
EnTagRec: An Enhanced Tag Recommendation
System for Software Information Sites

Shaowei Wang∗, David Lo∗, Bogdan Vasilescu†, and Alexander Serebrenik†
∗School of Information Systems, Singapore Management University, Singapore

†Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

Email: {shaowei.wang.2010, davidlo}@smu.edu.sg, {b.n.vasilescu, a.serebrenik}@tue.nl

Abstract—Software engineers share experiences with modern
technologies by means of software information sites, such as
STACK OVERFLOW. These sites allow developers to label posted
content, referred to as software objects, with short descriptions,
known as tags. However, tags assigned to objects tend to be noisy
and some objects are not well tagged.

To improve the quality of tags in software information sites,
we propose ENTAGREC, an automatic tag recommender based
on historical tag assignments to software objects and we evalu-
ate its performance on four software information sites, STACK

OVERFLOW, ASK UBUNTU, ASK DIFFERENT, and FREECODE.
We observe that that ENTAGREC achieves Recall@5 scores of
0.805, 0.815, 0.88 and 0.64, and Recall@10 scores of 0.868,
0.876, 0.944 and 0.753, on STACK OVERFLOW, ASK UBUNTU, ASK

DIFFERENT, and FREECODE, respectively. In terms of Recall@5
and Recall@10, averaging across the 4 datasets, ENTAGREC

improves TAGCOMBINE, which is the state of the art approach,
by 27.3% and 12.9% respectively.

I. INTRODUCTION

The growing online media has significantly changed the
way people communicate, collaborate and share information
with one another [35]. This is also true for software de-
velopers, who create and maintain software by standing on
the shoulders of others [31], reuse components and libraries
originating from Open Source repositories (e.g., FREECODE),
and forage online for information that will help them in their
tasks [8]. When foraging for information, developers often
turn to programming question and answer (Q&A) communities
such as STACK OVERFLOW, ASK UBUNTU and ASK DIFFER-
ENT. Such sites supporting communication, collaboration and
information sharing among developers are known as software
information sites, while their contents (e.g., questions and
answers, project descriptions)—as software objects [40].

Typically, tags are short labels not more than a few
words long, provided as metadata to software objects in
software information sites. Users can attach tags to various
software objects, effectively linking them and creating topic-
related structure. Tags are therefore useful for providing a
soft categorization of the software objects and facilitating
search for relevant information. To accommodate new content,
most software information sites allow users to create tags
freely. However, this freedom comes at a cost, as tags can
be idiosyncratic due to users’ personal terminology [16]. As
tagging is inherently a distributed and uncoordinated process,
often similar objects are tagged differently [40]. For example,
in STACK OVERFLOW the tags ①♠❧♣❛%&❡%, ①♠❧✲♣❛%&❡% and
①♠❧♣❛%&✐♥❣ are all used to describe a parser of an XML
file. Idiosyncrasy reduces the usefulness of tags, since related
objects are not linked together by a common tag and relevant
information becomes more difficult to retrieve. Furthermore,

some software information sites (e.g., STACK OVERFLOW)
require users to add tags at the time of posting a question,
even if they are unfamiliar with the tags in circulation at that
time. Due to differences in personal terminology and tagging
purpose, it is often difficult for users to select appropriate tags
for their content. Having a tag recommendation system that
can suggest tags to a new object (e.g., based on how other
similar objects have been tagged in the past) could (i) help
users select appropriate tags easily and quickly, and (ii) in time
help homogenize the entire collection of tags such that similar
objects are linked together by common tags more frequently.
To illustrate the importance of tags for the well functioning of
a software information site, note the more than 4000 questions
related to tags on the META STACK OVERFLOW

1, as opposed
say to only the about 1000 related to user interface.

For this purpose, we propose an automatic tag recommen-
dation system called ENTAGREC. ENTAGREC learns from
historical software objects and their tags, and recommends ap-
propriate tags for new objects. ENTAGREC borrows from two
opposite yet complementary lines of thought in the statistics
community, Bayesian and frequentist [28], each with its own
advantages [5], [13]. In trying to combine the advantages of
both, ENTAGREC consists of two inference components. Our
Bayesian inference component (BIC) models a software object
as a probability distribution of tags, and a tag as a probability
distribution of words that appear in the software objects that
are tagged by it. Our BIC is built on top of a state-of-the-art
Bayesian inference technique (Labeled LDA [27]), creating
a unified mixture model over the distribution of all tags to
measure the likelihood of a tag to be assigned to a software
object. Our frequentist inference component (FIC) considers a
software objects as a set of tags attached to it, and a tag as a set
of words appearing in objects that are tagged by it. We propose
an extended FIC which removes unrelated words in software
objects and leverages the parts-of-speech (POS) tagger [33] to
reduce noise, and the spreading activation algorithm [11] to
increase the number of correct tags successfully inferred.

Given a software object to be tagged, each of these two
components outputs a probability score for every tag, which
indicates the likelihood of the tag to be assigned to the
software object. We combine these two components by taking a
weighted sum of the probability scores as the final scores of the
tags. Tags are then ranked based on these final scores and are
recommended to users. Our approach addresses the limitation
of TAGCOMBINE [40], the state-of-the-art tag recommender
system for software information sites, which creates multiple
models by performing one-versus-rest analysis instead of using

1http://meta.stackexchange.com/questions/tagged/tags

a unified mixture model and neither removes unrelated words
nor leverage POS tagger to reduce noise.

We evaluate our approach on datasets from four pop-
ular software information sites, STACK OVERFLOW, ASK

UBUNTU, ASK DIFFERENT, and FREECODE. STACK OVER-
FLOW and FREECODE have been used previously to evaluate
TAGCOMBINE. Our experimental results show that ENTAG-
REC achieves Recall@5 scores of 0.805, 0.815, 0.88 and
0.64, and Recall@10 scores of 0.868, 0.876, 0.944, 0.753
on STACK OVERFLOW, ASK UBUNTU, ASK DIFFERENT, and
FREECODE, respectively. Compared with TAGCOMBINE, av-
eraging across the four software information sites, ENTAGREC

improves TAGCOMBINE by 27.3% in terms of Recall@5 and
12.9% in terms of Recall@10. Our main contributions are:

• We propose ENTAGREC, a novel automatic tag rec-
ommendation system for software information sites.
ENTAGREC composes a state-of-the-art Bayesian in-
ference technique (Labeled LDA), and an enhanced
frequentist inference technique that leverages a POS
tagger and the spreading activation algorithm.

• We extend the empirical study by Xia et al. [40]
to evaluate TAGCOMBINE, by investigating datasets
from four popular software information sites. Our
study shows that ENTAGREC can achieve high recall,
especially for STACK OVERFLOW, ASK UBUNTU, and
ASK DIFFERENT. ENTAGREC also improves upon
TAGCOMBINE by a decent margin of 27.3% in terms
of Recall@5 and 12.9% in terms of Recall@10.

The rest of this paper is organized as follows. We provide
more background on tags in several software information
sites in Section II. We present the high-level architecture of
ENTAGREC in Section III, followed by detailed descriptions
of the Bayesian and frequentist inference components in Sec-
tions IV and V, and the specifics of how to integrate the two
components in Section VI. We present our evaluation results in
Section VII. Finally, we highlight related work in Section VIII
and conclude in Section IX.

II. TAGS IN SOFTWARE INFORMATION SITES

To facilitate navigation, search and filtering, content are
marked with descriptive terms [16], known as tags: libraries
associate books with authors’ names and keywords, while
scientific publishers require the authors to choose keywords
themselves. In the digital world, tags can be used, e.g., to
annotate weblog posts or shared links. Numerous software
information sites employ tags, e.g., SourceForge2 for code
projects, Eclipse MarketPlace3 for plugins, Snipplr4 for code
fragments, or STACK OVERFLOW for questions.

An example STACK OVERFLOW question is presented in
Figure 1. The question pertains to the creation of an Eclipse
plugin and it has two tags, representing the technical con-
text of the question () and a specific subject area
(). Figure 2 shows the FREECODE descrip-
tion of Apache Ant: in addition to the textual description, two
general tags are present, (describing
the general domain of Apache Ant) and (indi-
cating a more specific functionality of Apache Ant, namely
building Java programs).

2http://sourceforge.net/
3http://marketplace.eclipse.org/
4http://snipplr.com/

i need a complete tutorial about Eclipse plugin. My plugin has not a graphical interface, but i need to use

his function insiede another plugin or java app.

I use eclipse ONLY to load this plugin, but must work in eclipse.

It should be easy, but i don't know how to do this.

eclipse eclipse-plugin

How to create an Eclipse plugin

Fig. 1. A Question in STACK OVERFLOW

Fig. 2. A Project in FREECODE

Comparing Figures 1 and 2 we observe that while the
basic purpose of tagging—to facilitate navigation, search and
content filtering through the association of related contents via
linked descriptive terms—is common to both, specific policies
how the tags should be used differ from site to site. For
instance, Eclipse MarketPlace requires a user to choose five
out of 48 predefined categories and one out of three markets,
as well as allows her to provide additional tags not subject
to content restrictions. In contrast, Stack Exchange websites
do not distinguish between different kinds of tags but restrict
the total number of tags given to a question. Moreover, while
tags on Eclipse MarketPlace are subject to moderation, i.e.,
they can be modified only by the author or by a moderator,
modifications of tags on Stack Exchange sites can be proposed
by any user and are carried out by more experienced ones.

Most software information sites allow users to provide
“free text tags”. Not being subject to the formal requirements
of the sites, such tags can be expected to represent user
intent in a more flexible way. However, tagging becomes a
distributed and uncoordinated process, introducing different
tags for similar objects, which might persist despite moderation
or the ongoing correction efforts.For example, questions on
STACK OVERFLOW entitled “SIFT and SURF feature extrac-
tion implementation using MATLAB”5 and “Matlab imple-
mentation of Haar feature extraction”6 are both related to
image feature extraction but only the second one is labeled
with the corresponding tag, i.e., .

III. OVERALL ARCHITECTURE

In this section we describe the overall architecture of our
ENTAGREC approach. ENTAGREC contains four processing
components: Preprocessing Component (PC), Bayesian In-
ference Component (BIC), Frequentist Inference Component
(FIC) and Composer Component (CC). Input software objects
are processed by PC to generate a common representation.
These textual documents are then input to the two main
processing engines, namely BIC and FIC. BIC models a
software objects as a probability distribution of tags, and a
tag as a probability distribution of words that appear in the
software objects that are tagged by it. FIC considers a software
objects as a set of tags that are attached to it, and a tag as a

5http://stackoverflow.com/q/5550896
6http://stackoverflow.com/q/2058138

(a) Training (b) Deployment

Training Sw.

Obj. & Tags

Bayesian

Inference

Comp.

(BIC)

Freq.

Inference

Comp.

(FIC)

EnTagRec

Preproc.

Comp.

(PC)

Composer

Comp.

(CC)

Untagged

Sw. Obj.

Trained

BIC

Trained

FIC

EnTagRec

Trained

CC

Recomm.

Tags

Preproc.

Comp.

(PC)

Fig. 3. ENTAGREC Architecture

set of words that appear in objects that are tagged by it. CC
combines the complementary BIC and FIC components.

ENTAGREC works in two phases, a training phase and a
deployment phase, as shown in Figure 3(a) and (b), respec-
tively. In the training phase, ENTAGREC trains several of its
components using training software objects and corresponding
tags. In the deployment phase, the trained ENTAGREC is used
to recommend tags for untagged software objects.

The common component in the training and deployment
phase is PC that converts each software object into a bag (or
multiset) of words. The PC starts from the textual description
of a software object and performs tokenization, identifier
splitting, number removal, stop word removal, and stemming.
Tokenization breaks a document into word tokens. Identifier
splitting breaks a source code identifier into multiple words.
We use a simple Camel Casing splitter [2], e.g., the iden-
tifier “getMethodName” will be split into “get”, “method”,
and “name”. Number removal deletes numbers. Stop word
removal7 deletes words that are used in almost every document
and therefore, carry little document-specific meaning, e.g.,
“the”, “is”, etc. Finally, stemming reduces words to their root
form. We use the Porter stemming algorithm [25].

In the training phase, BIC, FIC, and CC are trained based
on the training data. BIC takes the bag of words representation
of the software objects and their corresponding tags to train
itself. The result is a statistical model which takes in a bag of
words representing a software object and produces a ranked
list of tags along with their probabilities of being related to
the input software object. FIC also processes the bag of words
representations and the corresponding tags to train itself and
it produces a statistical model (albeit in a different way than
BIC) which also takes in a bag of words and outputs a ranked
list of tags with their probabilities. CC learns two weights for
BIC and FIC to generate a near-optimal combination of these
two components from the training data.

After ENTAGREC is trained, it is used in the deployment
phase to recommend tags for untagged objects. For each such
object, we first use PC to convert it to bags of words. Next,
we feed this bag of words to the trained BIC and FIC. Each
of them will produce a list of tags with their likelihood scores.
CC will compute the final likelihood score for the tags based

7We use the list of stopwords from http://www.textfixer.com/resources/
common-english-words.txt

on the weights that it has learned in the training phase. The
top few tags with the highest likelihood scores will be output
as the predicted tags of the input untagged software object.

The following sections detail each of the three major
components of ENTAGREC, BIC, FIC, and CC.

IV. BAYESIAN INFERENCE

The goal of BIC is to compute the probabilities of various
tags given a bag of words representing a software object using
Bayesian inference. Given a tag t and a software object o,
BIC computes the probability of t being assigned to o given
the words {w1, . . . , wn} that appear in o. Mathematically, this
is denoted as P (t|w1 . . . wn). Using the Bayes theorem [14],
this probability can be computed as:

P (t|w1 . . . wn) =
P (w1 . . . wn|t)× p(t)

p(w1 . . . wn)

The probabilities on the right hand side of the above
equation can be estimated based on a training data.

A state-of-the-art Bayesian inference algorithm is Latent
Dirichlet Allocation (LDA) [7]. LDA has been shown effective
to process various software engineering data for various tasks,
e.g., [3], [4], [23], [24]. LDA takes in a set of documents and
a number of topics K and outputs the probability distribution
of topics per document. Our problem can be easily mapped to
LDA where a document corresponds to a software object and
a topic corresponds to a tag. Using this setting, LDA outputs
the probability distribution of tags for a software object.

However, LDA is an unsupervised learning algorithm.
It does not take as input any training data and it is not
possible to pre-define a set of tags as the target topics to
be assigned to documents. Fortunately, recent advances in the
natural language processing community introduced extensions
to LDA, such as Labeled LDA (L-LDA) [27]. For L-LDA, the
labels can be predefined and a training set of documents can be
used to train the LDA such that it will compute the probability
distribution of topics, coming from a predefined label set (tags,
in our case), for a document (a software object, in our case),
based on a set of labeled training data. In this work, we use
L-LDA as the basis for the Bayesian inference component.

BIC works on two phases: training and deployment. In
the training phase, BIC takes as input a set of bags of words
representing software objects and their associated tag. These
are used to train an L-LDA model. In the deployment phase,
given a bag of words corresponding to a software object, the
trained L-LDA model is used to infer the set of tags for the
input software object along with their probabilities. In the end,
the top KBayesian inferred tags for the object will be output

and fed to the Composer Component (CC).

V. FREQUENTIST INFERENCE

FIC computes the probability that a software object is
assigned a particular tag based on the words that appear in
the software object, taking into account the number of words
that appear along with the tag in software objects in a training
set. Section V-A describes our basic approach and several
extensions are presented in Section V-B. Unless otherwise
stated hereafter, FIC refers to the extended approach.

A. Basic Approach

Consider software object o with n words: {w1, w2, . . . ,
wn}. Assuming the words in o to be independent, the proba-
bility of o to be assigned tag t (i.e., P (o, t)) is:

P (o, t) =
n∏

i=1

P (t|wi)

The above probabilities (P (t|wi) for 1 ≤ i ≤ n) can be
estimated from the training data. However, the probability will
be zero if any one of the words used in o does not appear in any
software objects in the training data. To address this issue, we
compute the following weight instead of the actual probability:

W (o, t) =
∑

wi∈o

P (t|wi)

If the probabilities are non-zero, as probability P (o, t) in-
creases, weight W (o, t) will increase as well.

Furthermore, to reduce the computational cost, given a
training set of tagged software objects TRAIN, each of the
probabilities, i.e., P (t|wi) for 1 ≤ i ≤ n, is estimated as:

P ′(t|wi) =

{
1, ∃ o ∈ TRAIN, o contains wi & tagged with t

0, Otherwise

In effect, we compute the following weight:

W ′(o, t) =
∑

wi∈o

P ′(t|wi)

The higher the weight W ′(o, t) is, the more representative
FIC deems tag t is to software object o. We further normalize
weight W ′(o, t) to unit range, and treat it as a proxy to the
original probability of an object o to be assigned tag t.

B. Extended Approach

There are several problems with the basic approach. First,
often not all words in a software object are related to the
tags that are assigned to the software object. Although the
pre-processing component (PC) has removed stop words, still
many non stop words are unrelated to software object tags,
thus need to be removed. Second, we have a data sparsity
problem, since many tags are not used in many software
objects in the training set. Thus, often a tag is not characterized
by sufficiently many words. To address this problem, we
leverage the relationships among tags to recommend additional
associated tags to an input untagged software object.

1) Removing Unrelated Words with POS Tagger: One
problem in estimating the probabilities P (t|wi) is that not all
words that appear in a software object are related to the tags.
We use the example in Figure 1 to illustrate this. Words “need”
and “work” are not stop words but they are unrelated to the tags
❡❝❧✐♣%❡ and ❡❝❧✐♣%❡✲♣❧✉❣✐♥. Thus, there is a need to filter
out these unrelated words before we estimate the probabilities.

We observe that nouns and noun phrases are often more
related to the tags than other kinds of words. Past studies have
also found that nouns are often the most important words [9],
[29]. Thus, in this extension, we remove all words except
nouns and noun phrases. To identify these nouns and noun
phrases, we use the Part-Of-Speech (POS) Tagger [33] to infer
the POS of each word in the representative bag of words of a

software object. In this paper, we user the Stanford Log-linear
Part-Of-Speech Tagger.8 To illustrate this extension, consider
the words that appear in the software object shown in Figure 1.
After this step, only the words “tutorial”, “eclipse”, “plugin”,
“interface”, “function”, “java”, “app” remain.

Note that we only did this for FIC and not BIC as L-
LDA assigns different probabilities to words that are associated
to a topic (i.e., a tag). Unrelated words will receive low
probabilities. In FIC, the words that appear in objects tagged
with tag t are treated as equally important. Thus, we only
perform this extended processing step for FIC.

We refer the basic approach extended by this processing
step as FrePOS. Given an untagged software object, FrePOS
outputs the top KFrequentist tags.

2) Finding Associated Tag with Spreading Activation: Due
to the data sparseness problem, the tags inferred by FrePOS
might miss some important tags that are not adequately repre-
sented in the training data. To alleviate the data sparseness
problem, we leverage the relationships among tags to find
additional associated tags to those inferred by FrePOS.

To infer these associated tags, we use a technique named
spreading activation [11]. Spreading activation takes as input
a network containing weighted nodes that are connected with
one another with weighted edges, and a set of starting nodes.
Initially, all nodes except the starting nodes are assigned weight
0. Spreading activation then processes the starting nodes, one
at a time. For each starting node, it spreads (or propagates) the
node’s weight to its neighboring nodes which are at most MH
hops away from it (where MH is a user-defined threshold).
At the end of the process, we output all nodes with non
zero weights and their associated weights. In our context, the
network is a tag network, the starting nodes are the nodes
corresponding to tags returned by FrePOS, and the weights
of these starting nodes are the probabilities assigned to the
corresponding tags by FrePOS.

To perform spreading activation, we first need to construct
a network of tags. Each node in the network corresponds to
a tag, and each edge connecting two nodes in the network
corresponds to the relationship between the corresponding tags.
The weight of each edge measures how similar two tags are.
We measure this based on the co-occurrence of tags in software
objects in the training set. Consider a set of tags where each
of them is used to label at least one software object in the
training set. Mathematically, we denote this set as: Tags =
{t1, t2, t3, ..., tk}, where k is the total number of unique tags.
We denote an edge between two tags ti and tj as eti,tj . The
weight of eti,tj depends on the number of software objects that
are tagged by ti and tj in the training set. It can be calculated
as follows:

weight(eti,tj) =
|Doc(tj)

⋂
Doc(ti)|

|Doc(ti)
⋃

Doc(tj)|

where Doc(ti) and Doc(tj) are the objects tagged with ti and
tj , respectively, and |S| denotes cardinality of the set S.

The edge connecting two tags is assigned a higher weight
if they appear together more frequently, which means they are
more associated with each other. We denote a set of edges
connecting pairs of nodes as Links. The tag network is then a
graph TN defined as (Tags,Links). Given a tag t, we denote

8http://nlp.stanford.edu/software/tagger.shtml

Algorithm 1 Find Associated Tags Algorithm

1: FindAssociatedTags
2: Input:
3: TN: Tag network
4: SST: Set of starting tags
5: MH: Maximum hop
6: Output: Set of candidate tags
7: Method:
8: Initialize the weight of each tag in TN with 0
9: for each tag t in SST do

10: Set weight (TN[t]) = Probability of tag t inferred by FrePOS
11: end for
12: for each tag t in SST do
13: Call SpreadingActivation(TN, TN[t], 0, MH)
14: end for
15: return SST ∪ {t|weight(TN[t]) > 0}

Algorithm 2 Spreading Activation For A Node

1: SpreadingActivation
2: Input:
3: TN: Tag network
4: N : Current node
5: CH: Current hop
6: MH Maximum hop
7: Method:
8: if CH > MH or weight(TN [T]) = 0 then
9: return

10: end if
11: for each node N ′ that is directly connected to N do
12: Set w = weight(N) × weight(E(N ′, N))
13: if weight(N ′) < w then
14: weight(N ′) = w
15: SpreadingActivation(TN, N ′,CH+1,MH)
16: end if
17: end for

the node in TN corresponding to t as TN [t]. Given a node n
and an edge E(n1, n2), we denote their weights as weight(n)
and weight(E(n1, n2)), respectively.

The pseudocode of our approach to infer associated tags
from the initial set of tags returned by FrePOS is shown in
Algorithm 1. It takes as input a tag network TN constructed
from all tags in the training data, a set of starting tags SST re-
turned by FrePOS, and a threshold MH that restricts the weight
propagation to a maximum number of hops. Our algorithm first
initializes the weights of nodes corresponding to tags in the set
of starting tags with the probabilities returned by FrePOS, and
it sets the weights of other nodes to 0 (Lines 8–11). For each
starting tag, our algorithm then performs spreading activation
starting from the corresponding node in the tag network by
calling the procedure (Lines 12–14).
Finally, the algorithm outputs all nodes in the set of starting
tags, along with the associated tags, which correspond to nodes
in TN whose weights are larger than zero (Line 15).

The procedure spreads the weight
of a node to its neighbors. It takes as input a tag network TN,
a starting node N , the current hop CH, and the maximum
hop MH. The procedure first checks if it needs to propagate
the weight of node N—it only propagates if the current hop
CH does not exceed the threshold MH, and the weight of the
current node is larger than zero (Lines 8–10). It then iterates
through nodes N ′ that are directly connected to N (Lines 11–
17). For each of such nodes, we compute a weight w which is
a product of the weight of node N and the weight of the edge
linking N to N ′ (Line 12). If the weight of node N ′ is less
than w, we assign w as the weight of node N ′ (Lines 13–14).
The procedure then tries to propagate the weight of N ′ to its
neighbors by a recursive call to itself (Line 15).

Java

(a) (b) (c)

0.5

0.42

Eclipse

IDE
Python

Linux

Project

0

0.42

0

0

0.5

0.42

Eclipse

IDE
Python

Linux

Project

0.36

0.42

0.36

0

0.5

0

Eclipse

IDE
Python

Linux

Project

0

0

0

0

Java Java

0.5

0.42

Eclipse

IDE
Python

Linux

Project0.42

0.36

0

0.6

0.5

0.51

Eclipse

IDE
Python

Linux

Project0.42

0.51

0

0.6

0.5

0.51

Eclipse

IDE
Python

Linux

Project0.42

0.51

0.43

0.6

Java Java Java

(d) (e) (f)

Fig. 4. Finding Associated Tags Using Spreading Activation: An Example

Example Consider a set of starting tags SST = {JAVA = 0.5,
PYTHON = 0.6} output by FrePOS, a tag network TN shown
in Figure 4 and a threshold MH = 2. Let us assume the weights
of all edges in the tag network are 0.85. At the beginning, our
approach initializes the weight of the node corresponding to
tag JAVA in TN with 0.5 (Figure 4(a)). Then, the weight of
node JAVA is propagated to its neighbors LINUX and ECLIPSE

and their weights are both updated to 0.42 (Figure 4(b)).
The weight is recursively propagated to all neighbors of node
JAVA of distance MH hops or less (Figure 4(c)). Then, our
approach processes tag PYTHON, node PYTHON’s weight is
updated to 0.6, which is the weight of tag PYTHON output
by FrePOS. (Figure 4(d)). Our approach then propagates the
weight of node PYTHON to its neighbors. If a neighbor’s
weight is lower than that which is propagated from PYTHON,
the original weight is replaced with the new weight. Otherwise,
the original weight remains unchanged. Thus, the weights of
ECLIPSE and IDE are updated to 0.51 (0.51 exceeds 0.425,
the current weights of these tags, Figure 4(e)). The weight of
node PROJECT is updated to 0.43 (Figure 4(f)). Finally, the
tags JAVA = 0.5, PYTHON = 0.6, ECLIPSE = 0.51, IDE =
0.51, LINUX = 0.42, PROJECT = 0.3 will be output.

The spreading activation process requires a parameter MH
(maximum hop); by default, we set the parameter MH to 1,
as the complexity of spreading activation is exponential to the
value of MH. At the end, our FIC component outputs candidate
tags that are output by FrePOS and the associated tags that are
output by the spreading activation procedure described above.
These tags are input to the composer component (CC).

Note that we only apply this spreading activation step to
FIC and not BIC. L-LDA used in BIC is more robust than
FrePOS to the data sparsity problem. We find that the appli-
cation of this step to BIC does not improve its effectiveness.

VI. COMPOSER COMPONENT

Given a target software object o, both BIC and FIC produce
a list of tags along with their probabilities. The composer
component combines the two lists of tags into a unified list
of tags along with a set of updated probabilities.

Given a software object o and a tag t, we define the EN-
TAGREC ranking score as ENTAGRECo(t) as follows:

ENTAGRECo(t) = α×Bo(t) + β × Fo(t) (1)

where Bo(t) and Fo(t) are the probabilities of tag t computed
by BIC and FIC respectively, and α, β ∈ [0, 1] are the weights
the composer component assigns to BIC and FIC, respectively.

Algorithm 3 Weight Tuning Algorithm

1: TuneWeights
2: Input:
3: TO: Training Tagged Software Objects
4: EC: Evaluation Criterion
5: TagsB : Set of tags inferred by BIC

6: TagsF : Set of tags inferred by FIC
7: Output:
8: α and β
9: Method:

10: Set α = 0, β = 0
11: for each α from 0 to 1, each step increases α by 0.1 do
12: for each β from 0 to 1, each step increases β by 0.1 do
13: for each object o in TO do

14: for each tag t in TagsB
⋃

TagsF do
15: Compute ENTAGRECo(t) according to Eq. 1
16: end for
17: Sort tags based on their ENTAGREC scores (desc. order)
18: Evaluate the effectiveness of α and β on o based on EC
19: end for
20: Evaluate the effectiveness of α and β on TO based on EC
21: end for
22: end for
23: return the best α and β based on EC

To automatically tune α and β, we use a set of training
software objects and employ grid search [6]. The pseudocode
of our weight tuning procedure is shown in Algorithm 3. The
weight tuning procedure takes as input the set of training
software objects TO, an evaluation criteria EC, and the two
sets of tags returned by BIC and FIC (along with their
probabilities). Our tuning procedure initializes α and β to
0 (Line 10). Then, it incrementally increases the value of α
and β by 0.1 until they reach 1.0 (Lines 11–12). For each
combination of α and β and each software object o in TO, our
tuning procedure computes the ENTAGREC scores for each
tag returned by BIC and FIC (Lines 13–16). Then tags are
ordered based on their ENTAGREC scores (Line 17). This is
the ranked list of tags that are recommended for o. Next, our
tuning procedure evaluates the quality of the resulting ranking
based on particular α and β values using EC (Line 18). The
process is repeated for all objects in TO and again the quality
of the resulting ranking is evaluated using EC (Line 20). The
process continues until all combinations of α and β have been
exhausted and our tuning procedure finally outputs the best
pair of α and β based on EC (Line 23).

Various evaluation criteria can be used in our weight tuning
procedure. In this paper, we make use of Recall@k which
have been used as the evaluation criteria in many past tag
recommendation studies, e.g., [1], [41]. Recall@k was also
used in the previous state-of-the-art study on tag inference for
software information sites [40]. Definition 1 defines Recall@k.

Definition 1: Consider a set of n software objects. For each
object oi, let the set of its correct (i.e., ground truth) tags be

Tagscorrecti . Also, let Tags
topK
i be the top-k ranked tags that

are recommended by a tag recommendation approach for oi.
Recall@k for n is given by:

Recall@k =
1

n

n∑

i=1

|Tags
topK
i

⋂
Tagscorrecti |

|Tagscorrecti |

In the training phase, the composer component learns the
two weights α and β following the procedure given above.
In the deployment phase, the composer component combines
the recommendations made by BIC and FIC by computing the
ENTAGREC scores using Equation 1 for each recommended
tag. It then sorts the tags based on their ENTAGREC scores
(in descending order) and outputs the top-k ranked tags.

TABLE I. BASIC STATISTICS OF THE FOUR DATASETS.

Dataset Objects Tags
Objects per tag

Maximum Average

STACK OVERFLOW 47,668 437 6,113 234.93

FREECODE 39,231 243 9,615 545.08

ASK UBUNTU 37,354 346 6,169 234.03

ASK DIFFERENT 13,351 153 2,019 180.88

VII. EXPERIMENTS AND RESULTS

In this section, we first present our experiment settings in
Section VII-A. Our experiment results are then presented in
Sections VII-B & VII-C. We discuss some interesting points
in Section VII-D.

A. Experimental Setting

We evaluate ENTAGREC on four datasets: STACK OVER-
FLOW, ASK UBUNTU, ASK DIFFERENT (all three part of the
Stack Exchange network), and FREECODE. STACK OVER-
FLOW is a Q&A site for software developers to post general
programming questions. ASK DIFFERENT is a Q&A site re-
lated to Apple devices, e.g., iphone, ipad, mac. ASK UBUNTU

is a Q&A site about Ubuntu. FREECODE is a site containing
descriptions of many software projects.

Table I presents descriptive statistics of the four datasets.
The STACK OVERFLOW and FREECODE datasets are obtained
from Xia et al. and they have been used to evaluate TAG-
COMBINE [40]. The ASK UBUNTU and ASK DIFFERENT

datasets are new. We collect all questions in ASK UBUNTU

and ASK DIFFERENT that are posted before April 2012.
Following [40], to remove noise corresponding to tags that are
assigned idiosyncratically, we filter out tags that are associated
with less than 50 objects. These tags are less interesting since
not many people use them, and thus they are less useful to be
used as representative tags and recommending them does not
help much in addressing the tag synonym problem addressed
by tag recommendation studies. The numbers summarized in
Table I are after filtering.

We perform a ten-fold cross validation [18] to evaluate our
approach. We randomly split the dataset into ten subsamples.
Nine of them are used as training data to train ENTAGREC and
one subsample is used to test. We repeat the process ten times
and use Recall@k as the evaluation metric. Unless otherwise
stated, we set the values of KBayesian and KFrequentist at 70.

Our evaluation involves two parts. First, we compare the
effectiveness of ENTAGREC with those of TAGCOMBINE and
the individual Bayesian and frequentist components that are
integrated in ENTAGREC. TAGCOMBINE is the state-of-the-
art tag recommendation approach, recently proposed by Xia et
al [40]. Second, we perform sensitivity analyses to investigate
the effect of different parameter values and different amounts
of training data. We conduct all our experiments on a Windows
2008 server with 8 Intel R©2.53GHz cores and 24GB RAM.

B. Experiment Results

We compare ENTAGREC with competing approaches:
TAGCOMBINE proposed by Xia et al. [40] and the individual
Bayesian and frequentist inference components (BIC and FIC)
combined in ENTAGREC.

Table II presents the comparison between ENTAGREC,
TAGCOMBINE and the individual Bayesian and frequentist

TABLE II. Recall@5 AND Recall@10 FOR FOUR COMPETING

APPROACHES ENTAGREC, TAGCOMBINE [40], BAYESIAN AND

FREQUENTIST. THE HIGHEST VALUE IS TYPESET IN BOLDFACE.

Recall@5

Dataset ENTAGREC TAGCOMBINE Bayesian Frequentist

STACK OVERFLOW 0.805 0.595 0.565 0.593

ASK UBUNTU 0.815 0.568 0.505 0.637

ASK DIFFERENT 0.88 0.675 0.523 0.713

FREECODE 0.64 0.639 0.391 0.545

Recall@10

Dataset ENTAGREC TAGCOMBINE Bayesian Frequentist

STACK OVERFLOW 0.868 0.724 0.671 0.691

ASK UBUNTU 0.876 0.727 0.61 0.738

ASK DIFFERENT 0.944 0.821 0.633 0.827

FREECODE 0.753 0.777 0.506 0.626

inference components, presented in Section IV and V, respec-
tively. We performed ten-fold cross-validation and evaluated
the approaches in terms of Recall@5 and Recall@10. ENTAG-
REC achieves impressive improvements over TAGCOMBINE

for the Stack Exchange datasets (more than 30% for Recall@5
and more than 15% for Recall@10), and performs comparably
to TAGCOMBINE on FREECODE. Averaging across the 4
datasets, ENTAGREC improves TAGCOMBINE in terms of
Recall@5 and Recall@10 by 27.3% and 12.9% respectively.
Recall@5 and Recall@10 of ENTAGREC are always higher
than those of the individual components which demonstrates
the value of combining them.

We note however, that Recall@5 and Recall@10 are de-
fined as average (mean) values (cf. Definition 1). However,
distribution of the

|Tags
topK
i

⋂
Tagscorrecti |

|Tagscorrecti |

values for software objects can hardly be expected to be sym-
metric, suggesting the use of mean to be problematic (cf. [37]).
Indeed, for ENTAGREC and STACK OVERFLOW we have
observed that the distribution is negatively skewed (skewness
≃ −2) and leptokurtic (kurtosis ≃ 6.17). Therefore, to obtain
more insight into the recall values, we compare the distribu-
tions of Recall@5 and Recall@10 for ENTAGREC, TAGCOM-
BINE, BIC and FIC by means of the recently-proposed multiple

contrast test procedure T̃ [22], [36], using 5% family-wise

error rate. T̃ is robust against unequal population variances and
is applicable to different types of contrasts, including compar-
isons of multiple distributions (TAGCOMBINE, BIC and FIC)
with a particular one (ENTAGREC), the so called Dunnett-

type contrasts [12]. Applying T̃ we observe that the recall
values of ENTAGREC are higher than those of FIC and BIC,
both for Recall@5 and Recall@10, across the four datasets.
The corresponding p-values were too small to be computed
exactly (< 0.01), showing the significance of the differences in
the recall values achieved by the different approaches. For the
Stack Exchange datasets (STACK OVERFLOW, ASK UBUNTU,

ASK DIFFERENT) T̃ establishes that ENTAGREC outperforms
TAGCOMBINE both for Recall@5 and Recall@10. For FREE-
CODE, the difference between ENTAGREC and TAGCOMBINE

in terms of Recall@5 is not statistically significant. However,
TAGCOMBINE significantly outperforms ENTAGREC in terms
of Recall@10 but the absolute difference is small (0.024).

To investigate if the differences in the recall values are
substantial, we also compute Cohen’s d [10] which measures
effect size. The results are shown in Table III. Cohen defined
an effect size of 0.2, 0.5, 0.8 to be small, medium, and large

TABLE III. EFFECT SIZES (RECALL). E = ENTAGREC. T =
TAGCOMBINE, B = BAYESIAN, F = FREQUENTIST.

Recall@5

Dataset E vs. T E vs. B E vs. F

STACK OVERFLOW 0.60 0.70 0.53

ASK UBUNTU 0.76 0.91 0.46

ASK DIFFERENT 0.67 1.1 0.48

FREECODE 0.003 0.77 0.27

Recall@10

Dataset E vs. T E vs. B E vs. F

STACK OVERFLOW 0.46 0.63 0.49

ASK UBUNTU 0.49 0.85 0.4

ASK DIFFERENT 0.49 1.3 0.41

FREECODE -0.08 0.80 0.40

10 30 50 70 90 110

0
.6

0
.7

0
.8

0
.9

1
.0

K

E
C

Fig. 5. Results for different KBayesian and KFrequentist for KBayesian =

KFrequentist: Recall@5 (empty symbols), Recall@10 (filled symbols), STACK

OVERFLOW (squares), ASK UBUNTU (circles), ASK DIFFERENT (triangles)
and FREECODE (diamonds).

respectively [10]. If the effect size is close to 0, it means that
the difference is not substantial. From the results we can con-
clude that ENTAGREC substantially outperforms TAGCOM-
BINE, BIC, and FIC on STACK OVERFLOW, ASK UBUNTU,
and ASK DIFFERENT datasets (with close-to-medium to large
effect sizes). For the FREECODE dataset, ENTAGREC also
substantially outperforms BIC and FIC (with small to large
effect sizes). However, the difference between the performance
of ENTAGREC and TAGCOMBINE on FREECODE is not sub-
stantial (effect sizes close to zero).

C. Sensitivity Analyses

We perform two different sensitivity analyses. We start by
varying parameters KBayesian and KFrequentist of ENTAGREC,
and proceed with varying the size of the training data.

To understand the impact of varying the ENTAGREC-
parameters KBayesian and KFrequentist on the recall values, we
vary both parameters over {10, 30, 50, 70, 90, 110} and com-
pute Recall@5 and Recall@10. For the sake of simplicity we
set KBayesian = KFrequentist. Our main goal is to investigate
whether the performance of ENTAGREC is robust across a
wide range of parameter values for KBayesian and KFrequentist.

Figure 5 shows that the recall values of ENTAGREC exhibit
an increasing trend followed by stabilization. While the best
recall is achieved for the largest values of the parameters, the
time needed to train and recommend tags increases as well. We
note that the results of ENTAGREC remain relatively stable
across a wide range of parameters KBayesian and KFrequentist.
In this work, we choose the value where stabilization can
be observed both for Recall@5 and Recall@10 across four
datasets i.e., 70, as the default parameters of ENTAGREC.

As opposed to explicit parameters KBayesian and KFrequentist

that influence the results of ENTAGREC, the amounts of

10 20 30 40 50 60 70 80 90

0
.4

0
.6

0
.8

1
.0

Percentage of the training data

E
C

Fig. 6. Recall values (y) decreases gracefully as the percentage of the training
data (x) decreases: : Recall@5 (empty figures), Recall@10 (black figures),
STACK OVERFLOW (squares), ASK UBUNTU (circles), ASK DIFFERENT

(triangles) and FREECODE (diamonds).

training and test data implicitly affect the results. We would
like to understand the impact of the training and test data on
the results of the algorithm. Our main goal is to investigate
whether ENTAGREC can work reasonably well when only a
limited amount of training data is available.

Hence, we vary the amount of training and test data, from
10% to 90% training data, on each one of the four datasets.
The training data is randomly selected and the remaining part
of the data is used as test data. Figure 6 shows that the
values of Recall@5 (empty symbols) and Recall@10 (filled
symbols) decrease gracefully as the percentage of training data
decreases. When we reduce the training data from 90% to 50%
the average reduction in Recall@10 and Recall@5 are 5.5%
and 15.7%, respectively. Also, when we reduce the training
data from 90% to 10% the average reduction in Recall@10
and Recall@5 are 5.9% and 19.2%, respectively.

D. Discussion

Example. Figure 7 shows a software object from STACK

OVERFLOW with the and tags. TAGCOMBINE

cannot infer any of the tags. On the other hand ENTAGREC

can infer all tags. This is one of the many examples where the
performance of ENTAGREC is better than TAGCOMBINE.

Taryn East

9,133 3 29 61

CodingWithoutComments

9,106 12 52 73

I've got all these comments that I want to make into 'RDoc comments', so they can be formatted

appropriately and viewed using !" . Can anyone get me started on understanding how to use RDoc?

ruby rdoc

edited May 5 '13 at 0:24 asked Aug 1 '08 at 13:38

add comment

How do I add existing comments to RDoc in Ruby?

Fig. 7. ENTAGREC correctly suggests tags and for this STACK

OVERFLOW question, while TAGCOMBINE does not.

Precision@k Results. Aside from Recall@k, Precision@k has
also been used to evaluate information retrieval techniques.
Definition 2 defines Precision@k. In this paper, we focus on
Recall@k as the evaluation metric. A similar decision was
made by past tag recommendation studies [40], [41]. This is the
case as the number of tags that are attached to an object is often
small (much less than K). Thus, the value of Precision@k is
often very low and is not meaningful.

Definition 2: Consider a set of n software objects. For each
object oi, let the set of its correct (i.e., ground truth) tags be

TABLE IV. Precision@5 AND Precision@10 FOR FOUR COMPETING

APPROACHES ENTAGREC, TAGCOMBINE [40], BAYESIAN AND

FREQUENTIST. THE HIGHEST VALUE IS TYPESET IN BOLDFACE.

Precision@5

Dataset ENTAGREC TAGCOMBINE Bayesian Frequentist

STACK OVERFLOW 0.346 0.221 0.232 0.258

ASK UBUNTU 0.358 0.251 0.212 0.282

ASK DIFFERENT 0.369 0.278 0.212 0.298

FREECODE 0.382 0.381 0.230 0.322

Precision@10

Dataset ENTAGREC TAGCOMBINE Bayesian Frequentist

STACK OVERFLOW 0.187 0.151 0.141 0.151

ASK UBUNTU 0.193 0.158 0.131 0.165

ASK DIFFERENT 0.200 0.173 0.130 0.175

FREECODE 0.240 0.249 0.153 0.200

TABLE V. EFFECT SIZES (PRECISION). E = ENTAGREC. T =
TAGCOMBINE, B = BAYESIAN, F = FREQUENTIST.

Precision@5

Dataset E vs. T E vs. B E vs. F

STACK OVERFLOW 0.78 0.62 0.40

ASK UBUNTU 0.55 0.78 0.33

ASK DIFFERENT 0.49 0.87 0.33

FREECODE 0.005 1.0 0.32

Precision@10

Dataset E vs. T E vs. B E vs. F

STACK OVERFLOW 0.38 0.50 0.33

ASK UBUNTU 0.35 0.64 0.24

ASK DIFFERENT 0.28 0.75 0.24

FREECODE -0.06 0.65 0.26

Tagscorrecti . Also, let Tags
topK
i be the top-k ranked tags that

are recommended by a tag recommendation approach for oi.
Average Precision@k for n is given by:

Precision@k =
1

n

n∑

i=1

|Tags
topK
i

⋂
Tagscorrecti |

|Tags
topK
i |

Still, for completeness sake, we show the Precision@k
results in Table IV. The results show that ENTAGREC out-
performs TAGCOMBINE, BIC, and FIC on all datasets in
terms of Precision@5. In terms of Precision@10, ENTAGREC

outperforms BIC and FIC on all datasets; ENTAGREC also
outperforms TAGCOMBINE on three out of the four datasets.
The difference between Precision@10 of ENTAGREC and
TAGCOMBINE is small (i.e., 0.009). We also performed the T̃

test and found that in terms of Precision@5, ENTAGREC sig-
nificantly outperforms TAGCOMBINE, BIC and FIC. Also, in
terms of Precision@10, ENTAGREC significantly outperforms
BIC and FIC on all datasets and TAGCOMBINE on STACK

OVERFLOW, ASK UBUNTU, and ASK DIFFERENT. For FREE-
CODE, TAGCOMBINE significantly outperforms ENTAGREC in
terms of Precision@10.

To investigate if the differences in the precision values
are substantial, we also compute Cohen’s d which measures
effect size. The results are shown in Table V. From the results
we can conclude that ENTAGREC substantially outperforms
TAGCOMBINE, BIC, and FIC on the STACK OVERFLOW, ASK

UBUNTU, and ASK DIFFERENT datasets (with small to large
effect sizes). For the FREECODE dataset, ENTAGREC also
substantially outperforms BIC and FIC (with small to large
effect sizes). However, the difference between the performance
of ENTAGREC and TAGCOMBINE on FREECODE is not sub-
stantial (effect sizes close to zero).

Efficiency. We find that ENTAGREC runtimes for the training
and deployment phases are reasonable. ENTAGREC’s training
time can mostly be attributed to training an L-LDA model in

the Bayesian inference component of ENTAGREC, which never
exceeds 18 minutes (measured on the STACK OVERFLOW

dataset, the largest of the four). The Frequentist inference
component is much faster; its runtime never exceeds 40
seconds (measured on the STACK OVERFLOW dataset). In
the deployment phase, the average time ENTAGREC takes to
recommend a tag never exceeds 0.128 seconds.

Threats to Validity. Threats to external validity relate to the
generalizability of our results. We have analyzed four popular
software information sites and more than 130,000 software
objects. In the future, we plan to reduce this threat further
by analyzing even more software objects from more software
information sites. As a threat to internal validity, we assume
that the data in the software information sites are correct. To
reduce the threat we only used older data—assuming people
correct wrongly/poorly assigned tags. Also, two of our datasets
(i.e., STACK OVERFLOW and FREECODE) were used in a past
study [40]. We use a lot of data and only consider tags that are
used to label at least 50 objects to further reduce the impact
of noise. Furthermore, manual inspection of a random sample
of 100 Stack Overflow objects (questions) revealed that only
1 had a clearly irrelevant tag (out of a total of 3 tags for that
object), and for 19 others we couldn’t accurately determine
the relevancy of some of their tags (typically one out of 3 or
more tags per object).

Threats to construct validity relate to the suitability of our
evaluation metrics. We have used Recall@k and Precision@k
to evaluate our proposed approach ENTAGREC in comparison
with other approaches. These measures are standard infor-
mation retrieval measures used by prior tag recommendation
studies, e.g., [1], [40], [41]. We have also performed statistical
test and effect size test to check if the differences in Recall@k
and Precision@k are significant and substantial. Thus, we
believe there is little threat to construct validity.

VIII. RELATED WORK

Tag Recommendation: Al-Kofahi et al. proposed TAGREC

which recommends tags in work item systems (e.g., IBM
Jazz) [1]. There are a number of studies from the data mining
research community, that recommend tags for social media
sites like Twitter, Delicious, and Flickr [19], [30], [41]. Among
these studies, the work by Zangerle et al. is the latest approach
to recommend hashtags for short messages in Twitter [41].
Xia et al. proposed TAGCOMBINE, which combines three
components: a multi-label ranking component, a similarity
based ranking component, and a tag-term based ranking
component [40]. The multi-label ranking component employs
a multi-label classification algorithm (i.e., binary relevance
method with naive Bayes as the underlying classifier) to predict
the likelihood of a tag to be assigned to a software object. The
similarity based-ranking component predicts the likelihood of
a tag (to be assigned to a software object) by analyzing the tags
that are given to the top-k most similar software objects that
were tagged before. The tag-term based ranking component
predicts the likelihood of a tag (to be assigned to a software
object) by analyzing the number of times a tag has been
used to tag a software object containing a term (i.e., a word)
before. Xia et al. have shown that TAGCOMBINE outperforms
TAGREC and Zangerle et al.’s approach in recommending tags
in software information sites.

The closest work to ours is TAGCOMBINE proposed by Xia
et al. which is also the state-of-the-art work [40]. There are a

number of technical differences between our approach, named
ENTAGREC, and TAGCOMBINE. ENTAGREC combines two
components: a Bayesian inference component that employs
Labeled LDA (BIC), and an enhanced frequentist inference
component that removes unrelated words with the help of a
parts-of-speech (POS) tagger, and finds associated tags with
a spreading activation algorithm (FIC). Our BIC is related
to the multi-label ranking component of TAGCOMBINE since
both of them employ Bayesian inference. The multi-label
ranking component of TAGCOMBINE constructs many one-
versus-rest Naive Bayes classifiers, one for each tag. Each
Naive Bayes classifier simply predicts the likelihood of a
software object to be assigned a particular tag. In ENTAGREC,
we construct only one classifier which is a mixture model that
considers all tags together. Mixture models have been shown to
outperform one-versus-rest traditional multi-label classification
approaches [15], [26], [27]. Also, our FIC removes unrelated
words (using POS tagger) and finds associated tags (using
spreading activation) while none of the three components of
TAGCOMBINE perform these. We have compared our approach
with TAGCOMBINE, on four datasets: STACK OVERFLOW,
ASK UBUNTU, ASK DIFFERENT, and FREECODE. We show
that our approach outperforms TAGCOMBINE on three datasets
(i.e., STACK OVERFLOW, ASK UBUNTU, ASK DIFFERENT),
and performs as well as TAGCOMBINE on one dataset (i.e.,
FREECODE).

Tagging in Software Engineering: The need for automatic
tag recommendation has been recognized both by practi-
tioners [20], [21], [39] and by researchers. Aside from tag
recommendation studies mentioned above, there are several
software engineering studies that also analyze tagging and
leverage tags for various purposes. Treude et al. performed
an empirical study on the impact of tagging on a large project
with 175 developers over a two years period [34]. Wang et al.
analyzed tags of projects in FREECODE, inferred the semantic
relationships among the tags, and expressed the relationships
as a taxonomy [38]. Thung et al. detected similar software
applications using software tags [32]. Gottipati et al. automat-
ically tagged posts in software forums with 7 predefined tags
to help improve a search engine that finds relevant answers
from forum threads [17].

IX. CONCLUSION AND FUTURE WORK

In this work, we propose a novel approach to recommend
tags to software information sites. Our approach, named EN-
TAGREC, learns from tags of historical software objects to
infer tags of new software objects. To recommend tags, EN-
TAGREC performs a combination of Bayesian and frequentist
inferences, which are two opposite yet complementary lines
of thought in the statistics community. To perform Bayesian
inference, we map the tag recommendation problem to a
supervised topic mining problem, and make use of Labeled
Latent Dirichlet Allocation (L-LDA) which performs statistical
analysis leveraging the Bayes rule. To perform frequentist
inference, we count the number of nouns and noun phrases
that are used in training software objects which are assigned
a particular tag, and leverage the relationships among tags.
We make use of a part-of-speech tagger and the spreading
activation algorithm to perform frequentist inference. ENTAG-
REC composes the two inferences by assigning weights to
each of them; the weights are inferred by finding the best
weights that optimizes the performance of ENTAGREC on a

training dataset. We evaluated the performance of ENTAGREC

on four datasets, STACK OVERFLOW, ASK UBUNTU, ASK

DIFFERENT, and FREECODE, which contain 47,688, 39,231,
37,354, and 13,351 software objects, respectively. We found
that that ENTAGREC achieves Recall@5 scores of 0.805,
0.815, 0.88 and 0.64, and Recall@10 scores of 0.868, 0.876,
0.944 and 0.753, on STACK OVERFLOW, ASK UBUNTU,
ASK DIFFERENT, and FREECODE, respectively. In terms of
Recall@5 and Recall@10, averaging across the 4 datasets,
ENTAGREC improves TAGCOMBINE [40], which is the state
of the art approach, by 27.3% and 12.9% respectively.

As future work, we plan to reduce the threats to validity by
experimenting with more software objects from more software
information sites. Also, we plan to perform a qualitative study
to better understand the nature of the inferred tags and a sen-
sitive study to investigate how robust is the proposed approach
against poor selection of parameters. Furthermore, we plan to
improve the Recall@5 and Recall@10 of ENTAGREC further
by investigating cases where ENTAGREC is inaccurate, and by
building a more sophisticated machine learning solution.

Acknowledgements. We would like to thank Xin Xia for
passing us datasets used to evaluate TAGCOMBINE and for
helping us collect some statistics. Bogdan Vasilescu gratefully
acknowledges support from the Dutch Science Foundation
(NWO), grant NWO 600.065.120.10N235.

REFERENCES

[1] J. M. Al-Kofahi, A. Tamrawi, T. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen. Fuzzy set approach for automatic tagging in evolving software.
In ICSM, pages 1–10, 2010.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo.
Recovering traceability links between code and documentation. IEEE
Trans. Softw. Eng., 28(10):970–983, Oct. 2002.

[3] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability
with topic modeling. In ICSE, pages 95–104, 2010.

[4] P. Baldi, C. V. Lopes, E. Linstead, and S. K. Bajracharya. A theory of
aspects as latent topics. In OOPSLA, pages 543–562, 2008.

[5] M. J. Bayarri and J. O. Berger. The interplay of Bayesian and frequentist
analysis. Statistical Science, 19(1):58–80, 2004.

[6] J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. JMLR, 13:281–305, 2012.

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.
JMLR, pages 993–1022, 2003.

[8] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer.
Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code. In CHI, pages 1589–1598. ACM, 2009.

[9] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and
S. Panichella. Improving IR-based traceability recovery via noun-based
indexing of software artifacts. Journal of Software: Evolution and
Process, 25(7):743–762, 2013.

[10] J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates., 1988.

[11] F. Crestani. Application of spreading activation techniques in informa-
tion retrieval. Artif. Intell. Rev., 11(6):453–482, 1997.

[12] C. W. Dunnett. A multiple comparison procedure for comparing several
treatments with a control. Journal of American Statistical Association,
50(272):1096–1121, 1955.

[13] B. Efron. Why isn’t everyone a Bayesian? The American Statistician,
40(1):1–5, Feb. 1986.

[14] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.
CRC Press, 2003.

[15] N. Ghamrawi and A. McCallum. Collective multi-label classification.
In CIKM, pages 195–200, 2005.

[16] S. A. Golder and B. A. Huberman. Usage patterns of collaborative
tagging systems. Journal of Information Science, 32(2):198–206, Apr.
2006.

[17] S. Gottipati, D. Lo, and J. Jiang. Finding relevant answers in software
forums. In ASE, pages 323–332, 2011.

[18] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., 2011.

[19] R. Jäschke, L. B. Marinho, A. Hotho, L. Schmidt-Thieme, and
G. Stumme. Tag recommendations in folksonomies. In PKDD, 2007.

[20] jmac. Select and display ’suggested tags’ for all posts based on related
questions (or other logic), Sept. 2013. http://meta.stackexchange.com/
q/196702/182512.

[21] Jud.Her. Tag recommendations for Stack Overflow, Apr. 2011. http:
//meta.stackexchange.com/q/88611/182512.

[22] F. Konietschke, L. A. Hothorn, and E. Brunner. Rank-based multiple test
procedures and simultaneous confidence intervals. Electronic Journal
of Statistics, 6:738–759, 2012.

[23] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization
using latent dirichlet allocation. Information & Software Technology,
52(9):972–990, 2010.

[24] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. D. Lucia. How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms. In ICSE,
pages 522–531, 2013.

[25] M. F. Porter. An algorithm for suffix stripping. In Readings in
information retrieval, pages 313–316. Morgan Kaufmann, 1997.

[26] A. Puurula. Mixture models for multi-label text classification. In 10th
New Zealand Computer Science Research Student Conference, 2011.

[27] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled lda: a
supervised topic model for credit attribution in multi-labeled corpora.
In EMNLP ’09, pages 248–256, 2009.

[28] F. I. Samaniego. A Comparison of the Bayesian and Frequentist
Approaches to Estimation. Series in Statistics. Springer, 2010.

[29] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation. In MSR, 2013.

[30] B. Sigurbjörnsson and R. van Zwol. Flickr tag recommendation based
on collective knowledge. In WWW ’08, pages 327–336, 2008.

[31] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The impact
of social media on software engineering practices and tools. In FoSER
’10, pages 359–364, 2010.

[32] F. Thung, D. Lo, and L. Jiang. Detecting similar applications with
collaborative tagging. In ICSM, pages 600–603, 2012.

[33] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich
part-of-speech tagging with a cyclic dependency network. In HLT-
NAACL, 2003.

[34] C. Treude and M.-A. Storey. How tagging helps bridge the gap between
social and technical aspects in software development. In ICSE ’09,
pages 12–22, 2009.

[35] B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov. How social
Q&A sites are changing knowledge sharing in open source software
communities. In CSCW, pages 342–354, 2014.

[36] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On the
variation and specialisation of workload - a case study of the Gnome
ecosystem community. Empirical Software Engineering, 19(4):955–
1008, 2014.

[37] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand. By no
means: A study on aggregating software metrics. In 2nd International
Workshop on Emerging Trends in Software Metrics, WETSoM, pages
23–26. ACM, 2011.

[38] S. Wang, D. Lo, and L. Jiang. Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging. In ICSM,
pages 604–607, 2012.

[39] D. Warbox. Auto-tagging, July 2009. http://meta.stackoverflow.com/
questions/1377/auto-tagging.

[40] X. Xia, D. Lo, X. Wang, and B. Zhou. Tag recommendation in software
information sites. In MSR ’13, pages 287–296, 2013.

[41] E. Zangerle, W. Gassler, and G. Specht. Using tag recommenda-
tions to homogenize folksonomies in microblogging environments. In
SocInfo’11, pages 113–126, 2011.

