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Abstract. The development of systems following model-driven engi-
neering can include models from different domains. For example, to
develop a mechatronic component one might need to combine exper-
tise about mechanics, electronics, and software. Although these models
belong to different domains, the changes in one model can affect other
models causing inconsistencies in the entire system. Only few tools, how-
ever, support management of models from different domains. Indeed,
these models are created using different modeling notations and it is not
plausible to use a multitude of parsers geared towards each and every
modeling notation. Therefore, to ensure maintenance of multi-domain
systems, we need a uniform approach that would be independent from
the peculiarities of the notation.

Notation-independence implies that such a uniform approach can only
be based on elements commonly present in models of different domains,
i.e., text, boxes, and lines. In this study we investigate the suitability of
optical character recognition (OCR) as a basis for such a uniformed ap-
proach. We select graphical models from various domains that typically
combine textual and graphical elements.

We start by analyzing the performance of Google Cloud Vision and Mi-
crosoft Cognitive Services, two off-the-shelf OCR services. Google Cloud
Vision performed better than Microsoft Cognitive Services being able
to detect text of 70% of model elements. Errors made by Google Cloud
Vision are due to absence of support for text common in engineering
formulas, e.g., Greek letters, equations, and subscripts. We identified the
multi-line text error as one of the main issues of using OCR to recognize
textual elements in models from different domains. This error happens
when OCR misinterprets one textual element as two separate elements.

To address the multi-line text error we build Xamã on top of Google
Cloud Vision. Xamã includes two approaches to identify whether the el-
ements are positioned on a single line or multiple lines, and merge those
identified as positioned on multiples lines. With and without shape detec-
tion Xamã correctly identified 956 and 905 elements, respectively, out of
1,171. Additionally, we compared the accuracy of Xamã and state-of-the-
art tool img2UML, and we observe that Xamã outperformed img2UML
in both precision and recall, being able to recognize 433 out of 614 textual
elements as opposed to 171 by img2UML.

Keywords: Model Management · Systems Engineering · OCR.
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1 Introduction

Model-driven engineering (MDE) has been used in diverse engineering fields such
as software engineering [74], robotics [111], and automotive [103]. The promised
benefits of using this approach include increased development speed, earlier sys-
tem analysis, and more manageable complexity [109]. However, managing in-
terrelated models of different domains is challenging [89]. Qamar et al. [105]
recommend the explicit modeling of the relationships between these models as
an approach to manage them.

A number of technologies have been proposed to model the relationships
between models explicitly [85,86,105,112]. However, automatic identification of
these relationships remains an open problem. The main reason is the heterogene-
ity of modeling notations: we believe that it would not be feasible to develop a
tool to parse all the existing notations. Moreover, even if such a tool was de-
veloped, it would have to be updated every time a modeling notation evolves
or a new notation emerges as stated by Ruscio et al. [82]. Metamodels change
over time [84], and the need to update the tools/models to support this change
is known as the model co-evolution problem [100]. The literature reported that
the time spent on this maintenance represents more than 25% of the total effort
involved with creation of a Domain Specific Language (DSL) [100, 101]. Thus,
we believe that to manage interrelated models of different domains one has to
use a technology independent of the modeling language(s) used.

We observed that graphical models, independent of the engineering domain,
typically combine textual and graphical elements such as boxes, lines, and ar-
rows. Such models can be designed using different tools, that usually can export
the model in a structured format such as XML, or as an image format such as
PNG or JPEG [95]. From the data extraction perspective it would have been
ideal if all models were available in a common structured format. However, this
is often not the case as models might be only available as images [95, 104] as
described in the following case:

– Unavailability of the source code of the model. Akdur et al. [73]
identified that some models are discarded shortly after the engineer presents
the model to a colleague. In order to increase the lifespan of the model,
engineers take a picture of the model and store it as image [73,75].

– Models are stored as images. Some companies prefer to store the models
as images due to the impossibility, in the future, of opening the models in
their original modeling tools [87]. This issue can happen when the source
code of the model is available but the modeling tool that created the model
cannot open it due to version compatibility. Maintaining the version com-
patibility between the source code of the model and the modeling tool can be
an expensive, and resource-intensive process [87]. Similarly, engineers store
3D CAD models by exporting them to 2D drawings and saving the drawings
as images [87]. This way of working is also common practice in Free/Open
Source Software (FOSS) projects. Hebig et al. [90] investigated 3.295 GitHub
projects and identified that more than 50% of UML files presented in those
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projects are stored as images format (jpeg, png, gif, svg, bmp). Furthermore,
a number of repositories reported in the literature store the models as im-
age [91, 110]. These findings suggest that it is a common practice to store
the models as images [91,95,96]

– Engineers do not use formal modeling languages. Akdur et al. [72]
conducted a survey with 627 software engineers from 27 different countries on
modeling and model-driven engineering practices in the embedded software
industry. They identified that no formal modeling language was used to
design some of the models by 65% of the participants. Examples of such
models include those designed using analog media (papers, whiteboard), and
also those models that were designed using computer tools but not necessary
modeling tools, such as Microsoft PowerPoint. In this case, the engineers can
either recreate the models using formal modeling tools, or they can easily
export the model as an image or take a picture of the model.

Therefore, to ensure maintenance of multi-domain systems, we need a uni-
form approach that would be independent from the peculiarities of the notation.
This also means that such a uniform approach can only be based on something
which is present in all those models, i.e., text, boxes, and lines. We believe that
the initial step to identify these relationships is through a uniform approach that
extracts data presented in a number of models from different domains.

In the first part of this work, we investigate the suitability of optical char-
acter recognition (OCR) as part of this uniform approach independent from the
peculiarities of the notation. OCR is a collection of techniques aiming at recog-
nizing text from handwritten or printed document and exporting the result as a
machine-encoded text. We start by evaluating two of the best1 off-the-shelf OCR
services, Google Cloud Vision2 and Microsoft Cognitive Services3, for extracting
text from a collection of 43 models from different domains. We use precision,
recall, and F-measure as metrics to evaluate the results. In our context, preci-
sion and recall are the fractions of OCR-extracted texts that are also manually
extracted compared to either all OCR-extracted texts (precision), or compared
to all manually extracted texts (recall). F-measure is the harmonic mean of pre-
cision and recall. Following are the research questions used to guide the first part
of this work:

– RQ1) How accurate are off-the-shelf OCR services for extracting text from
graphical models?

• Motivation: While OCR techniques have been around since 1930s, they
have not been applied in the context of text extraction from graphical
models. Hence, it is crucial to evaluate accuracy of the state-of-the-art
off-the-shelf OCR services with respect to these tasks.

1 Top OCR by Accuracy, Price, and Capabilities. https://rapidapi.com/blog/top-5-
ocr-apis/

2 https://cloud.google.com/vision/
3 https://azure.microsoft.com/en-us/services/cognitive-services/
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• Answer: We observe that Google Cloud Vision outperforms Microsoft
Cognitive Services, being able to detect 70% of textual elements as op-
posed to 30% by Microsoft.

– RQ2) What are the common errors made by OCR services on models from
different domains?
• Motivation: Taking a closer look at the common errors made by Google
Cloud Vision is a prerequisite to designing techniques that can improve
the precision and recall of the OCR services when applied to text ex-
traction from graphical models.

• Answer: We organize the common errors made by Google Cloud Vi-
sion into four categories. The first category of errors is related to non-
alphanumerical characters used in the models such as [, {, < or . The
second category is mathematical notation commonly used in equations
such as subscripts and Greek letters. The following category of errors is
related to spacing and relative positioning of the textual elements. Fi-
nally, the last group of errors is related to single-character errors such
as characters being wrongly added, removed, or recognized. We observed
that the main OCR challenges are related to recognizing text that con-
tains equations, Greek letters, multi-line text, i.e., text fragments posi-
tioned on multiple lines, and subscripts.

Based on these findings in the second part of this work, we aim to improve
the precision and recall of the OCR focusing on fixing the multi-line text error.
We chose to correct this error for two main reasons: the first one is because
OCR failed to detect textual elements that are positioned in multiple lines.
The second reason is related to the long-term goal of our research which is
the support for model management focusing on managing interrelated models
of different domain. We believe that correcting errors related to mathematical
formulas might not be as beneficial as correcting the multi-line text error. It
is because even a small difference in one equation such as the presence of “-”
instead of “+” can lead to a completely unrelated equation.

In order to address the multi-line text error, we developed Xamã (Figure 1)
as an extra layer on top of Google Cloud Vision. This tool includes two ap-
proaches that identify whether the elements are positioned on a single line or
multiple lines. As consequence, we merge those identified as positioned on multi-
ples lines avoiding the multi-line text error. To achieve this goal, i.e., identifying
whether the text is positioned on multiples lines or not, we first investigated the
similarities of textual elements presented in the models used in the first part
of this work. Based on this analysis we defined a set of heuristics and applied
them to a new collection of models to evaluate the accuracy of our approach.
The second approach is a combination of a modified version of these heuristics
with shape detection feature. The shape detection feature is a collection of im-
age processing algorithms used to identify shapes such as boxes presented in the
models.

Additionally, we evaluate the overall improvement of using Xamã and we
compare the results to a state-of-the-art domain specific tool. We selected Img2UML
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Fig. 1. Xamã is built on top of Google Cloud Vision. Xamã process the output pro-
vided by Google Cloud Vision to identify and merge the text fragments that are posi-
tioned on multiple lines. As output, Xamã produces the final text fragment list.

[95, 96] as the domain specific tool, and we compared the results by applying
Img2UML to collection of 20 UML class diagrams. In this comparison, we do
not take the identification of classes and relationships into account because the
focus of this paper is to evaluate the use OCR in extracting text from models.
Following are the research questions used to guide the second part of this work:

– RQ3) How accurate are the heuristics of Xamã in identifying multi-line
problems?
• Motivation: Evaluating the accuracy of the heuristics of Xamã is im-
portant to guarantee that they are not cause worse precision and recall
values.

• Answer: We applied our heuristics in a collection of 51 models (10 Mat-
lab Simulink models, 20 UML diagrams, and 21 models from scientific
papers). Our heuristics without shape detection correctly identified 905
out of 1171 elements, presenting a precision of 75%, recall of 77%, and f-
measure of 76%. With shape detection the number of correctly identified
elements increases to 956, improving the precision, recall and f-measure
to to 84%, 82%, and 83% respectively. Evaluating the results by the
model domain, we observed that Xamã, with the shape detection fea-
ture, presents statistically higher precision and recall on Matlab Simulink
and the models in the scientific papers than without this feature. The
results are inconclusive for UML diagrams.

– RQ4) What is the overall impact, in terms of precision and recall, of using
our approaches?
• Motivation: Due to the existence of other kind of errors, correcting the
multi-line text error does not guarantee the improvement of overall ac-
curacy.

• Answer: Xamã, without shape detection, presents better results in 22
(out of 51) models in terms of precision, and in 16 models in terms of
recall. With shape detection, it presents better result in terms of precision
in 29 models, and recall in 22 models. Evaluating these results by the
domain, we observed that Xamã presents statistically better precision
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on Matlab Simulink and the models in the scientific papers. Regarding
the recall, Xamã presents statistically better results on these two groups
of models when using the shape detection feature. For UML diagrams
the results are inconclusive.

– RQ5) How accurate is Xamã compared to a state-of-the-art domain specific
tool?
• Motivation: Since it is expected that a domain specific tool would outper-
form a generic tool we would like to know how good is Xamã compared
to a domain specific tool regarding the text recognition.

• Answer: We observed that Xamã correctly recognized 433/431 (with-
out/with shape detection) out of 614 elements on class diagrams, while
Img2UML correctly recognized 171 elements.

This paper is an extension of our previous work [113]. While the confer-
ence paper focused on the evaluation of the existing OCR techniques (RQ1 and
RQ2), in this extension, we propose two approaches to improve the OCR preci-
sion and recall focusing on correcting the error caused by the misinterpretation
of one textual element as two separate elements (RQ3, RQ4 and RQ5).

To encourage replication of our work the data we have collected and the
source code we have used to perform the analysis have been made available on:
bit.ly/DataOCRExtension

The remainder of this paper is organized as follows. Section 2 presents our
previous study aimed at investigating the suitability of OCR in extracting text
from models from different domains. In Section 3, we present the second study
in which we address the multi-line text error. Section 4 presents the threats to
validity, and the actions we took in order to mitigate the threats. In Section 5,
we present a summary of our studies, discussing the results and indicating pos-
sible future work directions. Section 6 presents the related work. Finally, the
conclusion is presented in Section 7.

2 Suitability of Optical Character Recognition for Text
Extraction from Graphical Models

In this section, we present our previous study [113] aimed at investigating the
suitability of optical character recognition (OCR) as a uniformed approach to
extract data from models from different domains. Specifically, we investigate the
accuracy of off-the-shelf OCR services for extracting text from graphical models
(RQ1), and the common errors made by OCR (RQ2). In Section 3, we build
upon this study and propose two approaches to correct the most common error
produced by OCR.

2.1 Methodology

To answer RQ1 we apply Google Cloud Vision and Microsoft Cognitive Services
to a collection of 43 models from different domains. To answer RQ2 we focus on
the OCR service that has been shown to perform better on RQ1 and inspect the
errors made by the service.
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Models Selection For reproducibility reasons, we arbitrarily select models
from two UML open repositories [1, 69], three control system engineering pa-
pers [71, 93, 114], and the example catalog of MatLab Simulink4. In total we
analyzed 43 models as presented in Table 1. We only require the models to be
graphical models, i.e., they must contain a mix of textual and graphical elements.
Diagrams are graphical representations of parts of a model [70]. Therefore, in
the context of this study, we use the term “model” to represent diagrams as well.

We select MatLab Simulink models because of its high adoption by the in-
dustry. These models are available on the official website as example catalog and
they are used to describe control systems from different domains including auto-
matic climate control, robot arm control, and fault-tolerant fuel control. We also
include models from three scientific papers on control system engineering. The
models from these papers are an intelligent control architecture of a small-scale
unmanned helicopter, an actuator control system, and a x-ray machine.

Among the UML models we focus on Class Diagram, Sequence Diagram, and
Use Case Diagrams. These models are stored in two repositories: Git UML [1]
and Models-db [69]. The former automatically generates diagrams from source
code stored in git repositories. Models-db is automatically populated by crawlers
identifying models from public GitHub repositories.

Source Models #Models

Ai et al. [71] Figures 1, 4, 5 5
Kaliappan et al. [93] Figures 1-3, 5, 7 5
Tovar-Arriaga et al. [114] Figures 1, 5–8, 10, 15 7
UML [22,32,43,45–51,53–55,60,62–64] 17
MatLab Simulink [3, 13–20] 9

Total 43

Table 1. List of models used to answer RQ1.

Text Extraction In order not to bias the evaluation towards a specific en-
gineering domain, we opt for general-purpose OCR techniques. Several OCR
serves are available off the shelf, including Google Cloud Vision, Microsoft Cog-
nitive Services, and Amazon AWS Rekognition5. For this work, we select the
Google Cloud Vision and Microsoft Cognitive Services: these services have been
shown to be effective in recognizing text from the photos of the pages of the
Bible [107], and to outperform Amazon AWS on images of business names or
movie names [2].

4 https://www.mathworks.com/products/simulink.html
5 https://aws.amazon.com/rekognition/
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Measures for Accuracy The validation consists of manually identifying the
text from graphical models, and comparing the text extracted by OCR to the
manually identified text. When deciding whether the OCR-extracted text matches
the one manually extracted we do not distinguish between the letter case, i.e.,
Velocity is seen as the same as veLoCitY because these words still have the
same meaning. We do distinguish between differently chunked texts, i.e., given
the manually identified text Velocity control an OCR service extraction of Ve-
locity and Control as two separate texts will be seen as wrong.

As common in information retrieval tasks we report precision, recall, and F-
measure, i.e., the harmonic mean of precision and recall. In our context precision
is the fraction of OCR-extracted texts that are also manually extracted compared
to all OCR-extracted texts, and recall is the fraction of OCR-extracted texts that
are also manually extracted compared to all manually extracted texts.

2.2 Results

RQ1: How accurate are off-the-shelf OCR services for extracting text
from graphical models? In overall, Google Cloud Vision correctly detected
854 out of 1,232 elements, while Microsoft Cognitive Services correctly detected
388 elements. This observation concurs with previous evaluations of these OCR
services. Indeed, on the photos of the pages of the Bible Reis et al. [107] observed
that Google Cloud Vision had a relative effectiveness of 86.5% as opposed to
77.4% of Microsoft Cognitive Services. On images of business names or movie
names [2] Google Cloud Vision achieved 80% of both precision and recall as
opposed to 65% of precision and 44% of recall of Microsoft Cognitive Services.

Hence, we hypothesize that also on our dataset Google Cloud Vision will
outperform Microsoft Cognitive Services in terms of both precision and recall.
Formally, we state the following hypotheses:

– Hp
0 : The median difference between the precision for Google Cloud Vision

and Microsoft Cognitive Services is zero.
– Hp

a : The median difference between the precision for Google Cloud Vision
and Microsoft Cognitive Services is greater than zero.

– Hr
0 : The median difference between the recall for Google Cloud Vision and

Microsoft Cognitive Services is zero.
– Hr

a : The median difference between the recall for Google Cloud Vision and
Microsoft Cognitive Services is greater than zero.

To test these hypotheses we perform two paired Wilcoxon signed-rank tests, one
for precision and another one for recall. The p-values obtained for precision and
recall are 1.9×10−7 and 2.8×10−9, respectively. Hence, we can reject Hp

0 and Hr
0

and state that Google Cloud Vision outperforms Microsoft Cognitive Services.
To illustrate this argument consider Figure 2. It summarizes precision (y-axis)

and recall (x-axis) organized by the type of models. Indeed, we can observe that
while precision and recall obtained by Google Cloud Vision mostly exceed 0.5,
precision and recall obtained by Microsoft Cognitive Services are mostly below
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Fig. 2. Precision (y-axis) and recall (x-axis) obtained by Google Cloud Vision (top)
and Microsoft Cognitive Services (bottom).

0.5. Moreover, the data for both Google Cloud Vision and Microsoft Cognitive
Services suggests a linear relation between precision and recall: indeed, while
the number of textual elements extracted by OCR tools is often close to the
number of manually identified textual elements, the textual elements themselves
are imprecise.

Finally, while Google Cloud Vision extracted some textual information from
all models, Microsoft Cognitive Services failed on two models: Matlab Simulink
model [15] and Figure 4.b from the paper by Ai et al. [71].

Performance on Models of Different Domains While the previous discus-
sion indicates that overall Google Cloud Vision outperforms Microsoft Cognitive
Services, a priori this does not imply that this should also be the case for mod-
els of different domains. This is why we formulate the corresponding hypotheses
separately for UML diagrams, Matlab Simulink models, and models from scien-
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Fig. 3. F-Measure for all analyzed models. The mapping of paper model ID and the
models from the selected scientific papers is presented in the Appendix Table 11

tific papers. We test these hypotheses using paired Wilcoxon signed-rank tests,
one for precision and another one for recall. However, since we perform multiple
comparisons, we need to adjust the p-values to control for the false discovery
rate. We use the method proposed by Benjamini and Hochberg [77].

The adjusted p-values are below the commonly used threshold of 0.05 for five
of the six comparisons (three types of models × precision or recall). We conclude
that Google Cloud Vision outperforms Microsoft Cognitive Services: for models
of all domains in terms of recall; for UML diagrams and Matlab Simulink models
in terms of precision as presented in Table 2.

Models Precision Recall

UML Google Cloud Vision Google Cloud Vision
Matlab Simulink Google Cloud Vision Google Cloud Vision
Scientific papers - Google Cloud Vision

Table 2.OCR service that presents statistically better results organized by the domain.
The “-” means inconclusive result.

Performance on Individual Models Table 2. Figure 3 shows that the F-
measure for Google Cloud Vision is higher than for Microsoft Cognitive Services
on 33 models, as opposed to five models where Microsoft Cognitive Services
scores higher. For the remaining five models the F-measures are equal.

Inspecting Figure 3 we also notice that for six models Microsoft Cognitive
Services have precision equal to zero, i.e., either no textual elements have been
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extracted (Matlab Simulink 4 and Paper model 3.3) or all textual elements
extracted are wrong (UML Class Diagram 8, UML Use Case 4, UML Sequece
Diagram 2 and 4). Unfortunately, we cannot precisely state the reasons why
Microsoft Cognitive Services failed in process these models. Possible reasons
could be related to the quality of the images, and size of font. However, these
are unlikely to be the reasons for this fail, since all used images are in good
quality and Google Cloud Vision managed to process the same images. In this
study we did not look further in investing the reasons for the bad performance
of Microsoft Cognitive Services.

Take away message

Google Cloud Vision was capable of detecting 70% of all elements, con-
sistently outperforming Microsoft Cognitive Services.

RQ2: What are the common errors made by OCR services on models
from different domains? Based on our answer to RQ1, one would prefer
Google Cloud Vision as the OCR service to be integrated in a multi-domain
model management solution. In this section we take a closer look at the errors
made by Google Cloud Vision: addressing these errors is necessary in order to
make OCR suited for multi-domain model management.

Table 3 summarizes the results of manual analysis of the errors made by
Google Cloud Vision:

– The first category of errors is related to non-alphanumerical characters used
in the models such as [, {, <, or . These characters are sometimes confused
with each other or missed by the OCR, e.g., the name of the element is
‘file version’ and OCR detects ‘file version’, without the underscore.

– Engineering models can involve mathematical formulas such as equations,
including subscripts and Greek letters.

– The next group of errors is related to spacing and relative positioning of
the textual elements. For example, due to space limitations text can be
positioned on multiple lines, making OCR to misinterpret as one textual
element but as two separate elements, we call this error as Multi-line Text.
When this misinterpretation happens in a textual element positioned in one
single line, we call this error as Split Element. The difference between Multi-
line Text and Split Element is that the latter occurs on textual element
written in one single line but have an empty space between the words, causing
this misinterpretation. The opposite of the error Split Element is Mix of
Elements. Mix of Elements occurs when OCR mixes the name of different
elements due to their proximity.

– Finally, the last group of errors is related to single-character errors such as
characters being wrongly added, removed, or recognized. An example of such
error is Character Confusion. This error occurs when OCR is not capable
of identifying the letter due to the similarity to other letters. For instance,
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Problem Total
UML

MatLab Paper
CD UC SD

Non-alphanumeric characters
Brackets 1 0 0 0 1 0
Curly Brackets 2 0 0 2 0 0
Greater/Less Symbol 1 0 1 0 0 0
Parentheses 5 3 0 1 1 0
Slash 1 0 0 1 0 0
Underscore 8 7 0 0 1 0
Total 18 10 1 4 3 0

Mathematical formulas
Equation 2 0 0 0 2 0
Subscript 2 0 0 0 0 2
Greek Letter 2 0 0 0 0 2
Total 6 0 0 0 2 4

Spacing
Empty Space between Letters 15 6 4 3 1 1
Mix of Elements 8 4 0 0 3 1
Multi-line Text 28 4 3 0 7 14
Split Element 1 1 0 0 0 0
Total 51 15 7 3 11 15

Character confusion
Character Confusion 8 1 2 0 3 2
Extra Char 11 4 2 0 2 3
Missing Char 14 5 1 0 3 5
Wrong Char 13 3 0 2 5 3
Total 46 13 5 2 13 13

Table 3. Number of models affected by the identified problems. CD - Class Diagram,
UC - User Case, SD - Sequence Diagram

the name of the element is ‘DeleteNodeById( )’. However, OCR interprets
the capital letter ‘i’ as the lowercase ‘l’, returning ‘DeleteNodeByld( )’. The
difference between Character Confusion and Wrong Char is that the former
occurs between similar characters, e.g., the letter ‘o’ and the number ‘0’.
And Wrong Char occurs between any character.

Table 3 shows that errors present in the largest number of models are Multi-
line Text, Empty Space between Letters, Missing Char, and Wrong Char. How-
ever, the number of models affected by the errors should be compared to the
number of models that can be affected by those errors: while wrong characters
might appear in any model, errors related to underscores can only be present if
the models contain underscores.

Hence, Table 4 summarizes the number of models that can be affected (candi-
date models) and the models that are affected by errors. Similarly, it includes the
number of elements that can be affected (candidate elements) and are affected
by the errors.
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Problem
#Affected
Models

#Candidate
Models

#Affected
Elements

#Candidate
Elements

Non-alphanumeric characters
Brackets 1 1 1 5
Curly Brackets 2 2 8 9
Greater/Less Symbol 1 12 4 60
Parentheses 5 5 11 137
Slash 1 11 1 39
Underscore 8 8 59 156

Mathematical formulas
Equations 2 2 2 2
Subscript 2 2 15 15
Greek letters 2 2 2 2

Spacing
Multi-line Text 27 27 130 130
Split Element 1 39 2 334

Table 4. Candidate Elements are the elements that contain characters that can cause
a problem. Candidate Models are the models that have the candidate elements.

Inspecting Table 4 we observe that the Curly Brackets, Equations, Greek
letters, Multi-line String, Parentheses, Subscript, and Underscore occur in every
single model that has the corresponding elements.

Even though Parentheses, and Underscore problems arise in 100% of the can-
didate models, Google Cloud Vision correctly identified 92% of textual elements
that have parentheses and 60% of the textual elements that have underscores
and this in sharp contrast with Equations, Greek Letters, Multi-line String, and
Subscript that could not be recognized by Google Cloud Vision.

Take away message

The main OCR challenges are text that contains Equations,Greek Letters,
Multi-line String, and Subscript due to the lower precision on correctly
identify these elements.

3 Addressing an OCR Limitation - The Multi-line Error

The long-term goal of our research is to support the model management focusing
on managing interrelated models of different domains. It is known that the ex-
plicit modeling of the relationships between models from different domains can
support this goal. Indeed, explicit modeling of the relationships facilitates the
identification of the affected models due to a change. While explicit modeling of
the relationships can be done using a number of approaches, little is known in
how to do this automatically. For this goal, we first need an approach to extract
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information that is presented in various kind of models. In Section 2, we inves-
tigated the use of OCR as a basis for such approach, and the common errors
produced by OCR.

In this section we improve the precision of OCR by correcting the errors
caused by the misinterpretation of one textual element as two separate elements.
We call this error as the multi-line text error. We decided to correct this kind of
error first because OCR failed in recognize these elements in 100% of the cases.
Although the identification of mathematical formulas also represents the main
OCR challenges, we believe that fixing errors related to mathematical formulas
might not be as beneficial to the long-term goal of our research as correcting
the multi-line text error. The reason is because even a small difference in one
equation such as the presence of “-” instead of “+” can lead to a completely
unrelated equation making it difficult to identify relationships between models.

3.1 Methodology

We observed that OCR services fail in detecting textual elements that are po-
sitioned on multiple lines. In order to address this error, we developed Xamã.
This tool includes two approaches: the first approach is the use of a collection of
heuristics that take into consideration parameters such as the text alignment, the
distance between the text fragments, and the size of the words and letters. The
second approach is the combination of these heuristics with image processing.
When defining these approaches we aimed at solutions that would be indepen-
dent of OCR engines and that would not introduce considerable overhead in
terms of running time or memory consumption.

Identifying Similarities The main goal of the second part of this study is to
propose a generic solution to the multi-line text error. We need a generic solution
because of the heterogeneity of models. The first step to fix the multi-line text
error is to identify the text that is positioned on multiple lines. For the sake of
generalisability of the approach to be designed we focus on common character-
istics of the text positioned on multiple lines. To identify these characteristics
we analyzed the collection of models used to answer RQ1 and RQ2, and checked
the characteristics of the multi-line text. Based on the characteristics, we de-
fined a collection of heuristics capable of detecting text fragments positioned on
multiple lines.

A possible approach to resolving multi-line errors might consist in merging
all text fragments that are located on top of and close to each other. However,
this approach would be overly eager and would merge unrelated text fragments,
e.g., attributes and operations in a UML class diagram such as the one on Figure
4.

We propose two approaches to correct the multi-line text error. The first
approach applies a set of heuristics used to classify whether the text should be
merged taking into consideration the coordinates of the text fragments. Following
are the description of these heuristics we call regular heuristics (RH):
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Fig. 4. Example of a UML Class Diagram.

– Alignment. We observed that the text fragments that are positioned on
multiple lines have centralized as the chosen alignment format in most of the
models (25 out of 28). Therefore, we opted to take this alignment format into
consideration when evaluating whether the text fragment should be merged
or not.

– Text Distance. Text fragments positioned below each other do not nec-
essary represent the same element. To define whether the text fragments
should be merged, we take into consideration the font size (height) and the
distance (horizontal and vertical) between the text fragments. The threshold
for the vertical distance between the text fragments is half of the font size.
The horizontal distance is the distance between the centers of the both texts
fragments. In this study, we consider that the threshold for the horizontal
distance between the centers of the text fragments cannot be greater than 3
times the length of the letters6. These thresholds have been chosen in order
to obtain the optimal performance on the data set described in Section 2.
For example, we observed that increasing the threshold of the horizontal dis-
tance to 4 times the length of the letters leads to an increase of false positives.
Figure 5 illustrates an example of how we calculate the text distance.

The second approach consists of a slightly modified version of the previous
heuristics, and image processing algorithms to detect shapes presented in the
models. For the image processing we use OpenCV [21], an open source com-

6 The length of the letters is the length of the word divided by the number of characters
in the word.
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Application

Controller

H
ei

gh
t

CPa (Xa,Ya)

CPc (Xc,Yc)

HD = |Xa - Xc|
VD = |Ya - Yc|

Length LL = Length/N

Fig. 5. Example of how we calculate the variables used in our heuristics of two text
fragments that represent the element “Application Controller”. The “CP” means cen-
tral point of the word. The “HD” and “VD” mean horizontal and vertical distances
respectively. The “LL” means length of the letters. The “N” means the number of
letters in a word.

puter vision and machine learning software library. This library has more than
2500 optimized algorithms and is used by companies such as Google, Yahoo, Mi-
crosoft, Intel, IBM, Sony, Honda, and Toyota, with estimated number of down-
loads exceeding 18 million [21].

In order to improve the quality of the shape detection, we first convert the
images to black and white, and then we blur these images using the Gaussian
kernel filter [88] reducing the high-frequency noise from images. To identify the
shapes presented in the images, we use the algorithm findContours with simple
approximation as the contour approximation method. We opt for simple approx-
imation to reduce memory consumption7. Once we have a list of the identified
shapes, we use the pointPolygonTest algorithm to perform a point-in-contour test
to determine whether the text fragments (provided by Google Cloud Vision) are
inside the identified shapes.

Next we apply a series of heuristics. Instead of applying RH as defined above,
we slightly modify them. Indeed, grouping the text fragments into the shapes
they belong to, allows us to apply the heuristics in a less strict manner. While
in the RH the threshold for the vertical distance is half of the font size, for the
modified heuristics, we call shape detection heuristics (SDH), the new threshold
becomes the font size. The change of this value was derived by trying differ-
ent values to obtain optimal results to improve the accuracy. This is the only
difference between the heuristics used in both approaches.

The merging process is done on two text fragments at a time. For example,
consider the following model in Figure 6. There are three elements in this model:
Navigation System, Application Controller, and Engine Speed Selector. Because
of the text is positioned on multiples lines, the OCR service recognizes Appli-
cation Controller as two elements “Application” and “Controller”; and Engine
Speed Selector as three elements “Engine”, “Speed” and “Selector”. In this ex-

7 https://docs.opencv.org/master/d4/d73/tutorial py contours begin.html
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Application 
ControllerNavigation System

Engine
Speed

Selector

Fig. 6. An example of a model in which the multi-line text error occurs on Application
Controller and Engine Speed Selector elements.

ample, Xamã starts checking whether “Navigation System” should merge with
“Application”, “Controller”, “Engine”, “Speed”, and “Selector”. In case of a
merging, the merged text fragments become one, and we repeat the operation
until all text fragments are checked. The merging is only considered correct if the
order of the text fragments is correct. Having the element Application Controller
as example, the merging is correct if the final result is “Application Controller”
and wrong if it is “Controller Application”.

We selected Google Cloud Vision as the OCR technology because of its high
precision and recall as shown in the previous section. It is worth mentioning
that Xamã works with any OCR service, as long as the service also provides the
coordinates of the text fragment presented in the image. Our approach works as
follows: we submit a collection of models to Google Cloud Vision that returns
the list of text fragments and their coordinates in respect to the their models.
Xamã processes the list of text fragments following a set of heuristics (with or
without shape detection feature to identify and merge the text that is positioned
on multiple lines, and exports a new list of text fragments. Every text fragment
is one element of the model. Finally, we compare the final version of the text
fragments with the ones manually extracted. These steps are summarized in
Figure 7.

Limitations When we submit an image to be processed by Google Cloud Vi-
sion, we obtain as response the recognized text and the coordinates (x, y) in
pixels of the text in the image. Xamã uses these coordinates to verify whether
the text should be merged. However, in our preliminary experiments we ob-
served that these coordinates are not always reliable. For example, considering
the coordinates (x, y) of two textual elements that are aligned to the left. We
would expect that the x values would be the same for both of textual elements.
However, it is not always true. Thus, we have to take into account a tolerance
range.

Another limitation of Google Cloud Vision is that one cannot specify the
Google Cloud Vision version they want to use. This can be problematic because
the results Google Cloud Vision, including coordinates computed on the same
input model, changed with time. We conjecture that it happened due to an
update of the service. However, this limitation would occur when using any
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Models Text fragment 
list

Identification and 
merging of text on 

multiple lines

Final text 
fragment list

Text fragments 
extracted manually

Fig. 7. Google Cloud Vision extracts a list of text fragments from a set of models.
Xamã receives this list as input, processes it to identify and merge the text fragments
that are positioned on multiple lines. As output, Xamã produces a final text fragment
list to be compared with the text fragments extracted manually.

other external API/service where it is not possible to specify the version to be
used.

Models Selection The methodology used to select the models to answer RQ3,
RQ4, and RQ5 is similar to the one used to answer the first two research ques-
tions. The differences are the number of models. For this study, we selected 51
models instead of 43, and we used a different repository for UML sequence dia-
grams. In the previous models selection, we found five sequence diagrams in the
Models-DB repository. However, for this study we could not find additional five
sequence diagrams, we found only one in the Models-DB repository. The other
four sequence diagrams we arbitrarily selected from the Lindholmen Dataset [90].

The selected models are organized as follows: 21 models from the scientific
papers, 10 models from the example catalog of MatLab Simulink, and 20 UML di-
agrams (10 class diagrams, five user case diagrams, and five sequence diagrams).
The majority (70%) of the models of this dataset presents text fragments posi-
tioned on multiple lines. It is worth mentioning that the presence of multi-line
text was not a selection criterium for the models. Table 5 presents the models
used in this study and the number of models per type that have text on multiple
lines.

We also decided to include models that do not present text fragments posi-
tioned on multiple lines. The reasoning behind this decision is because there is
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a possibility of merging text fragments that should not be merged, causing false
positives.

Source Models
#Models presenting

text positioned
on multiple lines

Blasera et al. [79] Figures 1, 3 2
Dounis et al. [83] Figures 1-3, 5 3
Zhou et al. [117] Figures 1b - 4, 6, 11, 13, 15, 19, 20 10
Zhu et al. [118] Figures 1 - 3a, 5, 6 5
Class Diagram (UML) [23–31,33] 3
Sequence Diagram (UML) [52,56–59] 2
Use Case (UML) [61,65–68] 2
MatLab Simulink [4–12] 9

Total 51 36
Table 5. List of models used in this study

3.2 Results

RQ3 - How accurate are our heuristics in identifying multi-line prob-
lems? Xamã was designed to identify whether the text is positioned on multiple
lines and merge the fragments that should be merged correcting the multi-line
text error. It is important to stress that in the following analysis we ignore other
errors such as character confusion and wrong char. Therefore, to evaluate the
precision and recall we consider as true positive those text fragments that Xamã
correctly identified as positioned on multiple lines, and also those that Xamã
identified as positioned on one single line. The reason for this is that it is possible
that Xamã misinterprets two different text fragments as if they were only one
but positioned on multiple lines, causing false positive.

Without Shape Detection We first evaluate our approach without the shape
detection feature. As results, Xamã correctly identified 905 out of 1171 elements,
with the overall precision of 75%, recall of 77%, and f-measure of 76%. Figure 8
(top) presents the distribution of these values. We observe that the majority of
models that present precision lower than 70% are models from scientific papers.
The reasons for low precision are: most of the text fragments are composed by
long sentences, for instance: “Store the best value for the regularization parame-
ter”; the presence of mathematical equations or subscripts; and the text distance
between the text fragments is higher than the threshold defined in the RH. Most
of the models ≈66% are located on the upper right side of the plot, meaning
that they present precision and recall higher than 70%.

We also used f-measure as a metric to evaluate the accuracy of Xamã. The f-
measure values are presented in Figure 9. We observe that ≈66% of the analyzed
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Fig. 8. Precision (y-axis) and recall (x-axis) obtained byXamã without shape detection
(top), with shape detection (bottom). In this analysis we focus on Multi-line text and
we ignore other error types. There are 12 models (7 Class Diagrams, 2 Sequence and
Use Case Diagrams, and 1 Matlab Simulink) with perfect precision and recall without
shape detection, and 13 models (5 Class Diagrams, 2 Sequence Diagrams and Use cases,
3 Matlab Simulink, and 1 model from a scientific paper) with shape detection.
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models have f-measure values greater than 70%. UML diagrams are the models
that present higher values, and models from scientific papers are the models that
present lower values.

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

(U
M

L) 
Class 

Diagram
 11

(U
M

L) 
Class 

Diagram
 12

(U
M

L) 
Class 

Diagram
 13

(U
M

L) 
Class 

Diagram
 14

(U
M

L) 
Class 

Diagram
 15

(U
M

L) 
Class 

Diagram
 16

(U
M

L) 
Class 

Diagram
 17

(U
M

L) 
Class 

Diagram
 18

(U
M

L) 
Class 

Diagram
 19

(U
M

L) 
Class 

Diagram
 20

(U
M

L) 
Seq

uence
 D

iagram 6

(U
M

L) 
Seq

uence
 D

iagram 7

(U
M

L) 
Seq

uence
 D

iagram 8

(U
M

L) 
Seq

uence
 D

iagram 9

(U
M

L) 
Seq

uence
 D

iagram 10

(U
M

L) 
Use Case

 6

(U
M

L) 
Use Case

 7

(U
M

L) 
Use Case

 8

(U
M

L) 
Use Case

 9

(U
M

L) 
Use Case

 10

Matla
b Si

mulin
k 1

0

Matla
b Si

mulin
k 1

1

Matla
b Si

mulin
k 1

2

Matla
b Si

mulin
k 1

3

Matla
b Si

mulin
k 1

4

Matla
b Si

mulin
k 1

5

Matla
b Si

mulin
k 1

6

Matla
b Si

mulin
k 1

7

Matla
b Si

mulin
k 1

8

Matla
b Si

mulin
k 1

9

F-
M

ea
su

re

Xamã without shape detection Xamã with shape detection

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

Paper m
odel 4

.1

Paper m
odel 4

.2

Paper m
odel 4

.3

Paper m
odel 4

.4

Paper m
odel 4

.5

Paper m
odel 5

.1

Paper m
odel 5

.2

Paper m
odel 5

.3

Paper m
odel 5

.4

Paper m
odel 6

.1

Paper m
odel 6

.2

Paper m
odel 7

.1

Paper m
odel 7

.2

Paper m
odel 7

.3

Paper m
odel 7

.4

Paper m
odel 7

.5

Paper m
odel 7

.6

Paper m
odel 7

.7

Paper m
odel 7

.8

Paper m
odel 7

.9

Paper m
odel 7

.10

F-
M

ea
su

re

Xamã without shape detection Xamã with shape detection

Fig. 9. F-Measure values focusing on the identification and merging of text positioned
on multiple lines. The mapping of paper model ID and the models from the selected
scientific papers is presented in the Appendix Table 11.

With Shape Detection When applying the shape detection feature, Xamã
correctly identified 956 elements, improving the overall precision, recall and f-
measure to 84%, 82%, and 83% respectively. Figure 8 (bottom) presents the
distribution of these values. We observe that five models present precision and
recall below 50%. Without the shape detection the amount of models presenting
values below 50% are: 11 models for precision and eight for recall.

With or Without? Performance of Xamã with and without shape detection
is presented in Table 6. By using shape detection we improved the precision in
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Precision Recall F-Measure
Model Heuristics SD Heuristics SD Heuristics SD

Class Diagram 14 1.00 0.93 1.00 0.88 1.00 0.90
Class Diagram 15 1.00 0.96 1.00 0.92 1.00 0.94

Matlab Simulink 10 0.78 1.00 0.88 1.00 0.82 1.00
Matlab Simulink 11 0.29 0.48 0.33 0.48 0.31 0.48
Matlab Simulink 14 0.62 0.91 0.73 0.91 0.67 0.91
Matlab Simulink 15 0.39 0.46 0.58 0.63 0.47 0.53
Matlab Simulink 17 0.73 0.79 0.85 0.88 0.79 0.84
Matlab Simulink 18 0.78 0.86 0.90 0.95 0.84 0.90
Matlab Simulink 19 0.89 1.00 0.94 1.00 0.92 1.00

Paper [118] Figure 1 0.36 0.68 0.57 0.81 0.44 0.74
Paper [118] Figure 2 0.58 0.64 0.64 0.64 0.61 0.64
Paper [118] Figure 5 0.45 0.60 0.42 0.50 0.43 0.55
Paper [118] Figure 6 0.58 0.67 0.73 0.80 0.65 0.73
Paper [83] figure 5 0.82 1.00 0.90 1.00 0.86 1.00
Paper [79] figure 1 0.22 0.64 0.29 0.67 0.25 0.65
Paper [79] figure 3 0.44 0.86 0.57 0.86 0.50 0.86
Paper [117] figure 1B 0.40 0.86 0.57 0.86 0.47 0.86
Paper [117] figure 2 0.61 0.55 0.33 0.17 0.43 0.26
Paper [117] figure 3 0.30 0.78 0.47 0.88 0.37 0.82
Paper [117] figure 11 0.83 1.00 0.77 0.85 0.80 0.92
Paper [117] figure 19 0.83 0.90 0.91 0.82 0.87 0.86
Paper [117] figure 20 0.67 0.88 0.67 0.78 0.67 0.82

Table 6. Precision, recall, andf-measure obtained by our tool with and without shape
detection (SD). This table shows the results for those models that presented different
results for the used approached.
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19 models (seven Matlab Simulink models, and 12 models from the scientific
papers), and the recall in 18 models (seven Matlab Simulink models, and 11
models from the scientific papers).

We hypothesize that Xamã with shape detection feature outperforms the
version without the shape detection in terms of both precision and recall. For-
mally, we state the following hypotheses:

– Hp
0 : The median difference between the precision forXamã with and without

shape detection is zero.
– Hp

a : The median difference between the precision forXamã with and without
shape detection is greater than zero.

– Hr
0 : The median difference between the recall for Xamã with and without

shape detection is zero.
– Hr

a : The median difference between the recall for Xamã with and without
shape detection is greater than zero.

To test these hypotheses we perform two paired Wilcoxon signed-rank tests,
one for precision and another one for recall. Since we perform repeated tests
we need to adjust the p-values to control for the false discovery rate. We use
the method proposed by Benjamini and Yekutieli [78]. The adjusted p-values
obtained for precision and recall are 3.2 × 10−5 and 7.3 × 10−3, respectively.
Hence, we can reject Hp

0 and Hr
0 and state that Xamã with shape detection

outperforms Xamã without shape detection.

Models Precision Recall

UML - -
Matlab Simulink SD SD
Scientific papers SD SD

Table 7. Improvement approach that presents statistically better results organized by
the domain. The “-” means inconclusive result, “SD” means with shape detection

We also investigated the corresponding hypotheses separately for UML di-
agrams, Matlab Simulink models, and models from scientific papers, using the
same Wilcoxon signed-rank tests. The adjusted p-values are below the commonly
used threshold of 0.05 for four of the six comparisons (three types of models ×
precision or recall). As conclusion the use of shape detection improved the re-
sults for Matlab Simulink models and models from the scientific papers in terms
of precision and recall. For UML diagrams the results were inconclusive as pre-
sented in Table 7.

As expected, adding the shape detection on top of the heuristics represents
additional costs. Therefore, we also calculated the time spent to execute each
approach. For every model, we run our approaches 40 times, we exclude the first
10 results and we calculate the median. The results are presented in appendix
Tables 12, 13, and 14. Finally, we use the medians to calculate the ratio that
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is presented in Figure 10. Our experiments were executed on a MacBook Pro
16” (2019) with an Intel 2.4-GHz 8-core i9 processor turbo boost 5.0 GHz, 32
GB 2666-MHz DDR4, AMD Radeon Pro 5300M 4 GB, Intel UHD Graphics 630
1536 MB, MacOS Catalina.

Even though the shape detection makes the tool 111.28 (median) times
slower, they still present reasonable execution times. For example, Figure 3 from
the paper by Zhou et al. [117] presents the slowest execution time (with shape de-
tection) around 0.02 seconds. Therefore, using shape detection not only produce
better results but also performs reasonably well.
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Fig. 10. Presents the ratio between the two approaches (with and without shape detec-
tion). The ratio is calculated using the median execution time using shape detection,
divided by the median execution time without the shape detection. The mapping of
paper model ID and the models from the selected scientific papers is presented in the
Appendix Table 11
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Take away message

Xamã correctly (without/with shape detection feature) identified
905/956 out of 1171 elements, presenting precision of 75/84%, recall of
77/82%, and f-measure of 76/83%. With shape detection Xamã produced
statistically better results for Matlab Simulink models and model from
scientific papers.

RQ4 - What is the overall impact, in terms of precision and recall, of
using our approaches? To answer this research question, we compared the
results produced by Google Cloud Vision with the results produced by Xamã
with and without shape detection. For the following analyzes, even if the iden-
tification and merging of the text fragment positioned on multiple lines is made
correctly, the “final” version of the text might be wrong due to another kind of
error such as missing char or extra char. For example, assuming that the OCR
service, wrongly, recognizes the element “Application Controller” from Figure
6 as two elements “Applicati0n” and “Contr0ller”. By applying Xamã, these
elements become “Applicati0n Contr0ller”. Even though the merging is correct,
the text fragment is wrong because of other kind of error (character confusion).
Therefore, a priori the correction of the multi-line text error might not lead to
higher precision and recall in general.

Without Shape Detection We observe the same results in 27 out of 51 models.
Xamã presents better results in 22 models in terms of precision and f-measure,
and in 16 models in terms of recall. Google Cloud Vision presents better results
in one model in terms of precision, and in two models in terms of recall and
f-measure. The overall precision and recall are presented in Table 8.

As expected, the overall improvements are better noticed on those models
that present more text fragments positioned on multiple lines. The best improve-
ments on precision, recall, and f-measure are on the following models:

– Figure 2 from the paper by Dounis et al. [83] with values improving from
13% to 50% (precision), 9% to 27% (recall) and 11% to 35% (f-measure);

– Figures 1b and 3 from the paper by Zhou et al. [117] with values improv-
ing from 17% to 40% (precision), 29% to 57% (recall) and 21% to 47% (f-
measure) for Figure 1b, and from 2% to 30% (precision), 3% to 47% (recall)
and 2% to 37% (f-measure) for figure 3.

We hypothesize that Xamã will outperform Google Cloud Vision in terms
of both precision and recall. Formally, we state the following hypotheses:

– Hp
0 : The median difference between the precision for Xamã and Google

Cloud Vision is zero.
– Hp

a : The median difference between the precision for Xamã and Google
Cloud Vision is greater than zero.
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Model
Precision Recall F-Measure

GCV
Our Tool
(H/SD)

GCV
Our Tool
(H/SD)

GCV
Our Tool
(H/SD)

Class Diagram (UML) 13 0.82 0.77 0.85 0.79 0.84 0.78
Class Diagram (UML) 14 0.75 0.75/0.73 0.75 0.75/0.69 0.75 0.75/0.71
Class Diagram (UML) 15 0.85 0.85/0.80 0.85 0.85/0.77 0.85 0.85/0.78
Class Diagram (UML) 16 0.68 0.72 0.71 0.74 0.69 0.73
Class Diagram (UML) 17 0.59 0.74 0.66 0.70 0.62 0.72
Class Diagram (UML) 20 0.49 0.49 0.43 0.40 0.46 0.44
Sequence Diagram (UML) 9 0.74 0.83 0.82 0.88 0.78 0.86
Sequence Diagram (UML) 10 0.65 0.68 0.81 0.81 0.72 0.74
Use Case (UML) 8 0.67 0.69 0.80 0.80 0.73 0.74

Matlab Simulink 10 0.78 0.78/0.94 0.88 0.88/0.94 0.82 0.82/0.94
Matlab Simulink 11 0.25 0.25/0.43 0.29 0.29/0.43 0.27 0.27/0.43
Matlab Simulink 13 0.33 0.43 0.37 0.43 0.35 0.43
Matlab Simulink 14 0.43 0.72/0.91 0.59 0.59/0.91 0.50 0.65/0.91
Matlab Simulink 15 0.14 0.18/0.24 0.21 0.26/0.32 0.17 0.21/0.27
Matlab Simulink 16 0.60 0.70 0.58 0.58 0.59 0.63
Matlab Simulink 17 0.68 0.73/0.79 0.81 0.85/0.88 0.74 0.79/0.84
Matlab Simulink 18 0.67 0.74/0.82 0.80 0.85/0.90 0.73 0.79/0.86
Matlab Simulink 19 0.89 0.89/1 0.94 0.94/1 0.92 0.92/1

Paper [118] Figure 1 0.23 0.36/0.68 0.43 0.57/0.81 0.30 0.44/0.74
Paper [118] Figure 2 0.33 0.33/0.36 0.36 0.36/0.36 0.35 0.35/0.36
Paper [118] Figure 5 0.18 0.18/0.30 0.17 0.17/0.25 0.17 0.17/0.27
Paper [118] Figure 6 0.16 0.22/0.28 0.20 0.27/0.33 0.18 0.24/0.30
Paper [83] Figure 2 0.13 0.50 0.09 0.27 0.11 0.35
Paper [83] Figure 5 0.73 0.73/0.90 0.80 0.80/90 0.76 0.76/90
Paper [79] Figure 1 0.11 0.21/0.60 0.17 0.29/0.63 0.13 0.25/0.61
Paper [79] Figure 3 0.42 0.44/0.86 0.57 0.57/0.86 0.48 0.50/0.86
Paper [117] Figure 1b 0.17 0.40/0.75 0.29 0.57/0.86 0.21 0.47/0.80
Paper [117] Figure 2 0.45 0.54/0.48 0.29 0.30/0.23 0.35 0.39/0.31
Paper [117] Figure 3 0.02 0.30/0.78 0.03 0.47/0.88 0.02 0.37/0.82
Paper [117] Figure 4 0.27 0.31 0.50 0.50 0.35 0.38
Paper [117] Figure 11 0 0.08/0.18 0 0.08/0.15 0 0.08/0.17
Paper [117] Figure 19 0.69 0.83/0.90 0.82 0.91/0.82 0.75 0.87/0.86
Paper [117] Figure 20 0.67 0.67/0.88 0.67 0.67/0.78 0.67 0.67/0.82

Table 8. Precision, recall, and f-measure obtained by Google Cloud Vision (GCV)
and our tool (S/SD) where “H” means without shape detection, and “SD” means with
shape detection.
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– Hr
0 : The median difference between the recall for Xamã and Google Cloud

Vision is zero.
– Hr

a : The median difference between the recall for Xamã and Google Cloud
Vision is greater than zero.

To test these hypotheses we perform two paired Wilcoxon signed-rank tests,
one for precision and another one for recall, as described previously in RQ3.

The adjusted p-values obtained for precision and recall are 5.7 × 10−6 and
2.3× 10−4, respectively. Hence, we can reject Hp

0 and Hr
0 and state that Xamã

without shape detection outperforms Google Cloud Vision.

Models
Precision
(H/SD)

Recall
(H/SD)

UML -/- -/-
Matlab Simulink H/SD -/SD
Scientific papers H/SD -/SD

Table 9.OCR service that presents statistically better results organized by the domain.
The “-” means inconclusive result, “H” means without shape detection, and “SD”
means with shape detection

This discussion indicates that while overall Xamã outperforms Google Cloud
Vision, this does not imply that this should also be the case for models of different
domains. This is why we formulate the corresponding hypotheses separately for
UML diagrams, Matlab Simulink models, and models from scientific papers.
They were tested using the same paired Wilcoxon signed-rank tests as before.

The adjusted p-values are below the commonly used threshold of 0.05 for
two of the six comparisons (three types of models × precision or recall). As
conclusion Xamã improved the results for Matlab Simulink models and models
from the scientific papers in terms of precision. For UML diagrams the results
were inconclusive, as presented in Table 9.

With Shape Detection We observe that Xamã presents the same results of
Google Cloud Vision in terms of both precision and recall in 19 models. Xamã
presents better result in terms of precision in 29 models, and recall in 22 models.
Google Cloud Vision presents better results in three models in terms of precision,
and in five models in terms of recall and f-measure. The best improvements on
precision, recall, and f-measure are on the following models:

– Figure 1 from the paper by Blasera et al. [79] with values improving from
11% to 60% (precision), 17% to 63% (recall) and 13% to 61% (f-measure);

– Figures 1b and 3 from the paper by Zhou et al. [117] are also presented
as the best improvements when using Xamã without the shape detection
feature. However, using shape detection Xamã could improve the results
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even further. For Figure 1b the precision is 75%, recall is 86% , and f-measure
is 80%. For Figure 3 the precision is 78%, recall is 88% and f-measure is 82%
.

Since Xamã without the shape detection feature outperformed Google Cloud
Vision, we expected that Xamã with the shape detection feature would also
outperform Google Cloud Vision. Therefore, we tested these hypotheses using
the same two paired Wilcoxon signed-rank tests. As result, the tests confirms
our hypothesis presenting adjusted p-values of 1.3 × 10−7 and 3.1 × 10−5 for
precision and recall respectively.

We also tested these hypotheses separately for UML diagrams, Matlab Simulink
models, and models from scientific papers. Using the shape detection feature,
Xamã improved the results for Matlab Simulink models and models from sci-
entific papers, but for UML models the tests presents inconclusive results. It
is worth mentioning that the amount of text fragments positioned on multiple
lines, causing the multi-line text error, is not high on UML diagrams (17 out of
604 elements). Therefore, there is not enough multi-line text error in the UML
diagrams to be correct by Xamã that could lead to statistically better results.
The distribution of these elements that could cause themulti-line text error is the
following: nine elements in three class diagrams, three elements in two sequence
diagrams, and five in two use cases.

Take away message

With shape detection feature Xamã outperforms Google Cloud Vision
in terms of precision and recall for Matlab Simulink models and models
from scientific papers. Without the shape detection feature, Xamã out-
performs Google Cloud Vision only in terms of precision. The results are
inconclusive for UML diagrams due to the low amount of Multi-line text
error that could be corrected by Xamã.

RQ5 - How accurate is Xamã compared to a domain specific tool?
We investigate how Xamã which is a combination of a general-purpose OCR
technique and our generic approach (with and without shape detection features)
would perform compared to a domain specific tool. To answer this question, we
select img2UML as a domain specific tool because of its accuracy in extracting
UML models from images [96].

Img2UML [95, 96] is a system written in VB.NET and using MODI library
to extract the text from images. The system takes an image of a class diagram
as input, and as output it generates a XMI file that represents the class diagram
to be visualized by StarUML CASE tool.

Since Img2UML has been designed specifically for UML class diagrams, we
compare the precision and recall only for this type of models. To answer this
research question, we analyzed 20 UML class diagrams. The UML class diagrams
used to answer RQ1 and RQ2, and additional 10 UML class diagrams [34–42,44].
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It is worth mentioning that we only compare the accuracy related to the text
recognition. The classes and relationships identification are out of the scope of
this study.

In overall, Xamã correctly recognized 433/431 (without/with shape detec-
tion) out of 614 elements, while Img2UML correctly recognized 171 elements.
Table 10 presents the precision, recall, and f-measure obtained for these class
diagrams. We observe that Xamã presented better results than Img2UML in all
cases. Therefore, we hypothesize that Xamã outperforms Img2UML in terms of
both precision and recall. Formally, we state the following hypotheses:

– Hp
0 : The median difference between the precision for Xamã and img2UML

is zero.
– Hp

a : The median difference between the precision for Xamã and img2UML
is greater than zero.

– Hr
0 : The median difference between the recall for Xamã and img2UML is

zero.
– Hr

a : The median difference between the recall for Xamã and img2UML is
greater than zero.

To evaluate these hypotheses, we used the same statistic tests as before.
Xamã with or without shape detection feature does not present significantly
different values for precision and recall on UML class diagrams. Therefore, we
expect that the p-values obtained from the tests between img2UML and Xamã
with shape detection, and between img2UML and Xamã without shape detec-
tion would be the same. The adjusted p-values obtained for both precision and
recall is 1.4 × 10−6. Hence, we can reject Hp

0 and Hr
0 and state that Xamã

outperforms img2UML.
We also calculate the Cliff’s delta [81]. A non-parametric effect size measure

for ordinal data. We consider the effect size values: |d| < 0.147 “negligible”, |d| <
0.33 “small”, |d| < 0.474 “medium”, otherwise “large” as defined by Romano et
al. [108]. We obtained a large Cliff’s delta value -0.8625, and a 95% confidence
interval being between -0.98 and -0.25.

Take away message

Xamã outperforms Img2UML in terms of precision and recall being ca-
pable of correctly recognize 433/431 (without/with shape detection) out
of 614 elements, as oppose to 171 by Img2UML.

4 Threats to Validity

As any empirical study our work is subject to threats to validity. Wohlin et
al. [116] provide a list of possible threats that researchers can face during a
scientific research. In this section, we describe the actions we took in order to
increase the validity and decrease the threats.
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Precision Recall F-Measure

Model Img2UML
Xamã
(H/SD)

Img2UML
Xamã
(H/SD)

Img2UML
Xamã
(H/SD)

CD 11 0.55 0.85 0.35 0.87 0.43 0.86
CD 12 0.63 0.80 0.50 0.80 0.56 0.80
CD 13 0.50 0.77 0.47 0.79 0.49 0.78
CD 14 0.31 0.75/0.73 0.31 0.75/0.69 0.31 0.75/0.71
CD 15 0.38 0.85/0.80 0.38 0.85/0.77 0.38 0.85/0.78
CD 16 0.08 0.72 0.08 0.74 0.08 0.73
CD 17 0.00 0.74 0.00 0.70 0.00 0.72
CD 18 0.13 0.96 0.13 0.96 0.13 0.96
CD 19 0.65 0.82 0.65 0.82 0.65 0.82
CD 20 0.08 0.49 0.05 0.40 0.06 0.44
CD 21 0.50 0.56 0.42 0.53 0.46 0.54
CD 22 0 0.67 0 0.80 0 0.73
CD 23 0.70 0.96 0.58 0.96 0.64 0.96
CD 24 0.22 0.61/0.63 0.19 0.65 0.20 0.63/0.64
CD 25 0.29 0.94 0.29 0.94 0.29 0.94
CD 26 0.13 0.60/0.71 0.14 0.64/0.71 0.14 0.62/0.71
CD 27 0.44 0.61 0.42 0.60 0.43 0.61
CD 28 0.06 0.53 0.05 0.53 0.05 0.53
CD 29 0.38 0.50 0.38 0.50 0.38 0.50
CD 30 0.42 0.67 0.42 0.67 0.42 0.67

Table 10. Precision, recall, and f-measure obtained by Img2UML and Xamã. The “H”
means without shape detection, and “SD” means with shape detection.
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Internal validity, concerns the unknown influences of independent variables
can have on studies. In order to mitigate this concern, we have selected OCR
services that have been evaluated by previous studies on different text recognition
tasks. While the manual extraction of textual elements has been performed by
one author only, the task is simple for an engineer and is unlikely to be affected
by the subjectivity of their judgment. Another threat is that we do not know
which version of Google Cloud Vision we used, nor we can chose the version. As
consequence it is possible that future Google Cloud Vision update might break
our heuristics. In order to mitigate this problem, we opted to be as conservative
as possible regarding the size of the tolerance range used to identify whether the
text is positioned on multiples lines or not.

External validity concerns the generalizability of the results and findings of
the study. In order to mitigate this concern, we have diversified the collection of
models analyzed to include models from different domains and different sources.

Construct validity concerns the issues related to the design of the ex-
periment. In order to address this issue, we used metrics that were sufficiently
defined in previous studies. Example of such metrics are precision, recall, and
F-measure. We used these metrics to indicate which OCR service presents better
performance.

Conclusion validity concerns about the relations between the conclusions
that we draw and the analyzed data. In order to mitigate this concern, we paid
special attention to use appropriate statistical techniques, and we described all
decisions we made. Thus, this study can be replicated by other researchers, and
we expect our results to be quite robust.

5 Discussion and Future Work

The results described in this paper can serve as a starting point for future re-
search on the use of OCR for multi-domain model management, as well as for
design of tools supporting multi-domain model management. Our expectation
is that OCR can be used to support the multi-domain model management by
identifying the relationships between models from different domains. In partic-
ular in those scenarios where only the images of the models are available, or in
those scenarios where the source code of the models are available but there is no
communication between the modeling tools.

We started by investigating accuracy of the off-the-shelf OCR services for ex-
tracting text from graphical models. Concurrent with the previous studies [2,107]
Google Cloud Vision outperformed Microsoft Cognitive Services on both preci-
sion and recall. However, the precision and recall values of Google Cloud Vision
were not as high as the ones presented in the previous studies [2]. We believe this
is due to the difference between the analyzed items: graphical models vs. business
names. As opposed to business names, graphical models often include mathe-
matical elements such as Greek letters and subscripts, and non-alphanumeric
characters. Moreover, extracting text from models that do not follow the same
design rules, incurs additional challenges. Indeed, the precision and recall scores
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for models from scientific papers are much more spread out in Figure 2, than for
models from other data sources.

Next, we investigated the common errors produced by Google Cloud Vi-
sion. We identified 17 different types of errors organized by four categories: non-
alphanumeric characters, mathematical formulas, spacing, and character con-
fusion. Most common errors are related to Spacing and Character confusion;
however, the main challenges seem to be related to the multi-line text error
and mathematical formulas—not a single Greek letter, subscript or equation ap-
pearing in the models could be correctly identified. Therefore, we proposed two
approaches to correct the multi-line text error. To achieve this goal, we inves-
tigated a set of models that have this problem and we defined a collection of
heuristics to be used to correct them. The main challenge in our approach was
to identify right heuristics that would present a good accuracy independently
of the domains of the model in study. Hence, we opted to be as conservative
as possible. One approach consists using the position (coordinates) of the text
fragments, and the other approach adds shape detection feature to group the
text fragments improving the results.

We evaluated the accuracy of Xamã in identifying whether the text frag-
ment is positioned on multiple lines and if the merging of the text fragments is
performed correctly. In this evaluation we ignored other error types that Xamã
could not fix, such as character confusion. We observed that Xamã, without the
shape detection feature, correctly identified 905 out of 1171 elements positioned
on single or multiple lines. We consider these numbers as good results, specially
because of the fact it is a lightweight approach that uses the coordinates to iden-
tify whether the text fragments should be merged or not. We improved these
numbers when we combined a slightly modified version of these heuristics with
the identification of shapes such as boxes. Using the shape detection feature the
tool correctly identified 956 elements and improved the precision from 75% to
84%, the recall from 77% to 82% and f-measure from 76% to 83%. We evaluate
this as good improvements and they were statistically better on Matlab Simulink
and models retrieved from scientific papers.

As expected, the combination of these techniques demands more computa-
tional processing making the tool slower. Thus, we calculated the costs (time)
of using the shape detection, and we observed that this feature makes the tool
111.28 (median) times slower. Although this number might represent a high ra-
tio, in practice it is not noticeable for human beings because the measurement
unit of time is nanosecond. Having the slowest execution time as example. It
took 0.02 seconds to be executed representing negligible costs. Finally, we con-
clude that using the shape detection feature improve the text recognition and
presents a reasonable execution time. It is worth mentioning that this feature
was used only to identify whether the text fragments are positioned on multiple
lines or not. The reason is because this paper is mainly about the text extraction
and how to improve the OCR results. For future work, we intend to use shape
detection features to extract semantics from the models.
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Next, we compared the overall accuracy between Xamã and Google Cloud
Vision. We performed two paired Wilcoxon signed-rank tests to conclude that
our approaches outperformed Google Cloud Vision. As expected the accuracy
presented by Xamã was higher on those models that have more text fragments
positioned on multiple lines. This analysis shows the importance of correcting
this error. By having the models from scientific papers as example: we observed
that in Figure 2 from the paper by Dounis et al. [83] the precision increased
almost 40%. We obtained even better improvements when using the shape detec-
tion, for instance in Figure 3 from the paper by Zhou et al. [117] the improvement
on precision was 76%, and 84% on recall.

The imprecision of the coordinates provided by Google Cloud Vision partially
explains the reason why some models present low precision and recall. Due to this
imprecision, we had to add a tolerance range when evaluating whether the text
fragment is positioned on multiple lines or not. When increasing the tolerance
range, we also increase the number of identified text positioned on multiple
lines. However, it causes a raise of false positives due to the misinterpretation
of text that are not positioned on multiple lines. We decided not to increase the
tolerance range because we opted for high precision to the detriment of recall.

Finally, we compared the results produced by Xamã with the ones presented
by img2UML, a domain specific tool. We also performed two paired Wilcoxon
signed-rank tests and we concluded that Xamã outperformed img2UML both in
precision and recall. Text recognition is only one part of img2UML, this tool is
also capable of detecting shapes in order to identify the classes and the relation-
ships between the classes. In this evaluation we only compared the text recog-
nition. We conjecture two possible reasons for the weak accuracy by img2UML.
The first reason might be the fact img2UML uses an outdated OCR engine for
text recognition. Hence, we believe that img2UML can improve significantly once
it updates the OCR engine to a newer one such as Google Cloud Vision. The
second reason might be that img2UML is optimized to class diagrams exported
by one specific CASE tool.

As future work, we intend to focus on the main challenges we identified in
Section 2.2. We investigated the possibility of using OCR to extract text from
models from different domains, and we proposed two approaches to correct the
multi-line text error produced during the text extraction. However, all analyzed
graphical models were designed using computer tools, and we believe that ex-
tracting information from hand-written model also plays an important role in
the model management. Furthermore, we want to evaluate different OCR tech-
niques and our approaches on additional kinds of graphical models, including, for
instance, SysML models, models drawn on whiteboards and hand-written mod-
els. We also want to evaluate if combining Xamã with Bayesian algorithm [98]
can improve the text recognition, in particular fixing the multi-line text error.
Simultaneously, we intend to combine OCR with image processing to analyze
additional graphical elements such as lines, and arrows presented in the models.
There are some additional research questions that need to be answered for a
better evaluation of OCR as technology to support the automatic identification
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of relationships. These questions include: what are the consequences of a missed
recognition by the OCR tool? How much effort is needed to identify errors by
the OCR tool? We also want to evaluate the accuracy of using only the text
extracted from the models to identify possible relationships. In parallel, we can
compare the results of detecting possible relationships with/without semantics
detection.

6 Related Work

To the best of our knowledge, there are no studies on the use of off-the-shelf
OCR services on models from different domains, as well as no studies proposing
techniques to correct multi-line text errors. There are, however, a number of
studies in which OCR has been applied to domain-specific models, and studies
proposing post possessing techniques to correct misspellings produced by OCR.
These studies are described below:

Img2UML [95, 96] extracts UML Class Diagrams from images, identifying,
e.g., class names, fields and methods. Img2UML uses Microsoft Office Document
Imaging as the OCR technique for text recognition. While Img2UML is geared
towards and evaluated on a specific domain, the techniques we have analyzed
have been applied to models of multiple domains. Several studies have used
OCR as part of a tool classifying images as UML diagrams: targeting class
diagrams [92,102], sequence diagrams [106] and component diagrams [102].

Going beyond engineering models, Reis [107] compare Google Cloud Vision
and Microsoft Cognitive Services in recognizing text from the photos of the pages
of the Bible. Additional comparison studies have been published by Mello and
Dueire Lins [99] and Vijayarani and Sakila [115].

Regarding post possessing techniques, Cacho et. al. [80] propose combining
edit Levenshtein distance with the concept of context given by trigrams i.e. a
contiguous sequence of three words. The authors use Google Web 1T Database
as context to support the acceptance of words with bigger edit Levenshtein
distance in case where the candidate word makes more sense in the context of
the sentence.

Bassil and Alwani [76] propose using the Google online spelling suggestion to
identify and correct words that have been misspelled during the OCR process.
When applied this approach, the authors observed a significant improvement in
OCR error correction rate.

Kanjanawattana and Kimura [94] propose an approach that uses ontologies,
natural language processing (NPL), and edit distance to improve the OCR result
correction. Differently from the other approaches, in this study the authors use
a collection of two-dimensional bar graphs from journal articles as dataset. The
authors concluded that their solution is effective because of the high accuracy
compared to other methods.

Lasko and Hauserb [98] evaluated five methods to correct misspelled words
during the OCR process. The methods evaluated in this study were: the edit
distance algorithm with a probabilistic substitution matrix, an adaptation of
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the cross correlation algorithm, Bayesian analysis, Bayesian analysis on an ac-
tively thinned reference dictionary, and the generic edit distance algorithm. The
authors concluded that Bayesian algorithm is the most accurate one.

Khirbat [97] proposes the use of support vector machine (SVM) to identify
misspellings, and the use of Levenshtein’s edit distance and simulated annealing
(SA) algorithm to correct the words. In the end they validate the words checking
whether they are present in Google Web n-gram corpus.

Perianez-Pascual et. al. [104] evaluate the use of OCR in recognizing OCL
expressions and propose strategies to improve the quality of this recognition.
They evaluate these strategies in a collection of 3250 images of OCL expressions.
As conclusion, they improve the OCR recognition in 15.63%.

7 Conclusion

We presented a study of suitability of the off-the-shelf OCR services in the
context of multi-domain model management. We evaluated performance of two
well-known services, Google Cloud Vision and Microsoft Cognitive Services, on
a collection of 43 models from different domains: 17 UML diagrams, 9 MatLab
Simulink models and 17 models from scientific papers from the control system
engineering domain.

We observed that Google Cloud Vision overall outperforms Microsoft Cogni-
tive Services both in terms of precision and in terms of recall. This observation is
consistent both with the previous work [2,107] and with a follow-up study inves-
tigating performance of the two OCR-services on models of different domains.

Focusing on Google Cloud Vision, we identified a list of 17 kinds of errors
distributed over four categories: non-alphanumeric characters, mathematical for-
mulas, spacing and character confusion. Among these errors, the most common
are related to text written on multiple lines, wrong/missing characters, and an
empty space between letters. It is also important that in presence of multi-
line texts, Greek letters, subscripts, and equations because Google Cloud Vision
failed every single time.

We presentedXamã, a tool that includes two approaches to correct themulti-
line text error by identifying and merging textual elements that are positioned
on multiple lines. We evaluated these approaches in a collection of 51 models
from different domains: 20 UML diagrams, 10 MatLab Simulink models, and
21 models from scientific papers from the system engineering domain. For this
goal, we defined a set of heuristics that take into consideration the location,
alignment, and the distance of the text fragments. For the second approach we
combined a slightly modified version of these heuristics with a shape detection
feature using well-known image process techniques.

We compared these two approaches in terms of precision, recall, and f-
measure, and we concluded that Xamã, with shape detection feature, presents
statistically better results on Matlab Simulink and models from scientific papers.
We also compared out tool with Google Cloud Vision, and Xamã outperformed
Google Cloud Vision.
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Additionally, we compared the results produced by Xamã with the ones
presented by img2UML. We observed that Xamã outperformed img2UML both
in precision and recall. We conjecture that the reason might be due the use of
an outdated OCR engine.

To conclude, we observed that correcting multi-line text error can increase
significantly the overall accuracy, specially when the model presents a high num-
ber of text positioned on multiple lines. Xamã produces produces goods results
on both approaches (with and without shape detection).
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Xamã: Optical Character Recognition for Multi-domain Model Management 37

18. Matlab simulink model 7. https://bit.ly/simulinkModel7. Accessed: 2020-01-24
19. Matlab simulink model 8. https://nl.mathworks.com/help/simulink/slref/designing-

a-guidance-system-in-matlab-and-simulink.html. Accessed: 2020-01-24
20. Matlab simulink model 9. https://bit.ly/simulinkModel9. Accessed: 2020-01-24
21. Opencv (open source computer vision library). https://opencv.org. Accessed:

2021-1-19
22. Uml - class diagram 1. http://models-db.com/repository/70/classdiagram/238.

Accessed: 2020-01-24
23. Uml - class diagram 11. https://www.gituml.com/viewz/30. Accessed: 2020-08-06
24. Uml - class diagram 12. https://www.gituml.com/viewz/1. Accessed: 2020-08-06
25. Uml - class diagram 13. https://www.gituml.com/viewz/100. Accessed: 2020-08-

06
26. Uml - class diagram 14. http://models-db.com/repository/76/classdiagram/367.

Accessed: 2020-08-06
27. Uml - class diagram 15. http://models-db.com/repository/76/classdiagram/370.

Accessed: 2020-08-06
28. Uml - class diagram 16. http://models-db.com/repository/104/classdiagram/681.

Accessed: 2020-08-06
29. Uml - class diagram 17. http://models-db.com/repository/104/classdiagram/685.

Accessed: 2020-08-06
30. Uml - class diagram 18. http://models-db.com/repository/100/classdiagram/619.

Accessed: 2020-08-06
31. Uml - class diagram 19. http://models-db.com/repository/70/classdiagram/233.

Accessed: 2020-08-06
32. Uml - class diagram 2. https://www.gituml.com/viewz/5. Accessed: 2020-01-24
33. Uml - class diagram 20. http://models-

db.com/repository/142/classdiagram/1391. Accessed: 2020-08-06
34. Uml - class diagram 21. https://www.gituml.com/viewz/29. Accessed: 2021-07-15
35. Uml - class diagram 22. https://www.gituml.com/viewz/194. Accessed: 2021-07-

15
36. Uml - class diagram 23. https://www.gituml.com/viewz/313. Accessed: 2021-07-

15
37. Uml - class diagram 24. https://www.gituml.com/viewz/25. Accessed: 2021-07-15
38. Uml - class diagram 25. http://models-db.com/repository/82/classdiagram/376.

Accessed: 2021-07-15
39. Uml - class diagram 26. http://models-db.com/repository/104/classdiagram/679.

Accessed: 2021-07-15
40. Uml - class diagram 27. http://models-db.com/repository/84/classdiagram/440.

Accessed: 2021-07-15
41. Uml - class diagram 28. http://models-db.com/repository/84/classdiagram/453.

Accessed: 2021-07-15
42. Uml - class diagram 29. http://models-db.com/repository/84/classdiagram/471.

Accessed: 2021-07-15
43. Uml - class diagram 3. https://www.gituml.com/viewz/87. Accessed: 2020-01-24
44. Uml - class diagram 30. http://models-db.com/repository/84/classdiagram/472.

Accessed: 2021-07-15
45. Uml - class diagram 4. https://www.gituml.com/viewz/26. Accessed: 2020-01-24
46. Uml - class diagram 5. https://www.gituml.com/viewz/27. Accessed: 2020-01-24
47. Uml - class diagram 6. https://www.gituml.com/viewz/20. Accessed: 2020-01-24
48. Uml - class diagram 7. http://models-db.com/repository/84/classdiagram/441.

Accessed: 2020-01-24



38 Torres et al.

49. Uml - class diagram 8. http://models-db.com/repository/84/classdiagram/449.
Accessed: 2020-01-24

50. Uml - class diagram 9. http://models-db.com/repository/102/classdiagram/624.
Accessed: 2020-01-24

51. Uml - sequence diagram 1. http://models-
db.com/repository/108/classdiagram/781. Accessed: 2020-01-24

52. Uml - sequence diagram 10. https://raw.githubusercontent.com/paglian/QSimple
Calc/ master/doc/SequenceDiagram.png. Accessed: 2020-09-22

53. Uml - sequence diagram 2. http://models-
db.com/repository/108/classdiagram/783. Accessed: 2020-01-24

54. Uml - sequence diagram 3. http://models-
db.com/repository/108/classdiagram/808. Accessed: 2020-01-24

55. Uml - sequence diagram 4. http://models-
db.com/repository/108/classdiagram/809. Accessed: 2020-01-24

56. Uml - sequence diagram 6. http://models-
db.com/repository/108/classdiagram/810. Accessed: 2020-08-06

57. Uml - sequence diagram 7. https://raw.githubusercontent.com/glindstrom/OhHa/
master/dokumentointi/SequenceDiagram1.png. Accessed: 2020-09-22

58. Uml - sequence diagram 8. https://raw.githubusercontent.com/glindstrom/OhHa/
master/dokumentointi/SequenceDiagram3.png. Accessed: 2020-09-22

59. Uml - sequence diagram 9. https://raw.githubusercontent.com/mcfa77y/python/
master/input/gliffy/create new customer sequence diagram.png. Accessed: 2020-
09-22

60. Uml - use case diagram 1. http://models-
db.com/repository/108/classdiagram/733. Accessed: 2020-01-24

61. Uml - use case diagram 10. http://models-
db.com/repository/108/classdiagram/796. Accessed: 2020-08-06

62. Uml - use case diagram 2. http://models-
db.com/repository/108/classdiagram/734. Accessed: 2020-01-24

63. Uml - use case diagram 3. http://models-
db.com/repository/108/classdiagram/736. Accessed: 2020-01-24

64. Uml - use case diagram 4. http://models-
db.com/repository/108/classdiagram/775. Accessed: 2020-01-24

65. Uml - use case diagram 6. http://models-
db.com/repository/108/classdiagram/738. Accessed: 2020-08-06

66. Uml - use case diagram 7. http://models-
db.com/repository/108/classdiagram/789. Accessed: 2020-08-06

67. Uml - use case diagram 8. http://models-
db.com/repository/108/classdiagram/811. Accessed: 2020-08-06

68. Uml - use case diagram 9. http://models-
db.com/repository/108/classdiagram/794. Accessed: 2020-08-06

69. The uml repository. http://models-db.com. Accessed: 2020-01-23
70. Omg unified modeling language (omg uml), v2.5.1. OMG Document Number

formal/2017-12-05 (https://www.omg.org/spec/UML/About-UML/) (2007)
71. Ai, B., Sentis, L., Paine, N., Han, S., Mok, A., Fok, C.L.: Stability and perfor-

mance analysis of time-delayed actuator control systems. Journal of Dynamic
Systems, Measurement, and Control 138(5), 1–20 (2016)
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Model ID Reference

Paper Model 1 Paper [114] Figure 1
Paper Model 1 (2) Paper [114] Figure 5
Paper Model 1 (3) Paper [114] Figure 6
Paper Model 1 (4) Paper [114] Figure 7
Paper Model 1 (5) Paper [114] Figure 8
Paper Model 1 (6) Paper [114] Figure 10
Paper Model 1 (7) Paper [114] Figure 15
Paper Model 2 Paper [93] Figure 1
Paper Model 2 (2) Paper [93] Figure 2
Paper Model 2 (3) Paper [93] Figure 3
Paper Model 2 (4) Paper [93] Figure 5
Paper Model 2 (5) Paper [93] Figure 7
Paper Model 3 Paper [71] Figure 1 (a)
Paper Model 3 (2) Paper [71] Figure 1 (b)
Paper Model 3 (3) Paper [71] Figure 4 (b)
Paper Model 3 (4) Paper [71] Figure 4 (a)
Paper Model 3 (5) Paper [71] Figure 5
Paper Model 4 Paper [118] Figure 1
Paper Model 4 (2) Paper [118] Figure 2
Paper Model 4 (3) Paper [118] Figure 3 (a)
Paper Model 4 (4) Paper [118] Figure 5
Paper Model 4 (5) Paper [118] Figure 6
Paper Model 5 Paper [83] Figure 1
Paper Model 5 (2) Paper [83] Figure 2
Paper Model 5 (3) Paper [83] Figure 3
Paper Model 5 (4) Paper [83] Figure 5
Paper Model 6 Paper [79] Figure 1
Paper Model 6 (2) Paper [79] Figure 3
Paper Model 7 Paper [117] Figure 1b
Paper Model 7 (2) Paper [117] Figure 2
Paper Model 7 (3) Paper [117] Figure 3
Paper Model 7 (4) Paper [117] Figure 4
Paper Model 7 (5) Paper [117] Figure 6
Paper Model 7 (6) Paper [117] Figure 13
Paper Model 7 (7) Paper [117] Figure 11
Paper Model 7 (8) Paper [117] Figure 15
Paper Model 7 (9) Paper [117] Figure 19
Paper Model 7 (10) Paper [117] Figure 20

Table 11. Mapping between the models id used on plots and scientific papers models.
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Model
Median

H SD

Class Diagram (UML) 11 193366 19376665.5
Class Diagram (UML) 12 23332 1651001
Class Diagram (UML) 13 141163.5 10082654
Class Diagram (UML) 14 24841 5756571
Class Diagram (UML) 15 37521.5 5719871
Class Diagram (UML) 16 100636.5 14121234.5
Class Diagram (UML) 17 208570.5 6315443
Class Diagram (UML) 18 36504 10073049.5
Class Diagram (UML) 19 40886 8817458.5
Class Diagram (UML) 20 251315.5 11392504.5
Sequence Diagram (UML) 6 64325.5 12937410.5
Sequence Diagram (UML) 7 84253.5 16274181.5
Sequence Diagram (UML) 8 60969.5 11035539
Sequence Diagram (UML) 9 46443.5 9054040.5
Sequence Diagram (UML) 10 50057.5 12358265.5
Use Case (UML) 6 106869.5 13843530.5
Use Case (UML) 7 31290.5 7213966
Use Case (UML) 8 93645 12330583
Use Case (UML) 9 47635.5 7098907.5
Use Case (UML) 10 65799.5 8499236

Table 12. Execution time (nanoseconds), where “H” means without shape detection
and “SD” means with shape detection.

Model
Median

H SD

Matlab Simulink 10 30055.5 3763110
Matlab Simulink 11 45504.5 4968398.5
Matlab Simulink 12 20052 1750365.5
Matlab Simulink 13 157131.5 6586545
Matlab Simulink 14 203516 11716023.5
Matlab Simulink 15 84918 3933299
Matlab Simulink 16 198800.5 11897143
Matlab Simulink 17 134013 4184728
Matlab Simulink 18 75310.5 3957824
Matlab Simulink 19 37194 4139254

Table 13. Execution time (nanoseconds), where “H” means without shape detection
and “SD” means with shape detection.
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Model
Median

H SD

Paper [118] Figure 1 197934 9530845.5
Paper [118] Figure 2 47069.5 5196559
Paper [118] Figure 3(a) 137875.5 9030410.5
Paper [118] Figure 5 42283.5 4633711.5
Paper [118] Figure 6 60155.5 6121648.5
Paper [83] Figure 1 44364.5 7231225
Paper [83] Figure 2 46901.5 4473500.5
Paper [83] Figure 3 39033 6084878
Paper [83] Figure 5 36963 5423058.5
Paper [79] Figure 1 190011 13709096
Paper [79] Figure 3 36744 4461332.5
Paper [117] Figure 1b 82236 6958840
Paper [117] Figure 2 158594 5860029.5
Paper [117] Figure 3 334828.5 24443442.5
Paper [117] Figure 4 35532 4463604.5
Paper [117] Figure 6 14578 6429471.5
Paper [117] Figure 13 42872.5 6326256
Paper [117] Figure 11 48810 2534552
Paper [117] Figure 15 23690.5 4500211
Paper [117] Figure 19 58240.5 6104495.5
Paper [117] Figure 20 30315 3486046.5

Table 14. Execution time (nanoseconds), where “H” means without shape detection
and “SD” means with shape detection.


