascular Nursing 22, 2 (2012).

[63] Stanley Wasserman and Katherine Faust. 1994. Social Network Analysis. Methods

and Applications. Cambridge University Press.
[64] Lynn Zimmer. 1989. Solving women’s employment problems in corrections:

Shifting the burden to administrators. Women & Criminal Justice 1, 1 (1989),
55–79.

10

http://dblp.uni-trier.de/db/journals/tele/tele34.html#Fuchs17
http://dblp.uni-trier.de/db/journals/tele/tele34.html#Fuchs17
http://dblp.uni-trier.de/db/journals/peerjpre/peerjpre4.html#Greenhoe16a
http://dblp.uni-trier.de/db/journals/peerjpre/peerjpre4.html#Greenhoe16a
http://dblp.uni-trier.de/db/journals/corr/corr1904.html#abs-1904-09820
http://dblp.uni-trier.de/db/journals/corr/corr1904.html#abs-1904-09820
http://dblp.uni-trier.de/db/conf/se/se2009w.html#HannemannHJKLMW09
http://dblp.uni-trier.de/db/conf/mabs/mabs2008.html#HofstedeJV08
http://dblp.uni-trier.de/db/conf/mabs/mabs2008.html#HofstedeJV08
http://dblp.uni-trier.de/db/conf/birthday/thalheim2012.html#Jaakkola12
http://dblp.uni-trier.de/db/conf/birthday/thalheim2012.html#Jaakkola12
http://dl.acm.org/citation.cfm?id=2818754.2818824
http://dblp.uni-trier.de/db/conf/sigada/triada92.html#Joiner92
http://dblp.uni-trier.de/db/conf/sigada/triada92.html#Joiner92
http://arxiv.org/abs/0807.2880
http://dblp.uni-trier.de/db/conf/icsa/icsaw2017.html#MartiniB17
http://dblp.uni-trier.de/db/conf/icsa/icsaw2017.html#MartiniB17
https://doi.org/10.1145/1835428.1835445
http://dblp.uni-trier.de/db/journals/ijhcitp/ijhcitp8.html#Packirisamy17
http://dblp.uni-trier.de/db/journals/ijhcitp/ijhcitp8.html#Packirisamy17
http://dblp.uni-trier.de/db/conf/hicss/hicss2012.html#Sanchez-AnguixDSSB12
http://dblp.uni-trier.de/db/journals/software/software17.html#SharpRW00
http://dblp.uni-trier.de/db/journals/software/software17.html#SharpRW00
http://dblp.uni-trier.de/db/journals/dga/dga1.html#SigmundHTS11
https://doi.org/10.1109/TCSS.2018.2886433
https://doi.org/10.1109/CHASE.2013.6614739
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://dblp.uni-trier.de/db/journals/joss/joss16.html#TorrentsF15
http://dblp.uni-trier.de/db/journals/ijats/ijats2.html#VillatoroSS10
http://dblp.uni-trier.de/db/journals/ijats/ijats2.html#VillatoroSS10

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Research Questions
	2.2 Objects of the Empirical Study
	2.3 Subjects of the Empirical Study
	2.4 Collecting Practitioner's Opinions
	2.5 Data Analysis

	3 Analysis of the Results
	3.1 RQ1. What is the relevance of community smells in practice?
	3.2 RQ2. What are the refactoring strategies applied by practitioners to deal with community smells?

	4 Discussion and Implications
	4.1 Key Observations
	4.2 Practical Impact
	4.3 Relation with Previous Practices

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

