
Evaluating Atoms of Confusion in the Context of
Code Reviews

Victoria Bogachenkova∗, Linh Nguyen∗, Felipe Ebert†, Alexander Serebrenik∗ Fernando Castor‡,
∗Eindhoven University of Technology, The Netherlands, victoria.bogachenkova@gmail.com,

linhnguyenviet21@gmail.com, a.serebrenik@tue.nl
†Jheronimus Academy of Data Science, Tilburg University, The Netherlands, f.ebert@jads.nl

‡Utrecht University, The Netherlands, f.j.castordelimafilho@uu.nl

Abstract—Code review is a popular software engineering
practice. Success of code reviews can be threatened by confusion
experienced by code reviewers. For instance, on the one hand,
research has studied the reasons for confusion in code reviews,
and on the other hand, it also has analyzed source code patterns,
so called “atoms of confusion”, that have been shown to lead
to misunderstanding in the lab setting. However, to the best of
our knowledge, there is no research which tried to investigate
the possible cause and effect relationship between atoms of
confusion and confusion in code reviews. Another important
aspect still not studied is how those atoms of confusion evolve
across pull requests. In this emerging results paper, we report
an exploratory case study to provide a deeper understanding of
atoms of confusion, more specifically, whether atoms of confusion
are related to confusion in code reviews and how they persist
across pull requests. With the help of an existing tool for the
detection of atoms of confusion, and a manual analysis of code
reviews comments, we observed that statistical analysis did not
show any relationship between atoms of confusion and presence
of confusion comments in code reviews. Additionally, we found
evidence that atoms of confusion are mostly not being removed
in pull requests. Based on the results, we formulate hypotheses
on atoms of confusion in the code review context, that should be
confirmed or rejected by future studies.

Index Terms—atoms of confusion, confusion, code reviews, pull
requests

I. INTRODUCTION

Understanding source code is an essential task of the
software development process. Developers can spend more
than 50% of their time on program comprehension activities
[1], [2]. Code which is difficult or hard to understand can
negatively affect not only the development process but also
other related tasks, such as code reviews [3]. Recent work has
been focusing on one form of accidental complexity, atoms
of confusion, first discussed by Gopstein et al. [4]. These
refer to small pieces of code following a pattern that is known
to lead to confusion, i.e., any situation where the person is
uncertain about anything or unable to understand something,
among developers and for which there are alternatives that are
less confusing.

For example, post-increment is one of such atoms of confu-
sion.1 This atom is present when an increment to one variable
occurs in the same statement as an assignment to that variable:

1The complete list of atoms can be found at [5]. We have not included
them due the lack of space.

V1 = V2++;

Semantically equivalent code without confusion would, e.g.,
split the two operations in two different statements:

V1 = V2;
V2 += 1;

The main motivation of our study is two-fold: i) we expect
that those atoms of confusion are likely to promote confusion
among developers also in code reviews (as such task is mainly
about program comprehension), and ii) we believe that the
trend would be for those atoms to be removed over time
during the development process, as they have been shown to
be a source for confusion. Even though atoms of confusion
have been studied for different programming languages and in
different contexts [4]–[8], to the best of our knowledge, there is
no literature on atoms of confusion in the code review process.
In this work, we conduct an exploratory case study [9] to get
further insight into the phenomenon of atoms of confusion by
studying whether those atoms are related to confusing code
reviews, and how the atoms persist across pull requests (PRs).

Thus, we define our first research question as RQ1. What
is the relationship between atoms of confusion and confusion
in code reviews?. We analyzed the relationship between the
presence of atoms of confusion in pull requests and comments
indicating confusion in the corresponding code reviews. The
results suggest, contrary to our intuition, there is no relation
between atoms of confusion and confusion present in code
review discussions. Even though previous research [4] has
investigated how project age influences the rate of atoms
of confusion and how often bug-fixing commits remove the
atoms, there is not study specifically focusing on how atoms
evolve across pull requests. Therefore, we define our second
research question as RQ2. What is the relationship between the
presence of atoms of confusion in source code before and after
PRs?. We observe that developers infrequently remove atoms
of confusion in pull requests, confirming previous results that
projects usually do not dramatically increase or decrease the
number of atoms [4]. Finally, as appropriate for an exploratory
case study, we formulate hypotheses about atoms of confusion
that should be confirmed or rejected by future studies.



II. RELATED WORK

Gopstein et al. [6] presented 15 atoms of confusion which
were obtained from the champion programs of the Interna-
tional Obfuscated C Code Contest.2 Two controlled experi-
ments were conducted in the study with students and found
that those atoms of confusion are harder to understand than
the functionally equivalent programs that do not include them.
In a follow-up study, Gopstein et al. [4] conducted a large-
scale repository mining study of C programs and found that
the number of atoms in successful projects is large (e.g., in
the Linux kernel and Git). Additionally, they found a strong
correlation between these atoms and long code comments
and bug fixing commits. Langhout and Aniche [5] adapted
these atoms for Java programs. By conducting two-phase
experiment with students, they could confirm the influence
of specific atoms of confusion in Java on the understanding
of source code. Medeiros et al. [7], by analyzing source
code and surveying developers, measured the presence of
“misunderstanding patterns” in C projects. They showed that
these patterns are frequent in those projects and also that
developers consider that some of them can cause confusion.
de Oliveira et al. [8] used an eye tracker to investigate
whether developers misunderstand source code with atoms of
confusion. They observed a considerable increase in the time
and in the gaze transitions in code snippets with atoms, as
well as that the regions that receive most of the eye attention
were the regions with those atoms. Finally, Gopstein et al. [10]
conducted a think-aloud study with students and professional
developers to better understand the causes of confusion in code
with atoms of confusion. The authors found out that correct
hand-evaluations, i.e., predicting the output of a program,
do not imply understanding, and incorrect evaluations not
misunderstanding.

To the best of our knowledge, no previous work has studied
atoms of confusion in the context of code reviews. In partic-
ular, we are the first to study the relationship between their
presence and confusion as expressed in code review comments,
and their evolution across individual pull requests.

III. METHODOLOGY

As the goal of this study is to seek new insights and generate
new ideas and hypotheses for future research about atoms
of confusion in the context of code reviews, we decided to
conduct an exploratory case study [9]. This work consists of
two parts, each one of them answering one research question.
As the primary data of this study, we needed to select GitHub
repositories to be analyzed. Our selection criteria is that the
repositories should be public repositories and have a large
number of contributors (more than 100), a moderate number
(1,500+) of closed PRs as well as the majority being Java
code files. Not only will these criteria ensure diversity (i.e.,
different levels of coding experience from contributors) and
enough code review discussions during our analysis, this will
also ensure that we can detect atoms of confusion in the source

2https://www.ioccc.org

code, as our study is based on the study of atoms in the Java
programming language [5].

To answer RQ1, we considered a single GitHub repository.
After thorough investigation, we settled on the openhab-
addons3 repository, which has 300+ contributors and 8,000+
closed PRs. Then, the first two authors manually analyzed
a sample of code review discussions from PRs of openhab-
addons repository. The manual analysis aimed at identifying
comments in which confusion is expressed. As our unit of
analysis comprises specific lines of source code, i.e., atoms of
confusion, we decided to focus only on the inline comments
within each PR. The rationale is that inline comments are
explicitly linked to specific parts of the source code, and thus
those comments are linked to the changed code. This is not
possible for general comments of PRs as they cannot easily
be linked to specific parts of the code change. For RQ2, we
considered both openhab-addons and confluentinc-ksql4. The
latter has 157+ contributors and 6,000+ closed PRs.

To answer the RQs we identify the atoms of confusion in
those repositories using a tool5 based on the Java atoms of
confusion by Langhout and Aniche [5]. For RQ1, we apply
the tool on each PR and record the presence of atoms of
confusion after each PR. As for RQ2, since we are interested
in the presence before and after each PR, we document the
presence or absence of atoms before the PR as well. Then,
as the goal of RQ1 is to investigate the link between atoms
of confusion and confusion in code reviews and we manually
identify comments expressing confusion, we used a sample set
of PRs from openhab-addons. At the time of the study, the total
number of PRs was 12,100 and therefore we randomly sample
368 PRs including at least one Java file. This sample size
gives us a 95% confidence level and a 5% margin of error. To
classify whether a code review discussion contains confusion,
we employed a cross-labelling method. Firstly, the comments
are extracted from the respective PR’s code review. Then, the
comments are labelled by the first two authors following the
approach of Ebert et al. [3]. Finally, the first two authors cross-
checked the classification by going through the comments once
more to make sure they agreed on each other’s labelling. For
each disagreement, they discussed with each other and decided
on the final label together. As the goal is not to provide a gold
standard dataset, we do not report on agreement ratio.

Since the process of RQ2 could be automated completely,
we analyse the entire population of closed PRs in both
repositories. We exclude PRs that belong to issues (i.e., GitHub
API provides issues in the same way it provides PRs, so we
need to exclude these issues) and to PRs that do not have Java
files.

A. Data analysis

The statistical analyses we performed were similar for both
the research questions: we used the Chi-squared [11] and

3https://github.com/openhab/openhab-addons
4https://github.com/confluentinc/ksql
5https://github.com/SERG-Delft/atoms-of-confusion-detector



Fisher Exact [12] tests and the odds ratio. Additionally, for
RQ2 we also calculated the risk ratio [13].

To carry out our statistical analysis on the obtained results,
we organized the results as contingency matrices. The con-
tingency matrix obtained from the results of RQ1 is a 2 × 2
matrix, with rows corresponding to absence/presence of atoms
of confusion and columns to absence/presence of confusion
comments. The contingency matrix to answer RQ2 is a 2× 2
matrix with rows being how many atoms of confusion there are
at the start of the PR: no atoms or some atoms, and columns
of how many atoms of confusion after the PR changes. The
data set produced in this study with the labeled comments and
the classification of the PRs in one of the four categories is
publicly available.6

Both the Chi-squared and the Fisher exact tests were used
to investigate whether there is an association between two
categorical variables. For RQ1 the categorical variables are
presence of confusion in comments in code reviews vs pres-
ence of atoms of confusion. In RQ2, the categorical variables
are number of atoms of confusion before the PR vs the
number of atoms of confusion after the PR. The odds ratio was
calculated to find out the odds that an outcome will occur given
a particular exposure compared to the odds of the outcome
occurring in the absence of that exposure. The exposure in
RQ1 is the presence of atoms of confusion at the end of PR
review. The exposure in RQ2 is the presence of atoms of
confusion at the start of the PR, specifically the number of
the atoms. The risk ratio is used to carry out further analysis
on the results from RQ2. With this measure we are able to
investigate how much more or less likely it is that there are
atoms of confusion at the end of a PR review if there are
atoms before the PR is reviewed.

IV. RESULTS

In this section, we present the results of our study by
answering each research question (Sections IV-A and IV-B),

A. RQ1. What is the relationship between of atoms of confu-
sion and confusion in code reviews?

To answer this research question, we measured the follow-
ing metrics: the number of inline confusion comments and the
number of atoms of confusion within the PRs. Both metrics
are based on a random sample of 368 PRs from the openhab-
addons repository. As explained in Section III, we created
the contingency matrix, shown in Table I, with all of the
results. There appears to be little to no relationship between
atoms of confusion and confusion in code review comments.
In order to properly verify it we ran two statistical analyses
on the results, i.e., the Fisher Exact and Chi-squared tests.
The results of the statistical tests show there is no relationship
between the presence of atoms of confusion in pull requests
and confusion expressed in code review comments. The Chi-
squared test resulted in a p-value of 0.498 and the Fisher Exact
test resulted in a p-value of 0.532.

6https://figshare.com/s/9503e287fc189e92139b

Confusion comments No confusion
present comments present

No atoms present 96 88
Some atoms present 90 95

TABLE I
CONTINGENCY MATRIX FOR RQ1.

At the end of the PR
At the beginning No atoms of confusion Atoms of confusion

of the PR present present
No atoms present 554 401

Some atoms present 1287 3014
TABLE II

CONTINGENCY MATRIX FOR RQ2: OPENHAB-ADDONS.

B. RQ2. What is the relationship between the presence of
atoms of confusion in source code before and after PRs?

To answer this research question, we collected the following
metrics: the number of atoms of confusion at the start of the
PR and the number of atoms of confusion at the end of the PR.
Both of the metrics are based on all of the PRs in the openhab-
addons repository as well as all the PRs in the confluentinc-
ksql repository. Table II shows the contingency matrix for the
openhab-addons repository, and Table III for confluentinc-ksql.
The cells in these tables show numbers of files affected by PRs
and whether they have atoms of confusion or not before and
after the PR.

On both of the contingency matrices we did further analysis
by running the Chi-squared, Fisher Exact tests, and calculated
both the odds ration and the risk ratio. The results can be seen
in Table IV.

From the results shown in Tables II and III as well as
the tests along with the ratios, we can see both repositories
following the same pattern: the majority of the pull requests
from these repositories maintains the presence of atoms after
the request. In other words, if a file involved in a PR contains
atoms of confusion before the PR, it is likely to contain atoms
of confusion after the PR as well.

By taking a more holistic look, we recognise another trend
manifested in both repositories: the presence, or lack thereof,
of atoms of confusion in a PR has a higher chance of remaining
the same before and after each PR. This means that if there

At the end of the PR
At the beginning No atoms of confusion Atoms of confusion

of the PR present present
No atoms present 180 73

Some atoms present 18 2720
TABLE III

CONTINGENCY MATRIX FOR RQ2: CONFLUENTINC-KSQL.

Test openhab-addons confluentinc-ksql
Chi-squared test 7.24 · 10−61 < 0.00001
Exact Fisher test 3.51 · 10−58 6.11 · 10−205

Odds ratio 3.23 366.26
Risk ratio 1.66 3.44

TABLE IV
STATISTICAL RESULTS FOR RQ2. THE TOP TWO ROWS PRESENT THE

P-VALUES FOR THE TWO TESTS. THE BOTTOM ROWS PRESENT THE
RATIOS.



Decreases Remains Increases
No atoms at the start 0 554 399

Some atoms at the start 1690 1196 1415
TABLE V

RESULTS FOR RQ2: OPENHAB-ADDONS.

Decreases Remains Increases
No atoms at the start 0 180 73

Some atoms at the start 403 1041 1294
TABLE VI

RESULTS FOR RQ2: CONFLUENTINC-KSQL.

is a number of atoms existing in the files involved in a pull
request before the PR, it is more probable that there will still
exist some atoms in these files after that PR. The same applies
to the absence of these atoms: if there are no atoms in the files
of a pull request before the request, it is more likely that after
the pull requests no new atoms are added as well.

We can put a magnifying glass over this result by discrim-
inating cases where the number of atoms in a file decreased,
stayed constant, or increased, after each PR. Tables V and
VI provide data considering these three scenarios for the two
analyzed projects. The tables show that the same trend can
be observed for both files: if a file originally had no atoms,
it is more likely that it will remain atom-less after a PR. In
addition, if there are some atoms present before a pull request
in the involved files, it is more likely that the number of atoms
in these files will either stay the same or increase and less
likely that this number will decrease. The tables also show
nuance when considering cases where there is a decrease in
the number of atoms. For confluentinc-ksql, less than one in
every six PRs caused the number of atoms to decrease. In
openhab-addons, more than one in every three PRs had that
effect.

V. DISCUSSION

The results for RQ1 suggest that there is no relationship
between the presence of atoms of confusion in source code
and the presence of confusion in code review comments. We
believe there might be some explanations for this. Firstly, it
is possible that the developers are indeed confused with the
code that has the presence of atoms. However, they might
not be aware of this internal confusion, or they might express
it in ways other than code review comments, for example
direct communication with the author of the PR, or not at
all. Therefore, we cannot measure this confusion in the code
review comments in such scenarios. Secondly, this could
happen due to the difference between the lab setting where
the atoms of confusion were developed and the field setting.
The original study [6] involved students who might not have
a great command of programming languages and/or might
have gotten confused by the bigger picture, i.e., they might
have been confused from multiple pieces of code shown to
them consecutively. However, in our study, we investigate
repositories which include multiple contributors, the majority
of whom are professionals who might not be confused by

these small atoms of confusion due to their experience and
familiarity with programming and the project itself.

Regarding the results for RQ2, we found evidence that the
atoms of confusion are usually not being removed in pull
requests. This result confirms the findings of previous research
[4] on atoms of confusion, but only limited to this context.
For example, Tufano et al. [14] conducted a large empirical
study and found that about 80% of code smells survive in the
system, Businge et al. [15] found that 44% of the 512 analyzed
Eclipse third-party plug-ins depend on “bad” APIs and that
developers continue to use these “bad” APIs. Piantadosi et
al. [16] observed that only a minority of the commits aim
to make code more readable. These results provide evidence
that developers are usually not inclined to remove or change
problems in the code.

As for the introduction of atoms, we believe that the
developers introduce them unknowingly, due to a number of
reasons. Firstly, it is possible that these developers are unaware
of the concept of atoms of confusion. As mentioned above, this
concept was developed in a lab setting and therefore might
not be popular amongst developers. This could subsequently
lead to them not recognising the confusing patterns of code
and adding more atoms - either by following these patterns
for consistency or adding new types of atom due to their
lack of knowledge about this concepts - rather than trying to
resolve them. Secondly, it is possible that the developers might
have indeed been confused by the atoms at first. However,
rather than addressing this problem by either resolving them
themselves or making the original authors aware of this and
asking them to resolve it, they might spend time rereading the
code and trying to understand the code, possibly with the help
of others in real life or online. The consequence of this is that
they will now regard these coding patterns as understandable
and continue using them. Finally, the level of proficiency of
the developers from these projects could have affected this
increase in number of atoms in the repositories. Experiments
where atoms of confusion have been shown to cause confusion
involved mostly students. However, the presence of atoms
of confusion might have a limited impact on the ability of
professional developers to understand code, to a point where
they do not even consider it something to be improved in a
system under review.

A. Proposed Hypotheses

As befitting an exploratory case study [9], we propose three
hypotheses about atoms of confusion, based on the results of
this study:

H1. Atoms of confusion are not perceived as confusing
for experienced developers. Future research should try to
confirm whether the atoms of confusion, which so far have
been confirmed with students, in different contexts, are indeed
causing misunderstanding for experienced developers. It might
be the case that those atoms are so small and simple that they
are not a problem at all in “real-life”.

H2. Developers are unknowingly introducing atoms of
confusion within the PRs. There seems to be the case that



developers are inadvertently introducing atoms within the
PRs. Future research could investigate whether an automated
support suggesting developers some version without atoms
of confusion is beneficial for the project and the developer’s
comprehension of the code.

H3. Developers are aware of the bad effect of atoms of
confusion, but are still willing to live with the consequences.
Another possibility is that developers are consciously willing
to not remove these atoms and live with them in the project.
This is a conjecture similar to the work of Businge et al.
[15] where they believe developers are consciously continuing
to use bad APIs, even though knowing they are volatile and
unsupported.

Beyond the specific hypotheses presented above, we believe
that a replication of this study with a broader set of repositories
will bring full understanding of the role played by atoms
of confusion. We believe that such understanding will shed
new light on the development and comprehension tasks of
developers.

VI. THREATS TO VALIDITY

Construct Validity: We inherit this threat from of Ebert [17]
as confusion itself is an abstract, difficult-to-measure concept,
which means this keyword - and expression-based scheme
might have some inaccuracy. In order to combat this, the first
two authors cross-checked the labelling of each other and in
cases of disagreement, they would discuss with each other to
come to a final label together.

Internal Validity: General comments were not included our
analysis, but they may include confusion. However, since they
do not have a direct link to specific parts of the code, it is not
be feasible to check their relationship with atoms. Differently,
inline comments do allow such analysis. Another threat is the
subjectivity of our comment classification process. None of the
two labellers are involved in the analyze projects. Therefore
we might have made misinterpretations when reading review
comments due to a lack of knowledge about the culture and
guidelines of the projects.

External Validity: for RQ1, we only analysed a sample of
PRs from one Java repository. Further studies are needed. As
for RQ2, we only used two Java repositories. This means that
the results only pertain to these specific projects. In order to
confirm the results from our study, replication to other projects
is necessary.

VII. CONCLUSION

The omnipresence of code reviews calls for careful consid-
eration of mistakes, oversights, and confusion from the devel-
opers when reviewing code. In this paper, we describe the first
exploratory case study to understand if there is a connection
between the presence of confusion in code reviews and atoms
of confusion. We also investigated how pull requests affect
the presence of atoms in the files of two different projects. We
collected data about pull requests and analysed them for atoms
and confusion comments. Our initial results show that there
is no relationship between atoms of confusion and comments

expressing confusion in code reviews. Additionally, based on
the two analyzed repositories, we observe that a PR that
impacts files that does not include atoms is more likely to not
introduce atoms in these files. In a similar vein, PRs impacting
files that already have atoms are more likely to maintain or
increase the number of atoms. Based on our findings, we also
propose new hypotheses about atoms of confusion for future
research.

ACKNOWLEDGMENTS

We are very grateful to Mauricio Aniche, Jorge Romeu and
Pavlos Makridis for their great work on the topic of atoms
of confusion and also for developing and making the tool for
detecting atoms of confusion available to us.

REFERENCES

[1] R. Minelli, A. M. and, and M. Lanza, “I know what you did last summer:
An investigation of how developers spend their time,” in ICPC, 2015,
pp. 25—-35.

[2] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
TSE, vol. 44, no. 10, pp. 951–976, 2018.

[3] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in code
reviews: Reasons, impacts, and coping strategies,” in SANER, 2019, pp.
49–60.

[4] D. Gopstein, H. H. Zhou, P. Frankl, and J. Cappos, “Prevalence of
confusing code in software projects: atoms of confusion in the wild,” in
MSR, 2018, pp. 281–291.

[5] C. Langhout and M. Aniche, “Atoms of confusion in java,” in ICPC,
2021, pp. 25–35.

[6] D. Gopstein, J. Iannacone, Y. Yan, L. DeLong, Y. Zhuang, M. K.-C.
Yeh, and J. Cappos, “Understanding misunderstandings in source code,”
in ESEC/FSE, 2017, pp. 129––139.

[7] F. Medeiros, G. Lima, G. Amaral, S. Apel, C. Kästner, M. Ribeiro,
and R. Gheyi, “An investigation of misunderstanding code patterns in c
open-source software projects,” EMSE, vol. 24, no. 4, pp. 1693––1726,
2019.

[8] B. de Oliveira, M. Ribeiro, J. A. S. da Costa, R. Gheyi, G. Amaral,
R. de Mello, A. Oliveira, A. Garcia, R. Bonifácio, and B. Fonseca,
“Atoms of confusion: The eyes do not lie,” in SBES, 2020, pp. 243–
–252.

[9] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” ESE, pp. 131–164, 2009.

[10] D. Gopstein, A.-L. Fayard, S. Apel, and J. Cappos, Thinking Aloud about
Confusing Code: A Qualitative Investigation of Program Comprehension
and Atoms of Confusion, 2020, pp. 605—-616.

[11] K. Pearson, “X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, vol. 50, no. 302, pp. 157–175, Jul. 1900.

[12] P. Sprent, Fisher Exact Test. Springer Berlin Heidelberg, 2011, pp.
524–525.

[13] P. Cummings, “The Relative Merits of Risk Ratios and Odds Ratios,”
Archives of Pediatrics Adolescent Medicine, vol. 163, no. 5, pp. 438–
445, 05 2009.

[14] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad (and
whether the smells go away),” TSE, vol. 43, no. 11, pp. 1063–1088,
2017.

[15] J. Businge, A. Serebrenik, and M. G. Brand, “Eclipse api usage: The
good and the bad,” Software Quality Journal, vol. 23, no. 1, p. 107–141,
2015.

[16] V. Piantadosi, F. Fierro, S. Scalabrino, A. Serebrenik, and R. Oliveto,
“How does code readability change during software evolution?” EMSE,
vol. 25, no. 6, pp. 5374–5412, 2020.

[17] F. Ebert, “Understanding confusion in code reviews,” Ph.D. dissertation,
Federal University of Pernambuco, Recife, Brazil, 2019. [Online].
Available: https://felipeebert.github.io/post/phd-2019/phd-2019.pdf


