
A Complete Operator Library for DSL Evolution Specification

J.G.M. Mengerink1, A. Serebrenik1, R.R.H. Schiffelers1,2, M.G.J. van den Brand1

{j.g.m.mengerink, a.serebrenik, r.r.h.schiffelers, m.g.j.v.d.brand}@tue.nl
ramon.schiffelers@asml.com

1 Eindhoven University of Technology, The Netherlands,
2 ASML, The Netherlands

Abstract— Domain-specific languages (DSLs) allow users to
model systems using concepts from a specific domain. Evolution
of DSLs triggers co-evolution of models developed in these
languages. Manual co-evolution of the thousands of models is
unfeasible, calling for an automated support.

A prerequisite to automating model co-evolution with respect
to DSL evolution is the ability to formally specify DSL evolution,
e.g., using predefined evolution operators. Success or failure
of the practical application of the operator-based approach
therefore depends heavily on the operators offered by the
operator library at hand.

In this paper we evaluate the completeness of the state-of-
the-art operator library claimed to be “practically complete”
(which we denote as H) by using it to specify evolution of an
ecosystem of 22 commercial DSLs over the period of four years.
We observe that 11% of the changes cannot be specified.

However, there is no guarantee that extending the library
with the identified deficiencies will be sufficient to specify evo-
lution of other DSLs. To mitigate this, we design a theoretically
complete library of operators, R. We observe that 77% of the
operators from R are absent from H. Of the deficiencies in H,
72% could not be revealed by means of studying the extensive
industrial ecosystem above.

Our study suggests that the existing operator libraries are
not extensive enough to specify evolution of large model-driven
software ecosystems. Since extending operator libraries on a
per-case study basis does not yield satisfactory results so far,
we advocate an alternative, i.e.,a theoretically complete library
of operators R.

I. INTRODUCTION

Domain specific (modeling) languages (DSLs) offer a way
to model complex systems in terms of familiar domain con-
cepts. DSLs are created by specifying their abstract syntax
using meta-models [1] that define the concepts and structure
of a language1. Because of this centralized definition of
concepts and structure, meta-models have become, by design,
a hotspot in the model driven software engineering (MDSE)
development process.

As with classical software, meta-models change over
time [2]. This means that when meta-models change, ar-
tifacts that depend on the meta-model must co-evolve to
reflect changes made to the meta-models. This is known as
the co-evolution problem in MDSE [3]. Artifacts that may
require co-evolution include models [4], [5], [6], [7], model-
transformations [8], [9], text editors, and graphical editors

1In our case study, there is a one-to-one correspondence between DSLs
and meta-models, hence these terms are used as synonyms throughout this
paper.

[10]. In industry, we observe that the number of artifacts
conforming to a single meta-model number in the thousands,
making manual co-evolution of artifacts time-consuming,
error-prone, and therefore very costly. In practice, this results
in a strongly reduced evolvability of (meta-)models and
MDSE ecosystems in general.

To mitigate these challenges, we wish to automate the co-
evolution of artifacts with respect to meta-model evolution.
As already recognized by Meyers and Vangheluwe [11], a
first step towards this automation is the formalization of
meta-model evolution. This formal evolution specification
will then be the foundation on which future work for co-
evolution will be grounded.

An existing approach for formalizing meta-model evo-
lution is the operator-based2 approach [7], [13], in which
the evolution of a meta-model is specified in terms of
reusable operators that each encode an (often-occurring)
pattern of evolution (e.g., “Create new class”). The practical
applicability of such an approach relies heavily on the set
of available operators, known as operator libraries, such as
those surveyed by Herrmannsdörfer et al. [14]. Our first
research question is thus:

RQ1: To what extent can existing operator libraries
specify evolution of DSLs in a large-scale industrial
MDSE ecosystem?

To answer RQ1 we perform a conceptual replication of
the work of Herrmannsdörfer et al.[14] and apply the state-
of-the-art operator library to a large-scale industrial case
study. We find that 11% of the evolutionary changes in
the case study DSLs cannot be specified using the operator
library, indicating a deficiency in the library. To mitigate this
deficiency, we wish to extend the library. However, we aim
beyond the scope of our case-study and wish to support any
DSL based on Ecore [15], the main vehicle for the DSL
design in the Eclipse Modeling Framework [16].

To achieve this goal two approaches can be considered:
either to perform a series of case studies and incrementally
extend the library to address the specific deficiencies identi-
fied in each case study, or to design an approach allowing one
to specify evolution of DSLs in any case study. We advocate

2Also known as operation-based approach [12].



the second approach. As opposed to practical completeness
of the earlier work [14] the approach we propose results in
a theoretically complete library, denoted R (Table V).

Based on R, we study which operators from the complete
library R are not supported in practice by means of our
second research question.

RQ2: Which operators from R are missing from
state-of-the-art operator libraries?

To answer RQ1, we chose to use a top-down approach
rather than a bottom-up approach. Aiming for a complete
operator library, we wonder which operators we would not
have uncovered using a bottom-up approach.

RQ3: What are the limitations of our case study with
respect to finding operator library deficiencies?

The remainder of this paper is structured as follows: In
Section II we discuss related work. In Section III we present
the setup of our study, and report on our results in Section IV.
Lastly, in Section V we discuss our results, and we present
limitations, and future work and conclusions in Sections VI
and VII respectively.

II. BACKGROUND

In the literature, several approaches have been presented
towards automating the evolution of meta-models and co-
evolution of meta-modeling artifacts (e.g.,models and model-
transformation). In Section II-A, we give a brief introduction
into the fundamental concepts of the Ecore meta-meta-
model and meta-modeling itself. In Section II-B we discuss
existing ways to specify evolution, and a number of different
approaches to obtaining such evolution specifications are de-
scribed in Section II-C. Lastly, we discuss existing operator
libraries in Section II-D.

A. Meta-modeling

In model driven engineering (MDE), models abstract or
simplify some part of a real life system [17], allowing
analysis of that system. Meta-models describe the concepts
and structures of these models, such that models are instances
of meta-models just as objects are instances of classes.
Consequently, models conform to their meta-models [18].
These relations are illustrated in Fig. 1 [19][17].

The structure of meta-models, in turn, is described by
meta-meta-models, such as the Ecore meta-meta-model
[15], which is part of the Eclipse Modeling Framework
(EMF) [16], [20]. A fragment of the Ecore meta-meta-
model is depicted in Fig. 2.

As with the relation of models with respect to meta-
models, Ecore-based meta-models are instantiations of the
Ecore meta-meta-model. In Fig. 3, an example of an
Ecore-based meta-model is presented. This meta-model
describes PetriNet models and consists of four instances
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Fig. 1: Conformance relations between models, meta-models,
and meta-meta-models.

Fig. 2: A fragment of the Ecore meta-meta-model taken from
the Eclipse Juno documentation [21].

of EClasses: PetriNet, Place, Arc, and Transition. They
contain information using attributes (e.g., Place.name), and
are related using references. We distinguish two kinds of ref-
erences: regular references (e.g., Arc.place) and containment
references (e.g., PetriNet.transitions). Containment refer-
ences are the Ecore equivalent of a composition association.
Attributes and references are EStructuralFeatures.

B. How to Specify Meta-Model Evolution

The goal of evolution specification is to formalize the
differences between two versions of a (meta-)model. In the
literature, a number of approaches for the specification of
(meta-)model evolution (or model differences in general)
have been presented [22]:

Difference meta-models [22] define a language for speci-
fying differences as models, according to the “everything is
a model” principle. A model of this difference meta-model
can represent the changes made to an initial version of a
(meta-)model, in order to obtain the new version.
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Fig. 3: An Ecore-based meta-model describing PetriNet
models.

Coloring [23] techniques use a visual representation in
which common parts of two (meta-)model versions are
colored. However, this approach becomes less appealing as
the (meta-)models under study become large.

Lastly, Edit scripts (also known as the directed delta [24],
or operation-based approach [12]) formalize differences in
terms of operations (such as ADD and DELETE) in a proce-
dural way. An example of such an approach is the operator-
based approach by Wachsmuth [7], which formalizes the
differences between two meta-models in terms of reusable
and configurable patterns of evolution known as operators.

C. How to Obtain Evolution Specification

In the literature, several approaches exist for obtaining
such an evolution specification.

Manual Specification approaches [25] require the user
to manually create the model co-evolution specification in
some DSL. However, as meta-models and their evolutions
become large, so does the effort and difficulty required to
manually create co-evolution specification by hand [26]. For
this reason, we consider manual specification to be out of
scope of this research.

Recording approaches [13] record the editing performed
to the meta-model by the user, and create an evolution
specification based on these actions.

State-based differencing approaches [6], [13] take both the
original, and the evolved version of a meta-model, and derive
an evolution specification using model differencing.

By-example approaches [27] require the user to manually
migrate several models between the old and new meta-model
versions, and attempt to distill the meta-model changes.

To reduce the workload of the user, the mentioned ap-
proaches attempt to approximate an evolution specification,
rather than have the user specify one by hand. However,
this comes at a price: the approaches have to make certain
choices for the user without confirming that those choices
correspond to the user’s intention. Consider Fig. 4. Different
evolutionary scenarios could have taken place, including but
not limited to (1) X.name was renamed to X’.id and Y’.name
is new; (2) X.name was renamed to Y’.name and X’.id is
new; (3) X.name was removed, and both X’.id and Y’.name
are new. If an evolution specification is approximated, the
algorithm that does so must choose one of these options,

name : String
X

 
Y

ys

(a) Before Evolution

id : String
X’

name : String
Y’

ys

(b) After Evolution

Fig. 4: An example of meta-model evolution

without knowing what the users intention was. We call this
the semantic gap.

Lastly, Operator-based approaches [7], [13], in contrast
to the other approaches, allow the user to specify the meta-
model evolution by hand3. Rather than approximating the
specification from a source of meta-data (e.g., user actions
on the meta-model), the user is asked to specify meta-model
evolution in terms of reusable operators that each encode
an often-occurring pattern of evolution (and possibly model
co-evolution4). This mitigates the semantic gap that arises
through evolution specification approximation, by having the
user formally define the exact evolution. The operator-based
approach has even been mathematically formalized in terms
of graph transformations by Mantz et al. [28], [29].

D. Operator Libraries

Because the operator based approach allows for reuse of
evolution patterns, it is appealing to large-scale industrial
cases. However, the practical applicability of this approach
relies heavily on the set of available operators [13].

A number of operator libraries have been proposed and
applied to industrial case studies. Herrmannsdörfer et al.
have taken a number of these libraries and case studies
and combined them into a single library that provides 61
atomic and compound operators [14]. For each of these
operators, a practical evaluation on eighteen case studies
is provided. The authors claim that their library of 61
operators is complete for practical applications. Although
the applicability of this operator library has already been
investigated in an industrial context [14], these studies limit
themselves to studies of a single meta-model at a time and
are primarily set in the automotive domain. As we have
explained at the start of Section III, our industrial case study
of twenty-two DSLs with four years of history provides a
more elaborate validation.

In this paper, we focus solely on atomic operators
(also knows as primitives) [30], i.e., operators with ef-
fects that cannot be decomposed into smaller operators
on the meta-model. For example, the compound operator
CreateOppositeReference [14] can be decomposed

3Some techniques even provide an initial version of the specification
automatically

4In this paper we only consider evolution



into an application of CreateReference and an appli-
cation of SetOppositeReference, where the two latter
operators cannot be decomposed further. We have chosen to
focus on atomic operators because they form the foundation
for further operator specification (i.e., every compound oper-
ator can be expressed in terms of atomic operators). In order
to properly research compound operators (which we have
marked as future work), a complete set of atomic operators
is required first.

III. STUDY SETUP

To answer RQ1, we perform a conceptual replication
(cf. [31]) of the work of Herrmannsdörfer et al. [14], [32].
We apply the methodology of Herrmannsdörfer et al. [32]
to investigate the extent to which the library described by
Herrmannsdörfer et al. [14], which we will denote as H,
is able to specify the evolution of a large-scale industrial
case study. Studies of to which extent library of operators
covers a case-study have been previously performed in
classical software engineering [33]. We opt for H as it is
a state-of-the-art operator library that has been claimed to
be “practically complete” [14].

While the earlier evaluations of operator libraries have
been restricted to individual DSLs, we opt for an industrial
DSL ecosystem (cf. [34], [35]). The ecosystem, known as
Control Architecture Reference Model (CARM) [36], counts
twenty-two interdependent DSLs with the corresponding
models and model transformations [37], has a revision his-
tory of four years and is developed at ASML [38], provider
of lithography equipment for the semiconductor industry.

To answer RQ2, we need to go beyond the specifics of
an individual DSL. Therefore, we cannot use the approach
taken by Herrmannsdörfer et al., as its incremental nature
strongly relies on case studies as the basis of the deficiency
identification. Rather, we use the meta-meta-model as input
to generate a complete library of atomic operators. We refer
to this library as R. Subsequently, we investigate to what
extent the operators from H are present in R.

To answer RQ3, we compare the answers to RQ1 and
RQ2, and determine which operator-library deficiencies were
not discovered by our industrial case study.

Summarizing, to answer our research questions three com-
parisons are performed:

1) H with respect to our industrial case study (for RQ1);
2) H with respect to R (for RQ2);
3) the industrial case-study with respect to R (for RQ3).

A. Simplifying Analysis

Since R is complete, we can relate both H and the case
study to R, as illustrated in Fig. 5. Then, the answers to our
research questions can be distilled as follows:

1) We identify EMFCompare differences (e.g., d5) related
to an operator in R (e.g., r5) that is not related
to any operator in H. This indicates that specific
EMFCompare difference (d5) cannot be specified by
H. Identifying all such EMFCompare differences then
answers RQ1.

Case Study
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...

R

r1
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r4

r5
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h1

h2

h3

h4

h5

...

Fig. 5: Relations between EMFCompare-based case study
differences, our complete library of atomic operators (R),
and the library of Herrmannsdörfer et al. [14] (H).

2) To answer RQ2, we identify operators inR that are not
related to any operator in H (e.g., r5, r6 in Fig. 5). If
this is the case, then H has a deficiency with respect to
R. Identifying all such deficiencies then answers RQ2.

3) To answer RQ3, we determine what atomic operators
in R are not supported by H, but are not revealed by
the case study. To do so, we search for operators in R,
that are neither related to an EMFCompare difference,
nor to an operator in H, (e.g., r6 in Fig. 5). Such a
pattern corresponds to a deficiency in the library that
is not revealed by the case study.

In the remainder of this section, we discuss computation
of our complete library of atomic operators R (Section III-
B), extraction of the evolution history (Section III-C) and
relating H to R (Section III-D).

B. Computing R
In order to determine operator deficiencies that are not

identified by a case study, we compute R, a complete library
of atomic operators. The primary requirement on a complete
set of atomic operators is that it can specify every change
possible on the meta-model. To this extent we need to be
able to formalize meta-model changes. The EMFCompare
difference model, for example, is able to encode every
atomic meta-model change on Ecore-based meta-models
in a difference model. As our case study is entirely Ecore-
based, we construct our solution using the EMFCompare



difference model [39].
An atomic operator, by definition, should cause precisely

one meta-model difference. Hence, we start by discussing
meta-model differences identified by EMFCompare.

The EMFCompare difference model encodes each atomic
change as so-called Diff-Objects. For the sake of simplicity,
we view these Diff-Objects as four-tuples 〈δ, φ, ε, ν〉 where

• δ is a difference kind: ADD, DELETE, or CHANGE 5;
• φ is a meta-model element on which the change has

been performed;
• ε is a structural feature of φ (i.e., an attribute or

reference, here and elsewhere we refer to elements of
the Ecore meta-model fragment shown on Fig. 2);

• ν is a value to be added/deleted/changed (the type ν∗

of ν should correspond to the datatype of ε).

Example III.1. Changing the name of the
class “Vertex” to “Node” can be recorded as
〈CHANGE,Vertex, name,“Node”〉. “Node” is of type
String corresponding to the datatype of name (cf. Fig. 2). �

Since EMFCompare can describe any change, intuitively
we can generate all possible operators by iterating over
every possible combination of the difference kind δ, type
of φ (which corresponds to every element in the meta-meta-
model), feature ε of that φ, and datatype ν∗ of ε.

Example III.2. The operator corresponding to the change
in Example III.1 is 〈CHANGE,EClass, name,String〉. We
also say that the change in Example III.1 is an application
of this operator. �

However, there are two reasons why this simplistic ap-
proach will not work. First of all, EMFCompare documen-
tation states that not all difference kinds are allowed for
particular structural features [40]. Second, the datatype ν∗

corresponding to ε might be abstract, i.e.,there might be no
values corresponding to it. In the remainder of this section
we discuss how these two issues are addressed. Details of
the operator generation process are available in the technical
report [41].

Firstly, depending on the structural feature ε, EMFCom-
pare restricts difference kinds δ as follows.

If the feature ε is a containment reference , the change
kind can only be ADD or DELETE, as in Example III.3.

Example III.3. The operator corresponding to adding a
class is 〈ADD,EPackage, eClassifiers,EClass〉. This is
because eClassifiers is a containment reference (i.e., classes
are contained in a package).

The operator 〈CHANGE,EPackage, eClassifiers,EClass〉
is thus excluded by EMFCompare constraints. �

If ε is not a containment reference and the upper bound
of the feature is greater than one, the δ can only be ADD
or DELETE. If the upper bound of the feature is one, δ can
only be CHANGE, as in Example III.4.

5EMFCompare also support the MOVE change kind for re-ordering
elements. For simplicity, we omit changes of this kind.

Example III.4. The operator for changing the eOpposite
relation (which has an upper bound of one), would be:
〈CHANGE,EReference, eOpposite,EReference〉

Whereas the operator for adding a class to the
eSuperTypes relation (which has an upper bound of *), would
be: 〈ADD,EClass, eSuperTypes,EClass〉 �

As mentioned above, the second challenge pertaining to
operator generation is related to the datatype of ε being
abstract, meaning one can never have an instance of it. To
mitigate this, we create a separate operator for every possible
type that is not abstract (i.e., its abstract feature is false)
and that is derivable from the type of ε (note that this may
include the type of ε itself).

Example III.5. When adding a class to a package
we observe that the type of the eClassifiers feature
is EClassifier. However, as shown on Fig. 2
EClassifier is abstract and has two sub-classes
EClass and EDataType6. Those sub-classes are not
abstract. Hence, instead of creating a single operator
〈ADD,EPackage, eClassifiers,EClassifier〉, we
create 〈ADD,EPackage, eClassifiers,EClass〉 and
〈ADD,EPackage, eClassifiers,EDataType〉. �

The library obtained as explained above constitutes the
complete library of atomic operatorsR, presented in Table V.
Using this library, every change on Ecore-based meta-
models can be expressed. Observe that a similar approach
could have been applied to a non-Ecore meta-meta-model,
yielding a variant on R specific to that meta-meta-model.

C. Getting the Evolution History for the Case Study

As was stated at the beginning of Section III, it is
necessary to reconstruct the evolution history of the case
study in terms of R. To do so, EMFCompare [39] is run
on subsequent version pairs of each of the 22 DSLs in the
DSL ecosystem. We obtain the subsequent versions of the
twenty-two DSLs from a subversion repository. The ecosys-
tem development team employs a trunk-branch development
scheme. We have extracted subsequent version pairs from the
trunk only, as the DSLs in trunk represent stable releases.

The difference models yielded by running EMFCompare
on the subsequent versions contain a number of atomic
differences. We refer to this collection of differences as the
evolution history.

Correctness of our evolution history is threatened by the
accuracy of EMFCompare results, as recognized by Her-
rmannsdörfer et al. [32]. To assess to what extent this is
a real threat to validity, the evolution of two DSLs in the
ecosystem was reconstructed manually by a graduate student
[42], [43], who concluded that the results of EMFCompare
were perfect with the exception of detecting renames. To
address the rename detection, a more structural approach
to model differencing as described by Protić [44] could be
considered. We consider this as future work.

6In the actual Ecore meta-meta-model has additional sub-classes.



Each difference in the evolution history can be seen as
the result of an operator application. To reconstruct this
relation, each difference in the evolution history is related
to an atomic operator in R. Note that this is straightforward
as we constructed each of these atomic operators based on
the EMFCompare difference model.

D. Relating the Operator Library to R
Lastly, we manually relate each atomic operator from H to

an atomic operator in our computed set R, as was illustrated
in Fig. 5.

Note, there might be operators in R that are not related to
any operator in the library under study. For example in Fig. 5,
there is no operator hm in the library under study such that
hm is related to r5. This means that r5 is not supported by the
library under study. Additionally, as illustrated in Fig. 5, there
may be one-to-many, and many-to-one relations between the
operators in R and operators in H.

IV. RESULTS

A. Complete Library of Atomic operators

Having computed R as described in Section III-B, we
have obtained a complete library of atomic operators (for
Ecore-based meta-models). This library consists of 176
atomic operators and is presented in Table V.

B. The CARM Case Study

Applying EMFCompare to the subsequent version pairs of
the CARM case study results in a total of 3405 individual dif-
ferences that constitute our evolution history. Subsequently
relating these differences to operators in R reveals that these
3405 differences can be specified using applications of 70
distinct atomic operators (please recall from Section III-
B that these numbers exclude MOVE operations). In Fig. 6
the number of applications per operator is illustrated (note
that the operator names have been omitted for readability).
In this distribution, positive skew can be observed. Further
analysis shows that the first thirteen operators (i.e., the
thirteen operators with the highest number of applications)
together are related to 2756 of the differences yielded by
EMFCompare. This means that the first thirteen operators
specify 81% of the evolution history of our case study.

The differences yielded by EMFCompare with respect the
CARM use case are summarized in Table I.

C. H: the Library of Herrmannsdörfer et al.
The library of Herrmannsdörfer et al. [14], H, consists of

61 operators, of which 30 are atomic, and 31 are compound.
After having manually related the atomic operators in H to
the atomic operators in R, we observe that 41 of the atomic
operators in R are covered by the atomic operators in H.

This discrepancy is caused by many-to-one, and one-to-
many relations between both libraries. For example, the
operators RenameAttribute and RenameClass in R
are related to the Rename operator in H. On the other
hand, the operator Change Class Abstract in R is
related to two operators: Make Class Abstract and
Drop Class Abstract, in H.

TABLE I: A brief summary of the CARM evolution his-
tory yielded by EMFCompare. The number of differences
has been presented per meta-meta-model concept and per
difference kind.

Meta-meta-model con-
cept / Change kind

ADD CHANGE DELETE Grand
Total

EAnnotation 22 0 34 56
EAttribute 0 462 0 462
EClass 811 68 510 1389
EDataType 0 0 0 0
EEnum 107 2 37 146
EEnumLiteral 0 23 0 23
EFactory 0 0 0 0
EGenericType 7 15 0 22
EOperation 41 34 34 109
EPackage 233 32 131 396
EParameter 7 30 0 37
EReference 38 712 13 763
EStringToString
MapEntry

0 2 0 2

ETypeParameter 0 0 0 0
Grand Total 1266 1380 759 3405
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Fig. 6: A barplot showing the number of applications (y-axis)
of each operator in R (x-axis) to the CARM case study. Bars
corresponding to operators not in H have been colored blue.
The distribution has a median of 8, and the Gini-index [45]
is 0.75 of the maximal 0.98 [46].

D. Answering RQs

In this section we will discuss how the differences in the
evolution history, H, and R relate. The results discussed are
are illustrated in Fig. 7.

To answer RQ1, we have related the 3405 differences in
the CARM case study to 70 operators inR, and the operators
in H to 41 operators in R. Using these relations we observe
that H supports 32 of the 70 operators used by the CARM
case study. In total, these 32 operators supported by H are
able to describe 3032 of the 3405 (89%) of the differences
in the CARM evolution history.

Next, to answer RQ2, we look at operators in R that are
not related to operators in H. In Fig. 7 it can be observed
that there are 135 deficiencies (= 176 − 41) in H. For
example, changing the isUnique field of an attribute, or
changing the isOrdered field of an attribute, are among



9 (=H\ CARM)

38 (=CARM\H)

97 (=R\(CARM∪H))

32 (=H∩CARM)

Fig. 7: An illustration of how the operators offered by the
library of Herrmannsdörfer et al. [14] H (blue), and the
CARM case study (green) relate to the complete library of
176 atomic operators R (white).

TABLE II: A subset of Table V containing an overview of
the thirteen most frequently used operators of the CARM
use-case, number of applications, percentage of the evolution
history and support by H.

Operation Value type applications
in CARM

H

CHANGE reference type EClass 571 (16.7%) Yes
CHANGE attribute type EDataType 367 (10.7%) Yes
ADDNEW reference to
class

EReference 312 (9.2%) Yes

ADDNEW attribute to class EAttribute 245 (7.2%) Yes
ADD supertype EClass 239 (7.0%) Yes
ADDNEW class to package EClass 215 (6.3%) Yes
DELETE reference from
class

EReference 201 (5.9%) Yes

DELETE attribute from
class

EAttribute 141 (4.1%) Yes

DELETE supertype EClass 132 (3.9%) Yes
DELETE class from pack-
age

EClass 119 (3.5%) Yes

ADDNEW literal to an enu-
meration

EEnumLiteral 107 (3.1%) Yes

CHANGE name of a class EString 55 (1.6%) Yes
CHANGE name of a refer-
ence

EString 52 (1.5%) Yes

2756 (81)%

these deficiencies.
Finally, to answer RQ3, we look at operators in R that are

neither related to differences in the CARM case study, nor to
operators in H. In Fig. 7, observe that of the 135 deficiencies
in H, 97 (= 176 − 38 − 32 − 9) are not revealed by the
CARM case study (i.e., 72%). For example, the deficiencies
mentioned in the results of RQ2, are not revealed by the
CARM case study.

V. DISCUSSION

A. Contribution to RQ1
The first question we asked was “To what extent can

existing operator libraries specify evolution of DSLs in a
large-scale industrial MDSE ecosystem?”. We answer this

by investigating what portion of the evolution history of
our industrial case study could be covered by the library
of Herrmannsdörfer et al. [14] (H). In Section IV we have
seen that H provides support for nine atomic operators that
are not required by the CARM case study. Furthermore, 32
atomic operators are offered by H that are required by the
CARM case study. However, the CARM case study requires
support for 70. We conclude that 54% (= 38/70) of operators
required for the case study are not provided by H.

However, the number of applications among these oper-
ators is unevenly distributed in our case-study. As can be
observed in Fig. 6, the number of applications per operator
shows positive skew. Further inspection shows that the Pareto
principle (cf. [47]) applies: 81% of the evolution history
can be specified using 19% (= 13/70) of the 70 operators
required (cf. Table II).

In Fig. 6, bars corresponding to operators not supported by
H have been colored. Although the most frequently required
operators are supported (i.e., colored white), the colored
operators in the tail of the distribution seem arbitrary. Further
inspection of these colored operators in Fig. 6 reveals that
they belong to a particular class of operators.

In a previous case study [32] Herrmannsdörfer et al. have
classified evolution operators with respect to the automata-
bility of their coupled (co-evolution) operators. The resulting
classification is illustrated in Fig. 8. The classification dis-
tinguishes [32]:

1) meta-model only operators for which no model co-
evolution is required;

2) meta-model independent operators for which the
model co-evolution is independent of a particular meta-
model;

3) meta-model specific operators for which the model
co-evolution depends on the structure of the meta-
model being evolved;

4) model-specific operators for which the model co-
evolution depends on the structure of the model being
co-evolved.

Herrmannsdörfer et al. conclude that for each successive
class, the automatability decreases (as illustrated in Fig. 8).
We observe that most of the colored operators in Fig. 6
correspond to the classes with lower automatability: meta-
model specific and model-specific. The results for RQ1 (in
Section IV-D), the operators in H cannot specify 11% of
the evolution history, is comparable to the earlier study by
Herrmannsdörfer et al. [32], where deficits of 7% and 15%
are observed.

Detailed analyses of the differences supported and not
supported by H respectively are presented in Table III. The
most prominent differences that are not supported are related
to the EAnnotation (56 differences) and EOperation
(108 differences) meta-meta-model concepts. We further note
the absence of ADD operators for EReference features,
and DELETE operators for EClass features.



Fig. 8: Classification of meta-model adaption, and the au-
tomatability of their co-evolution for models [32].

TABLE III: Summary of CARM differences are sup-
ported/not supported by the library of Herrmannsdörfer et
al. [14] (H) respectively.

Meta-meta-model
element / change
kind

ADD CHANGE DELETE Grand Total

EAnnotation 0/22 0/0 0/34 0/56
EAttribute 0/0 459/3 0/0 459/3
EClass 796/15 67/1 474/36 1337/52
EDataType 0/0 0/0 0/0 0/0
EEnum 107/0 2/0 37/0 146/0
EEnumLiteral 0/0 4/19 0/0 4/19
EFactory 0/0 0/0 0/0 0/0
EGenericType 0/7 0/15 0/0 0/22
EOperation 0/41 1/33 0/34 1/108
EPackage 232/1 7/25 130/1 369/27
EParameter 0/7 4/26 0/0 4/33
EReference 0/38 712/0 0/13 712/51
EString-
ToString-
MapEntry

0/0 0/2 0/0 0/2

ETypeParameter 0/0 0/0 0/0 0/0
Grand Total 1135/131 1256/124 641/118 3032/373

B. Contribution to RQ2

To answer RQ2, “TWhich operators from R are missing
form state-of-the-art operator libraries?”, we compared H to
R (Table V).

The library H, covers 41 of the atomic operators in
R. Although in Section IV-C we have observed that these
41 operators are sufficient to cover 89% of the evolution
history of our industrial case study, we also observed that
there are 38 kinds of differences in the case study not
covered by the library. Comparing H to R shows that a total
amount of 135 operators lack supported. Further analysis of
these 135 deficiencies reveals that several Ecore concepts
are under-supported or not supported at all. For instance,
EOperators are insufficiently supported, and no operators
for EAnnotations exist at all. The latter is even more
surprising since EAnnotation has been reported to be one
of the most widely used Ecore classes [48]. If operators
for EOperators and EAnnotations would be added, an
additional 5% of the evolution history would be supported
(for a total of 94% coverage).

Summarizing, although evolution of DSLs in an industrial
context can be specified to a large extent using H, the library
lacks expressiveness for evolution specification in general.

TABLE IV: The number of operators that would not have
been discovered using our industrial case-study, per meta-
meta-concept.

Meta-meta-model concept Number of Operators not discovered
EAnnotation 19
EAttribute 11
EClass 4
EDataType 7
EEnum 7
EEnumLiteral 3
EFactory 2
EGenericType 7
EOperation 14
EPackage 1
EParameter 6
EReference 11
EStringToStringMapEntry 1
ETypeParameter 4

An additional 135 atomic operators would need to be added
to the library in order to resolve this deficiency.

C. Contributions to RQ3
To answer RQ3 “What are the limitations of our case

study with respect to finding operator library deficiencies?”
we compare the results of RQ1 and RQ2.

Of the 135 deficiencies in H, only 38 were revealed using
our case study. This leaves a total of 97 of 135 deficien-
cies (72%). In Table IV, the precise number of missing
operators per meta-meta-model element are presented. It can
be observed that the large number of missing operators is
mainly caused by EAnnotations and EOperations.
This is either due to our case study lacking these meta-
meta-concepts, or existing meta-meta-concepts not evolving.
However, to be sure, more research is needed.

VI. RESEARCH LIMITATIONS

Several threats might affect validity of our results.
Firstly, we compute the evolution history using EMFCom-

pare. The accuracy of EMFCompare may have affected the
results in RQ1. To mitigate this threat, the EMFCompare
results have been manually verified by a graduate student.
Furthermore, the relation between the library of Herrmanns-
dörfer et al. [14] and R, was performed manually, and is
thus susceptible to human error. To mitigate this error, the
created relation was verified by the same graduate student.

Furthermore, we obtain the subsequent versions of DSLs
from a subversion (SVN) version-control system. Using
SVN, the CARM development team employs a trunk-branch
development scheme. We have studied the subsequent DSL
versions in the trunk, as these are finished products, rather
than unstable development versions. This means that we
might miss changes that only occur in development branches.

The validity of our results in RQ1 might also be influenced
by the choice of our case study. Although our case study is
large, there is no guarantee that our results can be generalized
to other industrial DSL ecosystems. To mitigate this, in RQ2,
we have presented a theoretically complete library of atomic
operators that is independent of any case study, and in RQ3
we have studied the actual limitations of our case study.



VII. CONCLUSIONS

This paper evaluated the ability of the atomic operators
in the state-of-the-art library of Herrmannsdörfer et al.[14]
to specify evolution of a large-scale industrial case study
of twenty-two DSLs. We conclude that this library can
specify 89% of DSL evolutions, and we have identified
the deficiencies that make up the remaining 11%. Next,
we have presented a top-down methodology for creating a
theoretically complete library of atomic operators. Although
we have only calculated this library for the Ecore meta-
meta-model, our approach is generic and may be applied to
any meta-meta-model. Using this library (Table V), we have
revealed further deficiencies in existing operator libraries,
and have identified the operators that would need to be
implemented to mitigate these deficiencies.

As future work, we consider including compound op-
erators. Furthermore, we wish to formalize our library of
atomic operators (R) into an executable DSL for meta-model
evolution, and extend this DSL with support for compound
operators. After having formalized the evolution DSL, we
plan to study co-evolution specifications and their relations
to evolution specifications. Finally, as mentioned above,
we plan to replicate the current study using an approach
advocated by Protić [44] as an alternative to EMFCompare.
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TABLE V: Operator library R partitioned by operator kind (ADD, CHANGE, DELETE). Each entry represents an operator,
e.g., “ADD an EObject to the contents feature of an EAnnotation”.

ParentElement StructuralFeature ValueType ParentElement StructuralFeature ValueType
ADD CHANGE

EAnnotation contents EObject EFactory ePackage EPackage
EAnnotation details EStringToStringMapEntry EGenericType eClassifier EClass
EAnnotation eAnnotations EAnnotation EGenericType eClassifier EDataType
EAnnotation references EObject EGenericType eClassifier EEnum
EAttribute eAnnotations EAnnotation EGenericType eTypeParameter ETypeParameter
EAttribute eGenericType EGenericType EOperation eType EClass
EClass eAnnotations EAnnotation EOperation eType EDataType
EClass eGenericSuperTypes EGenericType EOperation eType EEnum
EClass eOperations EOperation EOperation lowerBound int
EClass eStructuralFeatures EAttribute EOperation name String
EClass eStructuralFeatures EReference EOperation ordered boolean
EClass eSuperTypes EClass EOperation unique boolean
EClass eTypeParameters ETypeParameter EOperation upperBound int
EDataType eAnnotations EAnnotation EPackage eFactoryInstance EFactory
EDataType eTypeParameters ETypeParameter EPackage name String
EEnumLiteral eAnnotations EAnnotation EPackage nsPrefix String
EEnum eAnnotations EAnnotation EPackage nsURI String
EEnum eLiterals EEnumLiteral EParameter eType EClass
EEnum eTypeParameters ETypeParameter EParameter eType EDataType
EFactory eAnnotations EAnnotation EParameter eType EEnum
EGenericType eLowerBound EGenericType EParameter lowerBound int
EGenericType eTypeArguments EGenericType EParameter name String
EGenericType eUpperBound EGenericType EParameter ordered boolean
EOperation eAnnotations EAnnotation EParameter unique boolean
EOperation eExceptions EClass EParameter upperBound int
EOperation eExceptions EDataType EReference changeable boolean
EOperation eExceptions EEnum EReference containment boolean
EOperation eGenericExceptions EGenericType EReference defaultValueLiteral String
EOperation eGenericType EGenericType EReference derived boolean
EOperation eParameters EParameter EReference eOpposite EReference
EOperation eTypeParameters ETypeParameter EReference eType EClass
EPackage eAnnotations EAnnotation EReference eType EDataType
EPackage eClassifiers EClass EReference eType EEnum
EPackage eClassifiers EDataType EReference lowerBound int
EPackage eClassifiers EEnum EReference name String
EPackage eSubpackages EPackage EReference ordered boolean
EParameter eAnnotations EAnnotation EReference resolveProxies boolean
EParameter eGenericType EGenericType EReference transient boolean
EReference eAnnotations EAnnotation EReference unique boolean
EReference eGenericType EGenericType EReference unsettable boolean
EReference eKeys EAttribute EReference upperBound int
ETypeParameter eAnnotations EAnnotation EReference volatile boolean
ETypeParameter eBounds EGenericType EStringToStringMapEntry key String

CHANGE EStringToStringMapEntry value String
EAnnotation eModelElement EAnnotation ETypeParameter name String
EAnnotation eModelElement EAttribute DELETE
EAnnotation eModelElement EClass EAnnotation contents EObject
EAnnotation eModelElement EDataType EAnnotation details EStringToStringMapEntry
EAnnotation eModelElement EEnum EAnnotation eAnnotations EAnnotation
EAnnotation eModelElement EEnumLiteral EAnnotation references EObject
EAnnotation eModelElement EFactory EAttribute eAnnotations EAnnotation
EAnnotation eModelElement EOperation EAttribute eGenericType EGenericType
EAnnotation eModelElement EPackage EClass eAnnotations EAnnotation
EAnnotation eModelElement EParameter EClass eGenericSuperTypes EGenericType
EAnnotation eModelElement EReference EClass eOperations EOperation
EAnnotation eModelElement ETypeParameter EClass eStructuralFeatures EAttribute
EAnnotation source String EClass eStructuralFeatures EReference
EAttribute changeable boolean EClass eSuperTypes EClass
EAttribute defaultValueLiteral String EClass eTypeParameters ETypeParameter
EAttribute derived boolean EDataType eAnnotations EAnnotation
EAttribute eType EClass EDataType eTypeParameters ETypeParameter
EAttribute eType EDataType EEnumLiteral eAnnotations EAnnotation
EAttribute eType EEnum EEnum eAnnotations EAnnotation
EAttribute iD boolean EEnum eLiterals EEnumLiteral
EAttribute lowerBound int EEnum eTypeParameters ETypeParameter
EAttribute name String EFactory eAnnotations EAnnotation
EAttribute ordered boolean EGenericType eLowerBound EGenericType
EAttribute transient boolean EGenericType eTypeArguments EGenericType
EAttribute unique boolean EGenericType eUpperBound EGenericType
EAttribute unsettable boolean EOperation eAnnotations EAnnotation
EAttribute upperBound int EOperation eExceptions EClass
EAttribute volatile boolean EOperation eExceptions EDataType
EClass abstract boolean EOperation eExceptions EEnum
EClass instanceClassName String EOperation eGenericExceptions EGenericType
EClass instanceTypeName String EOperation eGenericType EGenericType
EClass interface boolean EOperation eParameters EParameter
EClass name String EOperation eTypeParameters ETypeParameter
EDataType instanceClassName String EPackage eAnnotations EAnnotation
EDataType instanceTypeName String EPackage eClassifiers EClass
EDataType name String EPackage eClassifiers EDataType
EDataType serializable boolean EPackage eClassifiers EEnum
EEnumLiteral instance EEnumerator EPackage eSubpackages EPackage
EEnumLiteral literal String EParameter eAnnotations EAnnotation
EEnumLiteral name String EParameter eGenericType EGenericType
EEnumLiteral value int EReference eAnnotations EAnnotation
EEnum instanceClassName String EReference eGenericType EGenericType
EEnum instanceTypeName String EReference eKeys EAttribute
EEnum name String ETypeParameter eAnnotations EAnnotation
EEnum serializable boolean ETypeParameter eBounds EGenericType



REFERENCES

[1] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Mod-
eling, vol. 5, no. 4, pp. 369–385, 2006.

[2] J.-M. Favre, “Languages evolve too! changing the software time scale,”
in Principles of Software Evolution, 2005, pp. 33–42.

[3] D. Di Ruscio, L. Iovino, and A. Pierantonio, “Coupled evolution in
model-driven engineering,” IEEE Software, vol. 29, no. 6, pp. 78–84,
2012.

[4] B. Gruschko, D. Kolovos, and R. Paige, “Towards synchronizing
models with evolving metamodels,” in Workshop on Model-Driven
Software Evolution, 2007.

[5] A. Narayanan, T. Levendovszky, D. Balasubramanian, and G. Karsai,
“Automatic domain model migration to manage metamodel evolution,”
in MoDELS, ser. LNCS. Springer, 2009, vol. 5795, pp. 706–711.

[6] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Automat-
ing co-evolution in model-driven engineering,” in IEEE Enterprise
Distributed Object Computing Conference, 2008, pp. 222–231.

[7] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in
ECOOP, ser. LNCS. Springer, 2007, vol. 4609, pp. 600–624.

[8] J. García, O. Diaz, and M. Azanza, “Model transformation co-
evolution: A semi-automatic approach,” in SLE, ser. LNCS. Springer,
2013, vol. 7745, pp. 144–163.

[9] T. Levendovszky, D. Balasubramanian, A. Narayanan, and G. Kar-
sai, “A novel approach to semi-automated evolution of dsml model
transformation,” in SLE, ser. LNCS. Springer, 2010, vol. 5969, pp.
23–41.

[10] D. Di Ruscio, R. Lämmel, and A. Pierantonio, “Automated co-
evolution of GMF editor models,” in SLE, ser. LNCS. Springer,
2011, vol. 6563, pp. 143–162.

[11] B. Meyers and H. Vangheluwe, “A framework for evolution of
modelling languages,” Science of Computer Programming, vol. 76,
no. 12, pp. 1223–1246, 2011.

[12] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in ICSE,
2008, pp. 511–520.

[13] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. C. Polack,
“An analysis of approaches to model migration,” in MoDSE-MCCM
Workshop, 2009, pp. 6–15.

[14] M. Herrmannsdörfer, S. D. Vermolen, and G. Wachsmuth, “An exten-
sive catalog of operators for the coupled evolution of metamodels and
models,” in SLE, ser. LNCS. Springer, 2011, vol. 6563, pp. 163–182.

[15] “Ecore,” lhttp://www.eclipse.org/modeling/emf/, accessed: 2016-7-20.
[16] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:

Eclipse Modeling Framework 2.0, 2nd ed. Addison-Wesley, 2009.
[17] J. Bézivin, “On the unification power of models,” Software & Systems

Modeling, vol. 4, no. 2, pp. 171–188, 2005.
[18] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Mod-

eling, vol. 5, no. 4, pp. 369–385, 2006.
[19] J. Bézivin, “Model driven engineering: An emerging technical space,”

in Generative and Transformational Techniques in Software Engineer-
ing, ser. LNCS. Springer, 2006, vol. 4143, pp. 36–64.

[20] “Eclipse,” http://www.eclipse.org/, accessed: 2015-04-07.
[21] “Eclipse Juno Documentation,” http://help.eclipse.org/juno/index.jsp,

accessed: 2015-10-07.
[22] A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “A metamodel in-

dependent approach to difference representation,” Journal of Object
Technology, vol. 6, no. 9, pp. 165–185, 2007.

[23] D. Ohst, M. Welle, and U. Kelter, “Differences between versions of
UML diagrams,” SIGSOFT Softw. Eng. Notes, vol. 28, no. 5, pp. 227–
236, 2003.

[24] T. Mens, “A state-of-the-art survey on software merging,” IEEE
Transactions on Software Engineering, vol. 28, no. 5, pp. 449–462,
2002.

[25] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack, “Model
migration with Epsilon Flock,” in Theory and Practice of Model
Transformations, ser. LNCS. Springer, 2010, vol. 6142, pp. 184–
198.

[26] M. Herrmannsdörfer and G. Wachsmuth, “Coupled evolution of
software metamodels and models,” in Evolving Software Systems.
Springer, 2014, pp. 33–63.

[27] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wim-
mer, “Model transformation by-example: A survey of the first wave,”
in Conceptual Modelling and Its Theoretical Foundations, ser. LNCS.
Springer, 2012, vol. 7260, pp. 197–215.

[28] G. Taentzer, F. Mantz, and Y. Lamo, “Co-transformation of graphs and
type graphs with application to model co-evolution,” in International
Conference on Graph Transformations. Springer, 2012, pp. 326–340.

[29] F. Mantz, G. Taentzer, Y. Lamo, and U. Wolter, “Co-evolving meta-
models and their instance models: A formal approach based on graph
transformation,” Science of Computer Programming, vol. 104, pp. 2–
43, 2015.

[30] M. Herrmannsdörfer, “COPE - A workbench for the coupled evolution
of metamodels and models,” in SLE, ser. LNCS. Springer, 2011, vol.
6563, pp. 286–295.

[31] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” Empirical Software
Engineering, vol. 13, pp. 211–218, 2008.

[32] M. Herrmannsdörfer, S. Benz, and E. Juergens, “Automatability of
coupled evolution of metamodels and models in practice,” in MoDELS,
ser. LNCS. Springer, 2008, vol. 5301, pp. 645–659.

[33] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in ICSE.
IEEE, 2015, pp. 913–923.

[34] A. Serebrenik and T. Mens, “Challenges in software ecosystems
research,” in Software Architecture Workshops, I. Crnkovic, Ed. ACM,
2015, pp. 40:1–40:6.

[35] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik, “Studying evolv-
ing software ecosystems based on ecological models,” in Evolving
Software Systems. Springer, 2014, pp. 297–326.

[36] R. R. H. Schiffelers, W. Alberts, and J. P. M. Voeten, “Model-based
specification, analysis and synthesis of servo controllers for lithoscan-
ners,” in 6th International Workshop on Multi-Paradigm Modeling.
ACM, 2012, pp. 55–60.

[37] C. M. Gerpheide, R. R. H. Schiffelers, and A. Serebrenik, “Assessing
and improving quality of QVTo model transformations,” Software
Quality Journal, vol. 24, no. 3, pp. 797–834, 2016.

[38] “ASML,” http://www.asml.com/, accessed: 2015-04-07.
[39] “EMF Compare,” https://www.eclipse.org/emf/compare/, accessed:

2015-04-07.
[40] “EMFCompare developer guide,” https://www.eclipse.org/emf/

compare/documentation/latest/developer/developer-guide.html,
accessed: 2015-10-06.

[41] J.G.M. Mengerink, R.R.H. Schiffelers, A. Serebrenik, and M.G.J.
van den Brand, “Evolution specification evaluation in industrial
mdse ecosystems,” Eindhoven University of Technology, Tech. Rep.
CSR-15-04, 2015. [Online]. Available: https://pure.tue.nl/ws/files/
3757969/390954927658277.pdf

[42] Y. Vissers, “Using Edapt for Coupled Evolution of Metamodels and
Models,” Master’s thesis, Eindhoven University of Technology, the
Netherlands, 2015.

[43] Y. Vissers, J. G. M. Mengerink, R. R. H. Schiffelers, A. Serebrenik,
and M. Reniers, “Maintenance of specification models in industry
using edapt,” in FDL, 2016.
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