
Using Benchmarking Bots for Continuous
Performance Assessment

Florian Markusse∗, Philipp Leitner†, Alexander Serebrenik∗

∗ Eindhoven University of Technology
Eindhoven, The Netherlands

f.j.markusse@student.tue.nl, a.serebrenik@tue.nl

† Chalmers University of Technology
Gothenburg, Sweden

philipp.leitner@chalmers.se

Abstract—Bots for continuous performance assessment, in
short benchmarking bots, are starting to see use as a productivity
tool, helping large open source projects judge whether new code
contributions negatively impact performance. We discuss how
and why projects use benchmarking bots, and present an in-
depth case study of The Nanosoldier bot used by the team behind
the Julia programming language.

INTRODUCTION

Software development is a time-consuming and labor-
intensive activity. Hence, it’s not surprising that bots are
already widely spread, both in industry and in the open
source ecosystem. Bots handle routine tasks ranging from
updating dependencies to continuous quality assessment, e.g.,
by running test suites or static code analysis tools [1].

However, so far, much less attention has been paid to the
usage of bots for continuous performance assessment, even
though software performance is a critical quality concern
for many projects. This is understandable given that even
experienced developers often struggle to correctly benchmark
their systems, or judge whether an observed slowdown is
more likely to be statistical noise or an actual performance
regression [2]. Still some projects have taken on the challenge
to build bespoke automated performance benchmarking bots.

A brief summary of our research methods and the data
sources can be found in Sidebar 1.

SIDEBAR 1:
DATA SOURCES AND ANALYSIS

The findings described in this article are based on the
research conducted by the first author during his master’s
project [3]. The overall goal of our research is to construct
a theory of the usage of a benchmarking bots. In this paper,
we focus on an empirical characterization of benchmarking
bot usage in open source projects. We have comprehensively
investigated multiple well-known projects: the Julia, Apple
Swift, and Rust programming languages, the Diem decentral-
ized database, and Microsoft’s Fluent UI web framework. All
of these projects have adopted a benchmarking bot as part
of their code review process. This dataset can be found on
Zenodo (bit.ly/3D2QcNM).

We have quantitatively compared pull requests (PRs) where
the benchmarking bot was involved with PRs where it was not,
with regards to the number of reviews, number of commits,
amount of discussion, and number of developers involved in
the discussion.

Additionally, we performed an in-depth study of the Julia
project, a large and mature project that has adopted a bot
in April 2016. We have interviewed two developers about
their experiences with The Nanosoldier, the bot that the Julia
project uses as well as asked them to interpret the results of
quantitative comparison of PRs.

BENCHMARKING BOTS

Benchmarking bots are not yet a common feature of open
source software development. Using keywords stated in Ap-
pendix A [3] we search GitHub for pull requests referring
to performance regression or improvement and manually
checking whether the pull requests were related to bots for
continuous performance assessment. We say that a project has
adopted the benchmarking bot if more than 10 pull requests in
a year use this benchmarking bot. In this way we identified 11
projects that have adopted or built such a bot. Even though we
do not claim this list to be complete, the number of projects
using a benchmarking bot is surprisingly low, especially
considering the ubiquitousness of other CI bots, such as those
for dependency management [1]. Table I provides an overview
of identified projects using a benchmarking bot.

Projects that adopt benchmarking bots tend to be large,
and, unsurprisingly, in performance-sensitive domains, such
as programming languages (Julia, Swift, Rust) or frameworks
for Web development (Salesforce LWC, Hexo, or Microsoft’s
Fluent UI). We also observe that many projects in our list
adopted their benchmarking bot as recently as 2020, with the
notable exception of the Julia programming language, which
has been using a benchmarking bot (The Nanosoldier) since
early 2016. Finally, the benchmarking bots we observed in our
study are all custom-built or heavily customized for usage in
their projects. As of today, no “standard benchmarking bot”
has emerged that sees usage across the open source ecosystem,
akin to build or dependency management bots.



Project Domain Bot Adoption Trigger Reporting
JuliaLang/julia Prog. language The Nanosoldier Apr-16 Manual PR Comment
apple/swift Prog. language swift-ci Jan-17 Manual PR Comment
guardian/frontend Website PRBuilds Jun-17 Unknown* PR Comment
rust-lang/rust Prog. language rust-timer Aug-18 Manual PR Comment
Salesforce/lwc Web Salesforce Best Jul-19 Unknown* PR Comment
diem/diem Cryptocurrency github-actions Mar-20 Manual PR Comment
PaddlePaddle/Paddle Machine learning paddle-bot May-20 Automatic PR Comment
hexojs/hexo Web github-actions Jul-20 Automatic Checkmark
simdjson/simdjson Parser github-actions Sep-20 Automatic Checkmark
ibis-project/ibis Data analysis github-actions Oct-20 Automatic Checkmark
microsoft/fluentui Web fabricteam Dec-20 Automatic PR Comment

*: No explicit invocation event can be detected; contributors likely trigger the benchmarking bot internally.

TABLE I: Overview of Projects Using Benchmarking Bots

Two interesting observations relate to how developers in-
teract with benchmarking bots. Firstly, there are two different
ways to surface benchmarking results to developers: most bots
add comments that link to detailed reports to pull request dis-
cussion threads; only three projects (simdjson, hexo, and ibis)
surface benchmark results as GitHub Actions “checkmarks”.
This is surprising given that similar badges are commonly used
for other project quality checks [4].

Secondly, despite being integrated into the CI pipeline,
four projects elect to not execute their benchmarking bots
automatically and on every pull request. Instead, they have
to be manually triggered by a developer, for instance by
getting tagged in the code review discussion of a pull request.
Given that system benchmarking is well-known to be time-
consuming and resource-intensive [5], these projects are se-
lective with how often they choose to run their benchmarking
bots. For example, in the Julia project, only 5% of pull requests
are actually benchmarked, and only 8% of contributors have
ever interacted with the benchmarking bot.

An example of a developer invoking The Nanosoldier in
Julia is given in Figure 1(a). Starting a benchmark requires
tagging in the @nanosoldier user. Notably, no attempts
are made to provide a particularly “conversational” interface.
Instead, the benchmarking bot is called upon through a syntax
clearly inspired by method invocation. After benchmarking is
completed, the bot links to a report in the discussion thread.
Further note that one specific developer is tagged by the
benchmarking bot for every report.

THE NANOSOLDIER AND THE JULIA PROJECT

To explore the impact that adopting a benchmarking bot for
continuous performance assessment can have, we now explore
the Julia project in more detail as a case study. We selected
the Julia project as the focal point of this case study due to
its importance as a state-of-the-art programming language in
data science, the large size of its code base, and the maturity
of its benchmarking bot usage.

Specifically, we retrieved all pull requests with at least two
source file changes of the Julia project since 2016. We added
the requirement for source file changes to exclude ”simple”

pull requests, such as documentation modifications. Contribu-
tors invoke The Nanosoldier in a subset of pull requests, and
we try to isolate this group by this requirement.

Then, we grouped them into pull requests where the bench-
marking bot was invoked at least once (N = 534) versus pull
requests where this was not the case (N = 6957).

Figure 1(b) and Figure 1(c) quantitatively compares these
two groups along two example dimensions: how many par-
ticipants were involved in the discussion and how long the
discussion was in terms of number of comments.

We observe that pull requests where The Nanosoldier gets
invoked involve more participants and more comments. Ad-
ditionally (not depicted for brevity), our research has also
indicated that discussions involving the bot require more
commits and lead to longer comment threads as measured by
the total length of all comments taken together. The differences
are statistically significant (p < 0.0001), with Cliff’s δ effect
sizes between small (0.28; number of commits) and large
(0.5; number of participants). Hence, it appears that The
Nanosoldier is predominately involved in the discussion of
complex issues. However, based on this analysis alone it is
unclear if the bot causes long, complex discussions, or if it is
commonly brought into issues that simply are inherently more
complex. To investigate this more deeply, we also conducted
semi-structured interviews with two active and experienced
Julia developers who have had ample interaction with The
Nanosoldier.1

Both interviewees are convinced that The Nanosoldier is
a beneficial tool in Julia’s ecosystem, from its inception to
the current day. Specifically, they relate The Nanosoldier to
continuous integration, in that they only noticed how important
the tool actually is when it was unavailable:

It’s kind of like turning off CI. You think, oh, most
things will stay mostly stable, what could go wrong
[when it’s offline]? And then you turn it back on,
and there’s like ten bugs.

1This interview study has been approved by the Ethical Review Board of
Eindhoven University of Technology, The Netherlands, ref. ERB2021MCS9.

https://github.com/JuliaLang/julia
https://github.com/apple/swift
https://github.com/guardian/frontend
https://github.com/rust-lang/rust
https://github.com/salesforce/lwc
https://github.com/diem/diem
https://github.com/PaddlePaddle/Paddle
https://github.com/hexojs/hexo
https://github.com/simdjson/simdjson
https://github.com/ibis-project/ibis
https://github.com/microsoft/fluentui


(a)

(b) (c)

Fig. 1: (a) Invocation of The Nanosoldier in Julia (PR 39742); (b) Number of Unique Discussion Participants; (c) Number of
Comments in Discussion. Dark green shaded areas in plots (b) and (c) indicate overlapping curves.

Our study indicates that developers appreciate the peace
of mind that using a performance benchmarking bot gives
them. Before merging a complex PR, they would often run
The Nanosoldier to ensure the codebase did not unknowingly
incur performance penalties. Furthermore, they confirmed our
findings that PRs with a contribution from The Nanosoldier
have a greater number of interactions, particularly because the
report from the bot explicitly triggers discussion.

Furthermore, the question remains as to why The Nanosol-
dier is not invoked on every pull request. Indeed, having the
bot profile a pull request takes a lot of time. Running the bot
on each issue would overload, especially since benchmarks
need to be run on controlled hardware to be meaningful:

Our benchmarks just take too long. If they were
really fast, we would just run them on CI. But a
combination of the fact that we’re using wall clock

time and that we need to run it on a machine that’s
closer to the actual hardware and less susceptible
to interrupts.

Thus, invoking The Nanosoldier is reserved for pull requests
that are judged to be potentially high-impact and for which
there are existing benchmarks. Additionally, the pull request
often contains changes for which it is difficult to ascertain the
performance impact:

... when just one little thing is changed and that
could also be a PR that we run The Nanosoldier on
because that little thing might be in a very crucial
part of the source code. But usually, I would say that
if The Nanosoldier is run on it [a PR], it is probably
a bit more impactful.



SIDEBAR 2:
OTHER RESEARCH ON BOTS AND BENCHMARKING

Bots in software development are an active research area
as witnessed by a series of BotSE workshops, an eponymous
Dagstuhl Seminar [6] and a current theme issue. The research
so far has focused on understanding what kind of automation
can be seen as a bot [7], [8] and how bots influence software
development practices [9]. Another emerging research trend
in the area is the automated identification of bot contribu-
tions [10], [11].

Performance of software systems has been extensively
studied [12], [13]. Despite this the problem of performance
evaluation in practice is far from being solved: Laaber &
Leitner [14] observed big disparities between benchmarking
suites in their ability to detect slowdowns, Costa et al. [2]
found that 28% of the projects had at least a single instance
of an incorrectly written benchmark, while Stefan et al. [15]
observed that less than half a percent of the repositories used
a performance benchmarking framework at all, let alone a
benchmarking bot.

OUTLOOK

Bots for (continuous) performance benchmarking are still
rarely used in open-source software development. However,
the introduction of GitHub Actions has made such bots more
accessible to developers. We observe that four of eleven
investigated benchmarking bots are built on top of GitHub
Actions. Based on our research, we encourage developers
of other performance-sensitive projects to consider adopting
bot-based benchmarking—our results show significant positive
impacts on projects such as Julia. Benchmarking bots allow
contributors to test performance more readily while expending
less effort concurrently. This could likely lead to more perfor-
mance bugs being discovered earlier on in the development
process. Furthermore, maintainers rest more easily knowing
that complex changes either are automatically benchmarked,
or that performance assessment can at least be triggered easily
if necessary.

This being said, initial upfront investment is necessary.
As of today, there is no “standardized benchmarking bot”
(in the spirit of Dependabot and similar tools) that can be
adopted easily, requiring interested projects to build largely
bespoke benchmarking infrastructures and bots. However, with
the advent of GitHub Actions this process has been greatly
simplified. Still, we argue that there is currently a void to be
filled regarding out-of-the-box re-usable benchmarking bots to
bring this area into mainstream software development.

REFERENCES

[1] M. Wessel, B. M. De Souza, I. Steinmacher, I. S. Wiese, I. Polato,
A. P. Chaves, and M. A. Gerosa, “The power of bots: Characterizing
and understanding bots in oss projects,” Proceedings of the ACM on
Human-Computer Interaction, vol. 2, no. CSCW, pp. 1–19, 2018. 1

[2] D. E. D. Costa, C.-P. Bezemer, P. Leitner, and A. Andrzejak, “What’s
wrong with my benchmark results? studying bad practices in jmh
benchmarks,” IEEE Transactions on Software Engineering, 2019. 1,
4

[3] F. Markusse, “The impact of benchmarking bots on open-source software
projects,” Master’s thesis, Eindhoven University of Technology, 2021,
https://research.tue.nl/en/studentTheses/the-impact-of-benchmarking-
bots-on-open-source-software-projects. 1

[4] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, “How do
software developers use github actions to automate their workflows?”
in International Conference on Mining Software Repositories, 2021, pp.
420–431. 2

[5] V. Tarasov, S. Bhanage, E. Zadok, and M. I. Seltzer, “Benchmarking file
system benchmarking: It *is* rocket science.” in HotOS, vol. 13, 2011,
pp. 1–5. 2

[6] M.-A. D. Storey, A. Serebrenik, C. P. Rosé, T. Zimmermann, and
J. D. Herbsleb, “Botse: Bots in software engineering (dagstuhl seminar
19471).” Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. 4

[7] C. Lebeuf, A. Zagalsky, M. Foucault, and M.-A. D. Storey, “Defining
and classifying software bots: a faceted taxonomy,” in BotSE@ICSE,
E. Shihab and S. Wagner, Eds. IEEE / ACM, 2019, pp. 1–6. 4

[8] L. Erlenhov, F. G. de Oliveira Neto, and P. Leitner, “An empirical study
of bots in software development: characteristics and challenges from a
practitioner’s perspective,” in ESEC/FSE. ACM, 2020, pp. 445–455. 4

[9] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and M. A. Gerosa,
“Effects of adopting code review bots on pull requests to oss projects,”
in ICSME. IEEE, 2020, pp. 1–11. 4

[10] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova,
and A. Mockus, “Detecting and characterizing bots that commit
code,” in Proceedings of the 17th International Conference on
Mining Software Repositories. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 209 – 219. [Online]. Available:
https://doi.org/10.1145/3379597.3387478 4

[11] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth
dataset and classification model for detecting bots in github issue and
pr comments,” Journal of Systems and Software, vol. 175, p. 110911,
2021. 4

[12] M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in FOSE. IEEE, 2007, pp. 171–187. 4

[13] T. Yu and M. Pradel, “Pinpointing and repairing performance bottlenecks
in concurrent programs,” Empirical Software Engineering, vol. 23, no. 5,
pp. 3034–3071, 2018. 4

[14] C. Laaber and P. Leitner, “An evaluation of open-source software mi-
crobenchmark suites for continuous performance assessment,” in MSR.
IEEE, 2018, pp. 119–130. 4

[15] P. Stefan, V. Horky, L. Bulej, and P. Tuma, “Unit testing performance
in java projects: Are we there yet?” in ICPE, 2017, pp. 401–412. 4

https://doi.org/10.1145/3379597.3387478

	References

