
Who (Self) Admits Technical Debt?
Gianmarco Fucci, Fiorella Zampetti

University of Sannio, Italy
{name.surname}@unisannio.it

Alexander Serebrenik
Eindhoven University of Technology,

The Netherlands
a.serebrenik@tue.nl

Massimiliano Di Penta
University of Sannio, Italy

dipenta@unisannio.it

Abstract—Self-Admitted Technical Debt (SATD) are comments,
left by developers in the source code or elsewhere, aimed at
describing the presence of TD, i.e., source code “not ready yet”.
Although this was never stated in the original paper by Potdar
and Shihab, the term SATD might suggest that it refers to a “self-
admission” by whoever has written or changed the source code.
This paper empirically investigates, using a curated SATD dataset
from five Java open-source projects, (i) the extent to which SATD
comments are introduced by authors different from those who
have done last changes to the related source code, and (ii) when
this happens, what is the level of ownership those developers
have about the commented source code. Results of the study
indicate that, depending on the project, the percentage of SATD
admissions introduced or changed without modifying the related
source code varies between 0% and 16%, and therefore represent
a small, yet not negligible, phenomenon. The level of ownership
of those developers is not particularly low, with a median value
per project between 10% and 42%. This indicates the possible
use of SATD as a different way to perform code review, although
this behavior should be considered sub-optimal to the use of more
traditional tools, which entail suitable notification mechanisms.

Index Terms—Self-admitted technical debt; Code review; Em-
pirical study

I. INTRODUCTION

Technical Debt, “not quite right code which we postpone
making it right” [5], has been recognized as a major concern
both by practitioners and by researchers [1], [8], [11], [13].
Potdar and Shihab have observed that source code comments
often contain indications of technical debt such as “FIXME:
This is such a gross hack...” and “Ugly, but what else?” [12]. To
characterize these comments they have introduced the notion
of Self-Admitted Technical Debt (SATD).

Although the definition by Potdar and Shihab [12] did not
presuppose that TD must necessarily be admitted by the same
person who has written the source code, the “self” notion
gives the impression that SATD is mostly a self-annotation,
having the purpose of being a reminder for themselves and
for the others. Indeed, several studies of SATD introduction
and removal [12], [3] have focused on modification of the
comments rather than the corresponding source code. However,
it can still happen that a developer notices a technical debt in
the source code written, or recently modified, by somebody else,
and decides to leave a comment. The importance of identifying
which developer self-admitted TD has been recognized by
Sierra et al. [15] and Siegmund [14]. Indeed, keeping track
of whoever introduces (and admits) TD could be useful not
only for TD management, but also for a retrospective analysis
because of the potential unavailability of such developers.

Why can it happen that developers admit TD in somebody
else’s source code? We conjecture that the introduction or
change of a SATD comment without modifying the source
code may have multiple purposes. On the one hand, as for
the SATD admission explained above, it is a reminder for the
general development community. On the other hand, it can also
be considered a sort of “code review” performed in a rather
unusual way, by commenting on somebody else’s source code,
instead of relying on code review platforms such as Gerrit.

This paper represents a first, preliminary investigation of the
extent to which SATD comments are introduced to comment
source code that one has not written, or at least modified lastly.
To achieve this goal, we start from known SATD instances
in five Java open-source projects of a curated dataset by
Maldonado et al. [6]. Then, we identify the SATD comment
lines in the source code, and we trace them back to their
introduction and/or last changes using GIT BLAME. Then, based
on the comment location, we attach it to source code elements
(methods, blocks, or single statements) and check whether any
source code line has also been modified together with the
comment. If this is the case, we highlight it as an instance of
TD admitted by “somebody else”.

It can still happen that one may comment source code not
recently modified by them while still having a good knowledge
of the source code fragment they are commenting. To this
aim, we analyze the level of “ownership” of the comment’s
authors for the source code fragment. We rely on a definition
of ownership by Bird et al. [4] based on the proportion of
source code changes made by an author.

Results indicate that, in the studied projects, between 0%
and 16% of SATD is introduced or changed without modifying
the source code. At the same time, developers who authored
such commits have, in general, a relatively high ownership,
often well above the 5% threshold suggested by Bird et al. [4].
Finally, we report multiple examples when developers comment
somebody else’s code with SATD, and show how this happens
for different purposes, e.g., improving the overall system
documentation and understandability, pointing out the possible
impact of a change somewhere else in the code, or that some
source code (e.g., a method) is no longer used after a change
elsewhere. In summary, these represent cases in which SATD
comments are used as a code review mechanisms, although
this trigger further research in this area, in order to ensure
appropriate SATD awareness to all the interested developers.

The study dataset is available for replication purposes [10].



II. RELATED WORK

This section briefly discusses previous literature that has stud-
ied the SATD phenomenon with the main goal of understanding
it. A broader analysis of SATD literature—covering approaches
for SATD detection, comprehension, and repayment—is avail-
able in a systematic literature review by Sierra et al. [15].

Potdar and Shihab [12] introduce the notion of SATD and
conduct the first empirical study aimed at understanding the
occurrence of SATD in software projects. The study highlights
that SATD is very common, i.e., up to 31% of the studied
systems contain at least one SATD.

Multiple authors also investigated what type of TD is usually
self-admitted in source code. Alves et al. [1] identify 13 types
of TD belonging to different software artifacts. Maldonado and
Shibab [7] manually classify more than 33 thousand comments
and observe that only 5 types of SATD can be found in source
code, i.e., design, defect, documentation, requirement, and test.
Their results also highlight that the majority of SATD found
in the studied projects belong to design debt.

Bavota and Russo [3] empirically evaluate the diffusion of
SATD in OSS and its evolution. Their results point out that
even if 57% of SATD is actually removed from the code, the
removal usually happens far from their introduction, i.e., on
average after more than 1000 commits.

While looking at the SATD removal, Maldonado et al. [6]
survey developers and find that developers mostly remove
SATD during bug fixing or while adding new features. Finally,
Zampetti et al. [17], conduct an in-depth investigation on the
removal SATD showing that the majority of SATD removal
occurs by chances, even if 33% to 63% of SATD is removed
while also changing the affected source code, e.g., by modifying
conditional statements or by changing method (API) calls.

To the best of our knowledge, none of the aforementioned
papers study the relationship between SATD authorship and
source code authorship. At the same time, the attention to who
manages SATD [3] and how such an SATD is managed and
removed [6], [17] makes our investigation important, not only
to better understand SATD practices and possibly relate it to
modern code review practices [2].

While not about SATD, very related is the work by Fluri
et al. [9], who study the co-evolution of source code and
comments in software projects. We share the methodology to
relate comments (and their changes) to source code elements.

III. EMPIRICAL STUDY DESIGN

The goal of this study is to analyze the authorship of
SATD-related comments, to determine whether they have been
introduced by a developer who also changed the related source
code or, possibly by somebody else that has noticed a likely
occurrence of TD in the source code. The context consists of
data from five open-source projects belonging to an existing,
curated SATD dataset by Maldonado et al. [6]. We selected five
projects for which we could access their history on GITHUB.

We aim at addressing the following research questions:

TABLE I
DATASET OVERVIEW

Project SATD Instances Analyzed SATD # of
(dataset [6]) Instances Authors

Ant 124 116 101
ArgoUML 1145 1005 54
jFreeChart 109 206 26
jMeter 316 278 65
jRuby 462 220 479

• RQ1: Is Technical Debt admitted by developers who
changed the affected source code? We aim at distinguish-
ing between developers that add an SATD comment as
part of code modification and those that add an SATD
comment to the source code that has been modified by
their peers. The latter case might indicate that, rather than
“admitting” potential problems in her own source code, a
developer is signaling problems introduced in the source
code written by somebody else.

• RQ2: What is the proportion of ownership while adding a
TD comment into the code? While a developer could have
added an SATD comment adjacent to a code fragment
where somebody else did the latest changes, it is still
possible that the developer has modified the code fragment
in the past. To answer RQ2 we analyze the level of code
ownership [4] a developer has on the code fragment where
they added a SATD.

A. Dataset and Data Extraction Methodology

Table I shows, for each project, (i) the number of SATD from
the Maldonado et al. dataset [6], (ii) the number of SATD
comment instances we actually analyze (we explain in the
methodology why some instances could not be analyzed), and
(iii) the number of unique commit authors for the project.

We start from the dataset described above and available from
Maldonado et al. [6] replication package. In such a dataset, for
each SATD comment, we could access (i) the project name,
(ii) the reference commit in which the SATD was detected
(and reported in the dataset).

Given an SATD comment and a commit in which it was
detected, we use a string-matching approach to identify the
source code file(s) and the location(s) where the comment
occurs (the same comment may occur in multiple files, and
also in multiple locations of the same file).

As shown in Table I, the number of instances in the
Maldonado et al. differ from those we analyze because we
could not match all comments from the dataset onto source
code snapshot. On the contrary it can happen, as in the case of
jFreeChart, that the same comment from the dataset is matched
multiple times, therefore the number of analyzed instances can
be greater than the number of those in the dataset.

Then, using GIT BLAME, we identify by whom the SATD
comment was changed. We use the -w GIT BLAME option to
ignore formatting changes. This identifies both changes and
additions to SATD comments. For the purpose of our work,
we are interested in both cases.



Once we have identified the commit in which the SATD
comment has been introduced and/or changed, we check it out
and analyze the source code file using SRCML. By relying on
the Abstract Syntax Tree (AST) extracted by SRCML we relate
comments onto source code elements. To this aim, we use the
following heuristics, inspired by previous work on source code
and comments co-evolution by Fluri et al. [9]:

1) A comment preceding a method signature refers to the
whole method.

2) A comment preceding the closing bracket of a method
refers to the whole method.

3) A comment preceding a class definition refers to the whole
class.

4) A comment preceding the closing bracket of a class
definition refers to the whole class.

5) A comment inside a method, if it is not on the same line
of a statement terminating by a “;”, refers to the source
code line immediately following the comment.

The aforementioned analysis allows us to identify the set of
source code lines to which a comment refers. By using GIT
BLAME on such source code lines, we identify the commit of
their last change, and, consequently, their authors.

This leads to three different scenarios, depending on whether
the source code line has been modified (i) in the same commit of
the SATD comment, (ii) by the same author, but in a previous
commit, and (iii) in a previous commit by somebody else.
Through a manual analysis of the commit authors’ list, we
made sure our analysis is not affected by imprecisions due
to the presence of multiple aliases for the same author or
commits authored by multiple people. No such a case was
found. Based on the extracted information, we can address
RQ1, by determining how many SATD comments have been
added (or modified) by somebody that did not author the last
change to any of the lines attached to the SATD comment.

As a final analysis for RQ1, two authors have manually
scrutinized all the candidate cases (splitting the analysis
between them, after having discussed together the protocol
on a small subset of cases) to validate them and to determine
the extent to which the SATD comment was added or simply
modified, and to identify interesting cases to discuss.

While a developer could have introduced a comment related
to lines recently changed by somebody else, it is important to
also know the extent to which they “own” such source code,
and therefore likely have enough knowledge for discussing
it. To determine whether this is the case, given the author
of an SATD comment, we compute the ownership [4], i.e.,
their proportion of past changes to the same file, over the
total number of past changes occurred on the file. We consider
a coarse-grained definition of ownership (i.e., at file-level)
because we assume that if one changes a Java class frequently,
they should be knowledgeable enough of its methods.

To address RQ2, we report (i) the ownership distribution for
SATD comment authors in form of box-and-whisker plots, and
(ii) the number and percentage of cases in which the SATD
comment has been introduced by somebody that performed at

TABLE II
SATD ADMISSION WITHOUT MODIFYING THE SOURCE CODE.

Project Analyzed Admitted by Added Changed
SATD somebody else

Ant 116 12 (10.34%) 8 (67%) 4 (33%)
ArgoUML 1005 162 (16.12%) 130 (80%) 32 (20%)
jFreeChart 206 0 (0%) 0 (0%) 0 (0%)
jMeter 278 32 (11.51%) 28 (88%) 4 (12%)
jRuby 220 7 (3.18%) 7 (100%) 0 (0%)

least x% of the past changes on that source code file, varying
x ∈ [5%, 50%] step by 5.

IV. STUDY RESULTS

This section reports the study results, by addressing the
research questions formulated in Section III.

A. Is Technical Debt admitted by developers who changed the
affected source code?

Table II reports the number and percentage of SATD (out
of those we analyzed) where the admission has been done by
somebody different from the author of the last source code
change related to the comment itself. Out of the 229 cases we
initially found, the manual analysis removed 16 false positives
due to an improper mapping of comments onto source code,
leaving with the 213 cases reported in the table.

The percentage of admissions made by “somebody else”
varies from 0% of jFreeChart to 16.12% of ArgoUML. There-
fore, this is a relatively small, yet non-negligible proportion
of cases among those we analyzed. Such a result generally
confirms the “common wisdom” according to which developers
self-admit TD when they introduce not ready yet source code.
At the same time, there is still a percentage of cases (over
10% for three projects out of the five we analyzed) where we
observed SATD comments added by somebody else.

TD admission by somebody else never happens for
jFreeChart. As shown in Table I, this project has a relatively
limited number of authors (26, compared to 54–479 for other
projects). It could be possible that, with a small development
community, an inter-developer communication through SATD
makes less sense, whereas self-admissions are still useful.

As the last two columns show, in most cases the admission
by somebody else manifests with the addition of a new SATD
comment: this happens in a percentage ranging between 69%
(Ant) and 100% (jRuby), with ArgoUML and jMeter being at
80% and 88% respectively.

RQ1 summary: There is a non-negligible percentage [0%,
16%] of SATD comments being admitted by somebody
different from the developers authoring the related source
code lines. Most of them are newly-added SATD comments,
while a minority [0%, 31%] concerns comment changes.

B. What is the proportion of ownership while adding a TD
comment into the code?

While, as we have observed in RQ1, developers may admit
TD on source code changed by somebody else, these developers



may still be very familiar with the source code they comment.
Fig. 1 reports, as boxplots, the distribution of ownership authors
of SATD have on the source code they commented when they
were not the author of the last change. Note that we do not
report and discuss results for jFreeChart because in RQ1 we
found no cases of SATD on somebody else’s code.

As the boxplots show, the ownership is generally high, i.e.,
the median value varies from 11% for Ant to 43% for jMeter.
The ownership level for jMeter looks particularly high. By
looking at its commit log, we found that each source code file
is changed, across its evolution, by 1-3 developers (median 1).
This looks low, however also ArgoUML exhibits similar values,
whereas in Ant and jRuby source code files are modified by up
to 6 and 9 authors respectively. Therefore, this is only a partial
explanation of the observation, and further investigations on
different ways developers collaborate would be required.

Bird et al. [4] define a major contributor as a developer
that has done 5% of the total number of changes involving
the software component. In the majority of the cases the
developer admitting SATD is a major contributor for the
software component showing TD. This result can be confirmed
by looking at the percentage of SATD on code changed by
somebody else made by authors having different levels of
ownership (Fig. 2). While increasing the ownership threshold,
we observe a decrease in the percentage of SATD comments
introduced by somebody else. However, for jRuby and Ant
37.5% and 23% of SATD are admitted by minor contributors.
We conjecture that this may happen as a consequence of the
code review process done without relying on ad-hoc tools.

RQ2 summary: In most cases, whoever adds or modifies
SATD comments on source code lastly changed by some-
body else is a major contributor of that source code file.
There are cases (e.g., up to 37.5% for jRuby) where the
admission comes from a minor contributor.

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

Ant ArgoUML jMeter jRuby

0
20

40
60

80

Project

O
w

ne
rs

hi
p 

(%
)

10 12

42

18

Fig. 1. Ownership of authors who admitted TD on code changed by somebody
else, (jFreeChart having no such SATD comments is excluded).

%
 o

f S
AT

D 
w

ith
ou

t c
od

e 
ch

an
ge

s

0

25

50

75

100

Ownership greater than (%) 
0 5 10 15 20 25 30 35 40 45 50

Ant ArgoUML jMeter jRuby

Fig. 2. Percentage of SATD on code changed by somebody else made by
authors with ownership greater than X%

C. Admission for TD Introduced by Somebody Else

In some cases, the SATD has been introduced during
changes related to revisions to point out possible impact
of such changes elsewhere. As an example, in jMeter we found
a comment “// TODO: This method doesn’t appear to be used”
being introduced in a commit clearly reporting refactoring
action aimed at not changing the behaviour: “Reformatted to
conform with JMeter (Turbine) conventions”. Looking at the
comment body, it is clear that the reviewer is pointing out the
presence of a method never used so probably not needed.

There are also cases in which the admission by somebody
else is due to the attempt of fixing a bug. In this case, the
developer looks at the code to fix the bug and incurs in a
TD that need to be addressed, or introduces the TD as a
consequence of the bug fixing activity. For instance, in jMeter
we found a SATD comment “TODO consider removing this
method, and providing method wrappers instead [...]” being
introduced in a commit aimed at fixing a bug “Bug 44022 -
Memory Leak when closing test plan”. The same happens in
ArgoUML, where while trying to address a bug in a change
reporting “Issue 5438: Make use of new listener minimal update
facility so that we don’t unregister all our listeners and [...]” the
developer also introduces a SATD comment in a related source
code component: “// TODO: This brute force approach of
updating listeners on each // and every event, without checking
the event type or any other // information is going to cause
lots of InvalidElementExceptions [...]”. Finally, there are some
interesting cases in jRuby where, while dealing with a bug
“JRUBY-4071: SystemCallError.new does not create an Errno
instance”, a developer identifies the presence of a TD inside the
code being affected by the bug and reports its presence adding
the following SATD comment: “// FIXME: these descriptions
should probably be moved out, // to Constantine project which
deals with all platform-dependent constants.”

In ArgoUML, we also found cases where the SATD
introduction is due to activities aimed at improving the
overall documentation or code readability, e.g., the SATD
comment: “// TODO: This is probably an undesirable side
effect unless the user // confirms it.” in a change having as
message “Minor documentation cleanups”. The same happens



also in Ant where a SATD comment: “// XXX: (John Doe1)
The comment “if it hasn’t been done already” may // not be
strictly true. wrapper.maybeConfigure() won’t configure the
same // attributes/text more than once, but it may well add the
children again, // unless I’ve missed something.” is introduced
while adding “JavaDoc comments”. The author directly points
out the SATD being introduced while reporting the commit
message, i.e., “Note: maybeConfigure implies that calling it
twice will have no effect. I have a suspicion that children would
be added twice. Search for XXX to find the details.”

Finally, we report one interesting example of comment
change from ArgoUML (there are other interesting ones,
omitted due to space limits). One SATD comment for a public
method says “ We should not use assert on public methods.”
This was changed into something that explains the TD better,
and actually tells that it should probably not fixed for now:

“should not be using assert here but I don’t want to change to
IllegalStateException at lead up to a release as I don’t know
how much testing is done with assert on.”

V. THREATS TO VALIDITY

Threats to construct validity are mainly related to the
measurements we perform. First of all, to address RQ1 and
to investigate if the SATD has been modified or added by
somebody else we rely on GIT BLAME, which may be subject
to imprecisions in tracing changes. Second, we used a set
of heuristics to relate comments to source code. Again, it is
possible that such heuristics could lead to imprecisions. Also,
through a manual analysis, we (i) checked for imprecisions due
to multiple author aliases or commits with multiple authors,
and (ii) analyzed the results of RQ1, to validate them and
distinguish between changes and additions.

Concerning the ownership, as explained in Section III it is
measured at file-level, even though an SATD may refer to a
method or a statement. However, we assume that a developer
frequently changing a file is at least knowledgeable of its
content: this is not necessarily true in corner cases.

Threats to internal validity concern internal factors to our
study that could influence our findings. While our study does
not really claim any cause-effect relationship between variables,
the link between “commenting somebody else’s source code”
and performing code review must be interpreted very carefully,
because we may not be fully aware of the developers’ intent.

Threats to external validity concern the generalizability of
our findings. This is intendedly a small study on five curated
datasets. Thus, we plan to investigate whether the results hold
on a larger and more diverse dataset.

VI. CONCLUSION AND FUTURE WORK

We study the extent to which developers introduce or modify
SATD comments for source code on which somebody else
has performed the last changes. Results from five open-source
projects [6] indicate that such a phenomenon concerns up to
16% of the SATD instances. The change is generally made by
developers having a high level of ownership on that code.

1The name of the developer has been anonymized to protect their privacy.

The findings of this paper indicate that, in general, SATD
reflects a “self” admission made when a developer has written
(or modified) a piece of source code making it “not ready yet”.
At the same time, there is a non-negligible number of cases in
which SATD should be seen as a code review of source code
authored by somebody else. While this does not threaten the
general SATD metaphor, it calls for refining its interpretation.

Also, this warns developers for using more appropriate code
review mechanisms than source code comments. On the one
hand, SATD comments are somewhat more visible than code
reviews (i.e., SATD comments are just there, in the source code,
whereas code reviews comments could be easily forgotten after
a review is closed). On the other hand, it would be desirable
to develop better notification mechanisms once TD is admitted,
combining the advantages of SATD and code review tools.

Last, but not least, the presence of SATD comments out-of-
sync with source code changes calls for approaches aimed at
recommending when TD should be admitted [16] and, possibly,
to help developers in properly documenting TD.

As future work, we plan to extend this study to a large set
of open-source projects.

REFERENCES

[1] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spínola,
“Towards an ontology of terms on technical debt,” in MTD, 2014, pp.
1–7.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in ICSE, 2013, pp. 712–721.

[3] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in MSR, 2016, pp. 315–326.

[4] C. Bird, N. Nagappan, B. Murphy, H. C. Gall, and P. T. Devanbu, “Don’t
touch my code!: examining the effects of ownership on software quality,”
in ESEC/FSE, 2011, pp. 4–14.

[5] W. Cunningham, “The wycash portfolio management system,” OOPS
Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[6] E. da S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical debt,” in
ICSME, 2017, pp. 238–248.

[7] E. da S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in MTD. IEEE, 2015.

[8] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? manage it? ignore it? software practitioners and technical debt,” in
Foundations of Software Engineering. ACM, 2015, pp. 50–60.

[9] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Softw. Qual. J., vol. 17, no. 4,
pp. 367–394, 2009.

[10] G. Fucci, F. Zampetti, A. Serebrenik, and M. Di Penta, “Who
(self) admits technical debt?” Aug 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3984829

[11] E. Lim, N. Taksande, and C. Seaman, “A balancing act: what software
practitioners have to say about technical debt,” IEEE software, 2012.

[12] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical
debt,” in ICSME, 2014, pp. 91–100.

[13] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Advances in Computers, 2011.

[14] J. Siegmund, “Program comprehension: Past, present, and future,” in
SANER, vol. 5, 2016, pp. 13–20.

[15] G. Sierra, E. Shihab, and Y. Kamei, “A survey of self-admitted technical
debt,” Journal of Systems and Software, vol. 152, pp. 70–82, 2019.

[16] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta,
“Recommending when design technical debt should be self-admitted,” in
ICSME, 2017, pp. 216–226.

[17] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted technical
debt removal a real removal?: an in-depth perspective,” in MSR, 2018,
pp. 526–536.


