
Communicative Intention in Code Review Questions
Felipe Ebert∗, Fernando Castor∗, Nicole Novielli‡, Alexander Serebrenik†

∗Federal University of Pernambuco, Brazil, {fe, castor}@cin.ufpe.br
‡University of Bari, Italy, nicole.novielli@uniba.it

†Eindhoven University of Technology, The Netherlands, a.serebrenik@tue.nl

Abstract—During code review, developers request clarifica-
tions, suggest improvements, or ask for explanations about the
rationale behind the implementation choices. We envision the
emergence of tools to support developers during code review
based on the automatic analysis of the argumentation structure
and communicative intentions conveyed by developers’ com-
ments. As a preliminary step towards this goal, we conducted
an exploratory case study by manually classifying 499 questions
extracted from 399 Android code reviews to understand the
real communicative intentions they convey. We observed that the
majority of questions actually serve information seeking goals.
Still, they represent less than half of the annotated sample, with
other questions being used to serve a wider variety of developers’
communication goals, including suggestions, request for action,
and criticism. Based on our findings we formulate hypotheses
on communicative intentions in code reviews that should be
confirmed or rejected by follow-up studies.

Index Terms—questions; communicative intention; code re-
views; exploratory case study; Android.

I. INTRODUCTION

During a code review, developers might identify a defect,
suggest a better solution, or ask about the rationale behind
the implementation choices. As such, code review discussions
represent an invaluable source of information ready to be
mined for i) extracting information about a software project
and its evolution [1] and ii) understanding how developers con-
duct code review, i.e., which understanding needs they try to
fulfill [2] and what comments they perceive as useful [3], [4].
We believe that the identification of communicative intentions
expressed by developers in their comments, such as making
a direct suggestion, requesting a clarification, and expressing
disagreement, is essential to this latter perspective. In line with
this view, Viviani et al. [1] recently proposed to mine develop-
ers’ discussions in pull requests to extract design information
that explicitly documents design decisions [5], based on the
analysis of the dialogue argumentative structure [1].

We envision the emergence of tools to support developers
during code review based on the automatic analysis of the
communicative goals conveyed by developers’ comments.1 To
this aim, we present the first study of the communicative
intentions expressed in code review questions. We focus on
questions as they have been recently described as triggers of
useful conversation excerpts in code review, i.e., in design
discussions [1], [5] or in knowledge-sharing [2].

1The first author was also affiliated to the Eindhoven University of
Technology, The Netherlands, during this study.

We performed an exploratory study [6] on the questions
asked by developers in the inline comments in Android code
reviews. We manually classified 499 questions derived from
399 code reviews in Gerrit. Our findings suggest that questions
in code review serve diverse communicative goals, e.g., re-
questing clarifications, discussing hypothetical scenarios, and
suggesting improvements. We observed that the majority of
questions serve information seeking goals. Still, they represent
less than half of the annotated sample, providing evidence
that questions may convey a wider variety of developers’
communicative intention. A large category is represented by
the questions aimed at eliciting an action of the collaborators,
i.e., developers usually employ politeness when making sug-
gestions by using questions instead of affirmative sentences.

Code change authors interviewed by Bosu et al. [3] consider
clarification questions as “not useful” as they do not imme-
diately contribute to code improvement. However, such ques-
tions have been reported as useful to improve the reviewer’s
understanding of the change under review, which in turn can
lead to improvement suggestions being formulated later on.
Furthermore, those clarification questions can be useful to
trigger knowledge transfer discussion between the contributors
of a software project. This was mentioned as a reason for
conducting code reviews, beyond finding defects, by all but
one of the interviewees in the study of Bacchelli and Bird [2].

Gachechiladze et al. argued that identification of anger can
be used to design tools and interventions supporting devel-
opers [7]. Complementarily, identification of communicative
intention can provide a starting point in recommendations
for good practices. If, e.g., polite requests for action rather
than direct suggestions are more common among code reviews
deemed to be useful [3], then developers can be encouraged
to embrace politeness (cf. discussion of how to ask for
help on StackOverflow [8] and envisioned guidelines on how
to communicate efficiently in code reviews [4]). Identifying
requests for clarification may also benefit development of a
recommender system identifying lack of reviewer expertise
and triggering expert intervention [3]. Moreover, requests
for rationale or suggestions of alternative solutions are steps
towards identification of design discussion in code review [1].

Our findings, while preliminary, suggest research hypothe-
ses worth investigating in future work. Following the guide-
lines of Runeson and Höst [6], we formulate a set of hypothe-
ses that should be confirmed or refuted by follow-up studies.



II. BACKGROUND

Communicative Intention. People proceed in their conver-
sations through a series of speech acts to yield a specific
communicative intention: they ask for information, agree with
their interlocutor, state facts and express opinions [9]. Speech
acts constitute the basic unit of verbal communication and are
well studied in linguistics and computational linguistics [10],
[11]. For the communication to be effective, all persons
involved in the conversation must agree on the intention of the
message [12]. Indeed, overt communication can be seen as an
error-prevention strategy [13] and misinterpretations can arise
from misunderstanding of the communicative intention [14]. In
this study, we focus on the communicative intentions conveyed
by developers during code review. Specifically, we analyze
their communicative goals, i.e., the illocutionary force [10] of
the questions asked during code review.

Code Reviews. Code review is a widely employed practice
of software quality assurance where developers inspect the
code changes before they are integrated into the main repos-
itory [15], [16]. When reviewing code changes, developers
might provide either general or inline comments. General com-
ments are posted in the code review page itself, which presents
the list of all general comments as threads of messages. Inline
comments are posted directly in the source code file and can
reference a word, a line or a group of lines. They are intended
to be a dialogue between the reviewer and the code change
author, as recognized by developers themselves, e.g., Alan
Fineberg, software engineer at Yelp: “The reviewer then goes
through the diff, adds inline comments on review board and
sends them back. [...] The reviews are meant to be a dialogue,
so typically comment threads result from the feedback”2. As
such, we focus on questions extracted from inline comments.

III. METHODOLOGY

We seek to answer the following research question: what
are the communicative intentions expressed in the developers’
questions in code reviews?

A. Annotation Sample from Android Code Reviews

We conduct an explanatory case study [6] on Android
because it is a large and well-known open source ecosystem
that adopts a rigorous code review process using Gerrit. We
extracted our annotation sample from the dataset of inline
comments we previously collected from the entire Android
ecosystem [17]. Our annotation sample contains 499 questions
extracted from randomly selected 399 inline comments (cor-
responding to the confidence interval of less than 5% and con-
fidence level of 95% from a population of 10,965 questions).
The questions are extracted by running the StanfordNLP API,
a state-of-the-art NLP toolkit [18], on the 399 selected inline
comments. As result, it could identify 442 questions.3

2Quoted by Marty Stepp in their slides https://courses.cs.washington.edu/
courses/cse403/13sp/lectures/10-codereviews.pdf

357 = 499−442 additional questions were not identified by StanfordNLP
API but added during the manual labeling.

Fig. 1. Methodology adopted in the manual labeling.

B. Manual Labeling

We performed manual annotation of questions extracted
from code review comments in two steps involving four
and three raters, respectively (see Fig. 1). The first step
aimed at defining the coding schema using an open coding
methodology, i.e., without predefined categories [19]. Dur-
ing this step, the four raters individually annotated the 49
questions extracted from 25 randomly sampled comments.
The annotation was performed at the sentence level, i.e., the
individual questions rather than comment as a whole are used
as unit of analysis. However, the whole comment was pre-
sented to provide context for the annotation. The raters were
requested to assign a single label to each question indicating
the communicative intention it conveyed. The disagreements
were solved through online discussions. Based on the first
annotation step we designed an initial taxonomy including 11
question categories that were used as guidelines for annotation
during the second step. Once again, the raters were requested
to individually label the communicative intention of 442 ques-
tions. They were instructed to perform the labeling based on
the 11 categories in the initial taxonomy. However, they could
suggest any missing categories they found relevant. Once the
individual annotation was completed, we compared the labels
from each rater and compiled them into one final set.

As a result, one new category was added to the initial ones,
i.e., criticism, leading to the final list of 12 categories. We
used Fleiss’ kappa to measure the agreement [20] and majority
voting—to resolve the disagreements. If all the votes were
different, the raters hold an online discussion.

During the manual annotation of the 442 questions, the
raters found 57 additional questions not identified by the Stan-
fordNLP API. These questions were included in our analysis
of communicative intentions, thus resulting in 499 questions
overall in our manually annotated dataset. However, the anno-
tation of those 57 questions did not include any new question
category. The raters discarded 2 declarative sentences that were
erroneously classified by the StanfordNLP API as questions.
Furthermore, 1% (5) of the questions were discarded given the
inability of the raters to reach an agreement on the label to
assign to them. In the end, our sample included 492 questions.
The dataset of questions with corresponding communicative
intention labels is publicly available for research purposes.4

4https://goo.gl/Bpoqj6



Fig. 2. Questions’ intention classification tree.

IV. RESULTS

The manual labeling agreement between the three raters
measured with Fleiss’ κ is 0.40, indicating a moderate agree-
ment [21]. Figure 2 presents the questions’ category classifi-
cation tree, which we discuss in the following.

1) Soliciting the interlocutor’s action: A considerable
amount of questions (40%) is used to elicit an action of
the interlocutor (see Figure 2). Specifically, 33% (163) of
questions actually are suggestions for an alternative solution.
The use of a question rather than an affirmative sentence to
recommend a different implementation strategy might indicate
the reviewer’s attempt of being polite towards the change
author, as in “Maybe introduce an additional line between
‘abc’ and ‘def’?”. In 7% (32) of cases, reviewers rather make
a direct request for action, i.e., they directly ask the change
authors to perform a specific action as in “Can you make these
different? [...]”. As opposed to suggestions, requests for action
explicitly refer to the individual that is expected to take action.

2) Information seeking: The majority of questions (49%)
serve information seeking goals. Specifically, developers try
to fulfill different information needs while reviewing code
changes, i.e., they ask questions to clarify their understanding
of the code change. More than 18% (92) of questions are re-
quest for confirmation, i.e., the reviewer has a certain degree
of understanding but expresses doubt and seeks approval from
the code change author as in “shouldn’t this just be a failure?
[...]”. In 11% (58) of cases, reviewers perform requests
for information, i.e., reviewers have partial understanding of
the problem and ask a question aimed at obtaining missing
technical details required to complement the understanding,
as in “When can this be null? [...]”. In 9% (45) of cases,
developer performs a request for rationale to understand

the reason behind an implementation choice (e.g., “Why is
this included? [...]”). Requests for clarification occur when
the reviewers miss overall understanding of the problem, e.g.,
“What’s happening here?”. Requests for clarification occur
in 4% (24) of the questions. Finally, developers also make
comments aimed at eliciting others’ opinions (request for
opinion), as in e.g., “Which name do you suggest?”.

3) Expressing attitudes and emotions: In 8% of questions,
the actual developers’ communicative intention is to express
their attitudes, opinions or emotions. Developers express their
attitude of doubt through criticisms and even share such
attitude of perplexity or disagreement by communicating their
emotions with different degrees of strength, from surprise to
anger. In all these cases, the final goal of the speaker is to
express their own cognitive and emotional state to induce
critical reflection in the interlocutor. About 5% (25) of the
questions contain some level of negativity but could not be
classified as expressing anger, they rather express criticism
towards an implementation choice made by the interlocutor
(e.g., “Do you really want to return the address of a local
variable here?”). We also observe few cases where developers
expressed their emotions through questions. They represent
2% (13) of our question dataset, of which 1.22% (6) were
classified as anger and 1.42% (7) as surprise. As an example
of anger: “wtf? you really want reflection here.”, and of
surprise: “is this true? that seems mildly surprising. [...]”.

4) Hypothetical scenarios: Questions describing hypothet-
ical scenarios (2%) may serve different communication pur-
poses related to what-if scenarios, from information seeking
to expression of criticism or doubt. Since context is needed to
disambiguate the speakers’ intention, we decided not to map a
priori the hypothetical scenarios to categories discussed above.
Developers tend to use wh-questions in combination with
conditional conjunctions to describe hypothetical scenarios,
e.g., “What about if an already Jack server is running?”.

5) Rhetorical questions: These are usually used when
developers raise a question to answer it later themselves. Such
questions serve the communicative goal of providing evidence
and argument to support the claim made right after the
question. They constitute only 1.22% (6) of the questions, e.g.,
“Isn’t the case that you illustrated (0.9ms being decremented
as 0) applicable in both solutions? Yes, [...]”.

V. DISCUSSION

In line with findings from previous research suggesting that
code review also serves knowledge-transfer purposes [2], we
observe that the majority of questions are information seeking
requests, including requests for confirmation, information, ra-
tionale, clarification, and opinion. This suggests a rich variety
of information needs experienced by developers during code
review. While representing the majority of questions, informa-
tion seeking requests are actually less than half of the anno-
tated sentences in our dataset (49%). In particular, the second
most frequent goal addressed by developers’ questions is to
elicit a reaction of the interlocutor (40%). Finally, developers
use questions to express doubt or disagreement with different



degrees of intensity, e.g., with surprise, criticism expressions,
and anger. This confirms previous evidence that developers
express emotions during daily programming tasks [22].

Overall, our findings suggest that questions in code reviews
do not seek exclusively to obtain information, i.e., developers
use questions to serve a wide variety of communication goals.
In the following we attempt to suggest avenues for possible
implications for practitioners as well as further research.

A. Implications for Practitioners

In line with the recommendations for good practices pro-
vided by Efstathiou and Spinellis [4], we advocate that tools
should support the automatic analysis of fine-grained commu-
nicative intentions in code review comments. For example,
understanding the information needs of reviewers and the
way authors and reviewers interact during code review can
provide empirically-driven guidelines for change authors to
anticipate the reviewers information needs, thus making the
code review process faster and more effective. Such practices
can be complemented by the use of automatic tools providing
feedback for improvement during code review. For example,
we envision tools for augmented writing of comments to
support neurodiverse developers to achieve an efficient and
explicit communication during code review.

Furthermore, fine-grained analysis of the argumentation
structure of code review discussions can be leveraged to
identify long-lasting value knowledge to be shared among the
contributors of a project. For example, the correct identifica-
tion of requests for rationale may help identify design-related
discussion, as proposed by Viviani et al. [1].

This paper also provides further evidence of expressions
of negative emotions in collaborative development [7], [23].
Early detection of negative emotions might benefit community
management and reduce undesired turnover, i.e., by preventing
burnout and loss of productivity [24] or timely addressing code
of conduct violations and community smells [25].

Finally, real-time identification of the communicative goal
of questions in code review could enhance the effectiveness
of the code review process itself. Requests for clarification or
rationale could be detected in order to support programmers
experiencing confusion, i.e., by soliciting the author of the
change to provide the required information [17] or by trigger-
ing an expert intervention. Conversely, requests for action or
suggestions might be leveraged to notify the colleagues, i.e.,
by notifying them that a change in the code is recommended.

B. Implication for Researchers

As befitting the exploratory case study [6], we propose three
hypotheses about the intention of developers’ questions.

H1 (cf. Section IV-1). Questions from the inline comments
are frequently used to trigger an action of the interlocutor
(rather than to satisfy information needs). Suggestions and
requests for action jointly form the second most frequent
communication goal: elicit an action of peers. We would like
to investigate whether this same trend occurs in the general
comments. Furthermore, this evidence indicates the intention

of adopting a polite style of communication by performing
requests to perform code changes through indirect questions,
rather than direct imperative statements. It would be interesting
to enhance the evidence provided by related research about
politeness and productivity in bug fixing [26] by investigating
this relationship also in code review.

H2 (cf. Section IV-2). While the largest group of questions
from the code reviews aim at satisfying information needs,
such as request for information, rationale, or clarification, this
group constitutes less than half of all questions. One could
further investigate to what extent the various types of requests
are related to the presence of confusion in code reviews [17].

H3 (cf. Section IV-3). Developers use questions to express
their own cognitive and emotional state in order to induce
critical reflection in the interlocutor. They express criticism
and emotions (e.g., anger or surprise), and convey doubt,
perplexity and disagreement with different degrees of strength.

Beyond the specific hypotheses, a replication of this study
with a broader set of questions, general comments and,
possibly, with an automatic approach to speech act analysis,
will bring full understanding of the role played by questions
in code reviews. We believe that such understanding will
shed new light on the informational needs of developers, the
antecedents to confusion they might experience, and the way
they communicate with each other to make suggestions or
requests. Furthermore, questions expressing different commu-
nicative intentions might have different impact on software
quality, development time or project evolution: e.g., hypothet-
ical scenarios might be successful in revealing hidden bugs.
A yet another perspective would be to combine the study of
communicative intentions with social aspects of developers’
communities, e.g., who is asking questions with different
communicative intentions and who is being asked. One might
also wonder whether the observation of Gachechiladze et
al. that anger in Jira issues is usually directed at objects rather
than the speaker themselves or the interlocutors [7] is also
valid for the code reviews. Finally, we would like to verify
relation between directionality of emotions and the outcome
of code reviews (merge or abandon).

C. Threats to Validity

As for construct validity, we used a state-of-the-art NLP
tool, i.e., the StanfordNLP API [18], to extract questions
included in our sample set. During the manual annotation,
we observed that two sentences were erroneously classified
as questions (0.4%) by the tool. Thus, we still consider
its results precise enough for our exploratory study. As for
internal validity, manual annotation is an error-prone activity
whose output depends on the subjective evaluation of the
raters. To mitigate such threats, the raters were recruited based
on their background in computer science and expertise with
labeling. We solved disagreements either through majority
voting or discussions, to address threats due to subjectivity
in annotation. Finally, due to the exploratory character of our
study we do not claim generalizability of our observations but
use them to derive hypotheses (Section V-B) for future studies.



VI. RELATED WORK

The communicative intentions of questions have been the
object of dedicated studies of ordinary conversations [27], talk
shows [28], and community-based Question & Answer (Q&A)
sites [29]. To the best of our knowledge, this is the first study
of communicative intention within the context of code reviews.

Thanks to the popularity of Stack Overflow, which has
made available an enormous number of natural language
interactions, researchers in software engineering also started
to investigate how developers formulate their requests in infor-
mation seeking tasks. Treude et al. [30] analyzed which kinds
of questions are asked on Stack Overflow. Bajaj et al. [31]
investigated the questions and answers from Stack Overflow
to understand the challenges and misconceptions among web
developers. Calefato et al. [8] studied how information seekers
can increase the chance of eliciting a successful answer to
their questions. While relevant for the software development
domain, the aforementioned studies focused either on the top-
ics or the writing style of the questions from Q&A websites,
where the intention of questions is assumed to be the same for
all Stack Overflow posts, i.e., asking for technical help [30].

Other studies aimed at categorizing the type of infor-
mation need expressed by developers’ questions. Fritz and
Murphy [32] conducted interviews with eleven developers
and identified 78 questions they ask in their daily jobs, and
among the information needs identified, there are code change
specific, people specific, and work-item progress. Sillito et
al. [33] conducted a study with developers performing code
changes to understand what information they need to know
about a code base and how they find it.

VII. CONCLUSIONS

In this paper, we conducted a case study to investigate the
communicative intention of developers’ questions during the
code review process. We manually labeled 499 questions from
399 Android code review comments. We found that, while
representing the majority of requests, information seeking
questions are still less than half of all questions in our
sample. This evidence suggests that questions are actually
used by developers in code review to serve a wider variety of
communicative purposes. Specifically, we found that questions
are extensively used by developers to convey suggestions.
Developers also express their cognitive and affective states
in code review comments, such as attitude of doubts and
criticisms or emotions like anger and surprise. Based on this
case study, we formulate three hypotheses about the intention
of developers’ questions in the code review process.

VIII. ACKNOWLEDGMENT

This research was supported by CNPq/Brazil (304220/2017-
5), CAPES/Brazil (PDSE 88881.132399/2016-01),
FACEPE/Brazil (APQ 0839-1.03/14, APQ 0388-1.03/14,
0791-1.03/13), and by the project “EmoQuest”, funded by
MIUR under the SIR program.

REFERENCES

[1] G. Viviani, C. Janik-Jones, M. Famelis, and G. Murphy, “The structure
of software design discussions,” to appear in CHASE, 2018.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in ICSE, 2013, pp. 712–721.

[3] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in MSR, 2015, pp. 146–156.

[4] V. Efstathiou and D. Spinellis, “Code review comments: language
matters,” in ICSE-NIER, 2018, pp. 69–72.

[5] G. Viviani, C. Janik-Jones, M. Famelis, X. Xia, and G. C. Murphy,
“What design topics do developers discuss?” in ICPC, 2018.

[6] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” ESE, pp. 131–164, 2009.

[7] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger
and its direction in collaborative software development,” in ICSE-NIER,
2017, pp. 11–14.

[8] F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical help?
evidence-based guidelines for writing questions on stack overflow,” IST,
vol. 94, pp. 186–207, 2018.

[9] L. Albright, A. I. Cohen, T. E. Malloy, T. Christ, and G. Bromgard,
“Judgments of communicative intent in conversation,” Journal of Ex-
perimental Social Psychology, vol. 40, no. 3, pp. 290 – 302, 2004.

[10] J. L. Austin, How to do things with words, ser. William James Lectures.
Oxford University Press, 1962.

[11] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language.
Cambridge, London: Cambridge University Press, 1969.

[12] V. Žegarac and B. Clark, “Phatic interpretations and phatic communi-
cation,” Journal of Linguistics, vol. 35, no. 2, pp. 321–346, 1999.

[13] J. Crook, “On covert communication in advertising,” Journal of Prag-
matics, vol. 36, no. 4, pp. 715–738, 2004.

[14] M. Haugh, “On understandings of intention: A response to Wedgwood,”
Intercultural Pragmatics, vol. 9, no. 2, pp. 161–194, 2012.

[15] G. Bavota and B. Russo, “Four eyes are better than two: On the impact
of code reviews on software quality,” in ICSME, 2015, pp. 81–90.

[16] M. V. Mäntylä and C. Lassenius, “What types of defects are really
discovered in code reviews?” TSE, pp. 430–448, 2009.

[17] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in ICSME, 2017, pp. 549–553.

[18] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in ACL System Demonstrations, 2014, pp. 55–60.

[19] A. Strauss and J. Corbin, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Sage Publications, 1990.

[20] J. Fleiss, “Measuring nominal scale agreement among many raters,”
Psychological Bulletin, vol. 76, pp. 378–382, 1971.

[21] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, 1977.

[22] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel
emotions? an exploratory analysis of emotions in software artifacts,” in
MSR, 2014, pp. 262–271.

[23] D. Ford and C. Parnin, “Exploring causes of frustration for software
developers,” in CHASE, 2015, pp. 115–116.

[24] M. Mäntylä, B. Adams, G. Destefanis, D. Graziotin, and M. Ortu,
“Mining valence, arousal, and dominance: Possibilities for detecting
burnout and productivity?” in MSR, 2016, pp. 247–258.

[25] P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open
source projects,” in SANER, 2017, pp. 24–33.

[26] M. Ortu, G. Destefanis, M. Kassab, S. Counsell, M. Marchesi, and
R. Tonelli, “Would you mind fixing this issue?” in XP, 2015, pp. 129–
140.

[27] T. Stivers and N. J. Enfield, “A coding scheme for question-response
sequences in conversation,” Journal of Pragmatics, pp. 2620–2626,
2010.

[28] C. Ilie, “Question-response argumentation in talk shows,” Journal of
Pragmatics, pp. 975–999, 1999.

[29] L. Chen, D. Zhang, and L. Mark, “Understanding user intent in com-
munity question answering,” in WWW, 2012, pp. 823–828.

[30] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” in ICSE-NIER, 2011, pp. 804–807.

[31] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by
web developers,” in MSR, 2014, pp. 112–121.

[32] T. Fritz and G. C. Murphy, “Using information fragments to answer the
questions developers ask,” in ICSE, 2010, pp. 175–184.

[33] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in FSE, 2006, pp. 23–34.


