
Repositioning of Static Analysis Alarms
Tukaram Muske

Tata Consultancy Services

India

t.muske@tcs.com

Rohith Talluri

Tata Consultancy Services

India

rohith.talluri@tcs.com

Alexander Serebrenik

Eindhoven University of Technology

The Netherlands

a.serebrenik@tue.nl

ABSTRACT
The large number of alarms reported by static analysis tools is often

recognized as one of the major obstacles to industrial adoption of

such tools.

We present repositioning of alarms, a novel automatic postpro-

cessing technique intended to reduce the number of reported alarms

without affecting the errors uncovered by them. The reduction in

the number of alarms is achieved by moving groups of related

alarms along the control flow to a program point where they can

be replaced by a single alarm. In the repositioning technique, as the

locations of repositioned alarms are different than locations of the

errors uncovered by them, we also maintain traceability links be-

tween a repositioned alarm and its corresponding original alarm(s).

The presented technique is tool-agnostic and orthogonal to many

other techniques available for postprocessing alarms.

To evaluate the technique, we applied it as a postprocessing step

to alarms generated for 4 verification properties on 16 open source

and 4 industry applications. The results indicate that the alarms

repositioning technique reduces the alarms count by up to 20%

over the state-of-the-art alarms grouping techniques with a median

reduction of 7.25%.

CCS CONCEPTS
• Theory of computation → Program analysis; • Software
and its engineering→ Formal software verification;

KEYWORDS
Static analysis, static analysis alarms, data flow analysis, anticipable

conditions, available conditions, alarms repositioning

ACM Reference Format:
Tukaram Muske, Rohith Talluri, and Alexander Serebrenik. 2018. Reposi-

tioning of Static Analysis Alarms. In Proceedings of 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’18). ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3213846.3213850

1 INTRODUCTION
Static analysis tools have shown promise in automated detection of

code anomalies and programming errors [3, 4, 6, 30, 32]. In practice,

due to approximations used during analysis [5, 16, 21, 28] the tools

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00

https://doi.org/10.1145/3213846.3213850

often generate a large number of alarms, i.e., warning messages

notifying the tool-user about potential errors. A high percentage

of these alarms are false positives, i.e., alarms that do not represent

an error. To partition the alarms into false positives and true errors,

postprocessing of the alarms, often manual, is inevitable [12, 14].

Therefore, the large number of alarms generated and cost involved

in partitioning them manually have been recognized as major con-

cerns in adoption of static analysis tools [5, 7, 16, 19].

One of the approaches for effective handling of the alarms [11,

26] consists in grouping of related alarms and representing each

group as a single alarm. However, state-of-the-art grouping ap-

proaches [13, 20, 24, 31] sometimes fail to group alarms related by

the same causes or variables, e.g., when the related alarms belong

to different branches of an if statement. This limitation is further

illustrated in Section 2. To overcome this limitation, we present

repositioning of alarms, a postprocessing technique that moves the

alarms up or down the program control flow without affecting the

errors uncovered. The primary goal of the repositioning is:

To reduce the number of alarms reported without affecting the

errors uncovered.

Furthermore, since traditional static analysis tools report alarms

at the locations where run-time errors are likely to occur, the user

has to traverse the code back to the causes of an alarm to identify

whether the alarm represents an error or not [12, 18, 23]. Given

the large size and complexity of industrial source code [23], this

traversal can be a daunting task. To reduce these code traversals

we therefore, through repositioning, also aim:

To report alarms closer to their causes.

We implement alarms repositioning by propagating the alarm

conditions—checks performed by the analysis tools—first in the

backward direction and later in the forward direction. The propaga-

tion of conditions is through computation of anticipable and avail-
able conditions respectively using data flow analyses [17, 27, 29].

Our technique is tool-agnostic and orthogonal to many other

techniques available for postprocessing the alarms. The technique is

suitable for alarms reported by analysis tools that compute flow of

values of the program variables during the analysis, e.g., Polyspace

Code Prover [1] and Frama-C [9]. We do not consider alarms re-

ported based on structural information or local bug patterns [15].

We performed empirical evaluation of the proposed technique

using 33,162 alarms generated by a commercial static analysis tool

on 16 open source and 4 industry applications. The open source

applications were selected from the benchmarks used to evaluate

earlier alarms grouping techniques [20, 31]. The industry applica-

tions were embedded systems belonging to the automotive domain.

Before performing repositioning, the input alarms were processed

using state-of-the-art grouping techniques [20, 24, 31].

https://doi.org/10.1145/3213846.3213850
https://doi.org/10.1145/3213846.3213850

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tukaram Muske, Rohith Talluri, and Alexander Serebrenik

1 void foo(){

2 int arr[5],tmp=1,i=0;

3

4 if (...){

5 if (...){

6 i = lib1 ();

7 }else{

8 i = lib2 ();

9 }

10 //assert(0 ≤ i ≤ 4); HA10

11 tmp = 0;

12 }else{

13 tmp = lib3 ();

14 }

15

16 if(i < tmp)

17 arr[i]=0; A17

18 else

19 arr[i]=1; A19

20 }

21 void bar(int t1){

22 int n,j,arr[5],tmp=1;

23

24 n = lib1 ();

25 if (...){

26 n = lib2 ();

27 t1 = t1 / n; Z27

28 }else{

29 t1 = 10 / n; Z29

30 }

31 // assert(n!=0); SA31

32 tmp = 0;

33

34 j = lib2 ();

35 //assert(0 ≤ j ≤ 3); HA35

36

37 t1 = arr[j]; A37

38 j++;

39 tmp = arr[j]; A39

40 }

(1) lib1, lib2, and lib3 are library functions whose code is not available for

static analysis and their return-type is signed int.
(2) Ellipsis (...) indicates the code omitted for simplifying the example.

Figure 1: Alarm examples with their repositioning

We observed that the proposed repositioning of alarms reduces

alarms count by up to 20% over the grouping techniques, with a

median reduction of 7.25% and the average reduction being 6.47%.

Evaluating potential benefits of repositioning in reducing the code

traversals during manual partitioning of alarms, due to reporting

the alarms closer to their cause points, is out of scope of this paper.

The key contribution of the paper is a novel and empirically evalu-
ated postprocessing technique that reduces alarms by repositioning.

Paper outline. Section 2 presents an informal overview of the

repositioning technique using a motivating example. Section 3

describes repositioning of alarms formally, while Sections 4 and

5 describe two data flow analyses used to reposition the alarms.

Section 6 discusses our experimental evaluation. Section 7 presents

related work, and Section 8 concludes.

2 INFORMAL DISCUSSION
Consider the C code example in Figure 1 adapted from a real-life

embedded system. The code is simplified considerably but it is still

sufficiently rich to present the alarms repositioning technique. It

includes two functions, foo and bar , independent of each other. An-

alyzing the code using a static analysis tool such as Polyspace Code

Prover [1] or Frama-C [9] generates six alarms of two commonly

checked categories of runtime errors: array index out of bounds

(AIOB) and division by zero (ZD). The alarms are generated be-

cause values returned by the calls to library functions are treated

as unknown by the analysis tool. The alarms are reported at the lo-

cations where run-time errors are likely to occur. We use notations

An and Zn , respectively, to denote an alarm at line n corresponding

to AIOB and ZD. We also refer to these tool generated alarms as

the original alarms and to their locations as the original locations.

Several techniques aiming at reduction of the number of alarms

group them based on similarity or correlation [26]. Those tech-

niques [20, 24, 31] achieve the reduction by (1) identifying a domi-
nant alarm ϕ1 for an alarm ϕ2, i.e., ϕ1 such that ϕ2 is always false
whenever ϕ1 is false; and (2) grouping ϕ1 and ϕ2 together. These
grouping techniques are, however, unable to group the alarms A17

and A19 in Figure 1, because the alarms are reported in the two

different branches of the if statement at line 16 and hence neither

of them can be identified as a dominant alarm for the other. In this

case, both A17 and A19 are reported as dominant alarms. Similarly,

Z27 and Z29 do not get grouped together because they are reported

in the two different branches of the if statement at line 25. Fur-

thermore, these two alarms are caused by different reasons: the

assignments at lines 26 and 24 respectively.

Gehrke et al. [13] use propagation of the alarm conditions to

reduce the number of alarms. First, alarm conditions from the orig-

inal alarms, propagated backward, are used to insert alarms at new

locations. Later, alarm conditions of the inserted alarms, propa-

gated forward, are used to remove the original alarms. However,

as alarms are inserted when no more upward propagation of the

conditions is possible, the number of alarms reported finally can

increase. For example, for A17 and A19 the approach inserts three

new alarms: two at locations immediately after lines 6 and 8, and

one immediately before line 13. Also, applying this approach to Z27
and Z29 does not help in reducing the alarms count.

Our repositioning approach, described next using examples, is

motivated by the work of Gehrke et al. [13], and overcomes its

limitations and the limitations of grouping techniques [20, 24, 31].

Example 1 (Hoisting of alarms): Consider the alarmsA17 and

A19: both are AIOB alarms and based on the same variable i .
Given an alarm ϕ, alarm condition cond(ϕ) is such that when it

evaluates to true (resp. false), ϕ is a safe (resp. erroneous) program

point. For example, cond(A17) and cond(A19) are i ≥ 0 && i ≤ 4.

As A17 and A19 have the same alarm condition and the same

reasons (causes) for their generation at lines 6 and 8, they can be

merged together and the new alarm after merging can be reposi-

tioned at line 10 where the paths coming from these causes meet

for the first time. The alarm after the repositioning is shown as

an assertion HA10, where cond(HA10) is i ≥ 0 && i ≤ 4. During

the repositioning, the effect of the else branch at line 12 is ignored,

because (1) i = 0 if the else branch at line 12 is taken and the alarms

A17 and A19 are safe due to this value; and (2) we are not interested

in scenarios in which the alarms are guaranteed to be safe.

We refer to the repositioning of an alarm to a point earlier in the

code as hoisting, and the alarm after the repositioning is referred to

as the hoisted alarm. The hoisting of A17 and A19 at line 10 is safe,

because cond(HA10) ⇔ (cond(A17) ∧ cond(A19)). Thus, reporting

HA10 instead of A17 and A19 is sufficient for error detection.

Note that the hoisting of A17 and A19 is also possible and safe

at line 15, however we prefer the hoisting at line 10, because the

alarm reported at line 10 is closer to its causes at lines 6 and 8: recall

that we try to reduce backward code traversals performed during

manual inspections of the original alarms. For example, inspecting

an alarm at line 15 (or A17 or A19) requires traversing the code

from line 15 backwards either via the “then” branch to assignments

in lines 6 and 8, or via the “else” branch at line 12 back to the

assignment at line 2. Inspecting the hoisted alarm HA10 eliminates

Repositioning of Static Analysis Alarms ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

the need of inspecting the “else” branch. The gain achieved due

to eliminating such code traversals, can be even bigger when the

original and hoisted alarms belong to different functions.

Note that the possible hoisting of A17 and A19 closest to their

causes, is immediately after the assignments at lines 6 and 8. How-

ever, doing so results in two new alarms and it does not allow us

to reduce the number of alarms. Thus, we prefer hoisting of A17

and A19 at line 10 and this hoisting is optimal considering the two

alarms repositioning goals. Such alarms repositioning not only re-

duces the number of alarms by one but also reduces code traversals,

to some extent, performed during the manual inspections.

We stress that, in absence of either A17 or A19, the other alarm

cannot be safely hoisted to a location earlier in the code (e.g. to line

15), as the hoisting is not outcome preserving: the hoisted alarm can

represent an error while the original alarm being a safe point.

Example 2 (Sinking of alarms):The hoisting of alarms achieves

both the repositioning goals together. However, it may not always

help to merge alarms. For example, the original alarms Z27 and

Z29 are candidates for repositioning as they have the same alarm

condition and also they appear in the different branches of the if
statement at line 25. They cannot be merged and hoisted before the

if statement at line 25 as doing so misses capturing the effect of the

cause point at line 26. In such cases, repositioning them later in the

code at line 31 allows to merge them together while capturing the

effect of both the cause points at lines 24 and 26. This reposition-

ing helps to reduce the alarms count by one. The alarm after the

repositioning is shown as SA31, and cond(SA31) is n , 0. This repo-

sitioning is safe because cond(SA31) ⇔ (cond(Z27) ∧ cond(Z29)).
We refer to this type of repositioning down the control flow

as sinking of alarms, and the alarm after sinking is referred to as

sunk alarm. Since there can exist multiple program points for safe

sinking of alarms (as it is the case at line 31 onwards for alarms Z27
and Z29), we choose the program point for alarms sinking as the

highest program point where paths coming from the alarms meet

for the first time (i.e., at line 31 for the alarms Z27 and Z29). Note
that although the sinking reduces the number of alarms by one

(as per the primary goal), however the sunk alarm SA31 is further

away from the alarm causes. Thus, we perform sinking of alarms

only if it reduces more alarms than their hoisting. �
Example 3: Consider A37 and A39 alarms that are based on the

same variable j. The grouping techniques fail to identify any one

of them as a dominant alarm for the other due to the increment

operation at line 38, resulting in reporting of both the alarms as

dominant alarms. We observe that both the alarms can be safely

merged into a single alarm repositioned at line 35, denoted by

HA35. Note that cond(HA35), i.e. j ≥ 0 && j ≤ 3, is such that

cond(HA35) ⇔ (cond(A37) ∧ cond(A39)). In this scenario, the repo-

sitioning allowed us to reduce the alarms number by one. Further-

more, it also eliminates inspecting the second alarm which requires

considering the effect of the increment operation at line 38. The

saving achieved can be considerable if code at the three lines, 37-39,

appear in different functions. �

Traceability. In the repositioning technique, as the locations of

the repositioned alarms are different than the locations of the errors

detected by them, we also maintain traceability links between a

repositioned alarm and its corresponding original alarm(s). These

links will be explored by users only when a repositioned alarm is

found to uncover an error during manual inspection and a correc-

tion is needed at its corresponding original alarm program point(s).

3 TECHNIQUE OVERVIEW
This section describes our alarm repositioning technique. We first

recapitulate the notions related to the control flow graph (CFG).

3.1 Background: Control Flow Graph
A control flow graph (CFG) [2] of a program is a directed graph

⟨N,E⟩, where N is a set of nodes representing the program state-

ments (like assignments and controlling conditions); and E is a set

of edges where an edge (n1,n2) represents a possible flow of pro-

gram control from n1 ∈ N to n2 ∈ N without any intervening node.

A CFG has two distinguished nodes Start and End, representing the
entry and exit of the corresponding program, respectively. Except

for the Start and End nodes, we assume that there is one-to-one

correspondence between the CFG nodes and their corresponding

statements in the program. The program statements are assumed

not to cause side effects. For a given node n, we use pred(n) (resp.
succ(n)) to denote predecessors (resp. successors) of n in the graph.

We write entry(n) and exit(n) to denote the entry and exit of a
node n, i.e., the program points just before and immediately after the
execution of statement corresponding to the node n, respectively.
The entry/exit of a node is assumed not to be shared with entry or

exit of any other node even though they may relate to the same

program point. Henceforth, we use nm to denote the node of a

program statement at linem when a code example is referred.

3.2 Definitions
Similarly to the available and anticipable expressions [17, 27], we

define available and anticipable alarm conditions. We use notation

ϕp to denote an original alarm ϕ reported at a program point p.

Definition 1 (Available Alarm Conditions). An alarm condi-
tion c is available at a program pointp, if every path from the program
entry to p contains an alarm ϕq with c as its alarm condition, and
the point q is not followed by a definition of any operand of c on any
path from q to p. �

In Figure 1, condition n , 0 is available alarm condition at all

program points after entry(n32) due to the alarms Z27 and Z29.

Definition 2 (Anticipable Alarm Conditions). An alarm
condition c is anticipable at a program point p, if every path from p to
the program exit contains an alarm ϕq with c as its alarm condition,
and the point q is not preceded by a definition of any operand of c on
any path from p to q. �

In Figure 1, condition i ≥ 0 && i ≤ 4 is anticipable at entry(n13),
exit(n6), and exit(n8) due to the alarms A17 and A19.

Definition 3 (Safe Repositioning of alarms). A repositioning
(hoisting or sinking) of a set of alarms S to a program point p is said
to be safe if cp ⇔ ∧ϕ∈S cond(ϕ), where cp is the repositioned alarm
condition. �

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tukaram Muske, Rohith Talluri, and Alexander Serebrenik

3.3 Repositioning Technique
To achieve the repositioning discussed in the previous section, we

design a two step static analysis technique as described next.

3.3.1 Step 1 (Intermediate Repositioning). In the first step, alarm

condition of every original alarm ϕ reported at p is safely hoisted

at the highest hoisting point along every path that reaches p. The
highest hoisting point on a path is identified as the program point

qh such that cond(ϕ) is anticipable at qh but the same condition is

no longer anticipable at any program point just before qh . Thus,
this step results in hoisting an alarm condition closer to its cause

points but also in multiple hoistings of the same condition. For

example, the alarm condition i ≥ 0 && i ≤ 4 of alarms A17 and

A19 in Figure 1 gets hoisted at two locations: exit(n6) and exit(n8).
This step discards the third hoisting possible at entry(n13) as the
condition hoisted at this point always evaluates to true. Note that
the repositioning obtained after this step is not final and it requires

refinement. Thus, we refer to it as intermediate repositioning. Section
5 describes the first step in detail.

3.3.2 Step 2 (Repositioning Refinement). This step refines the

intermediate repositioning by merging the alarm conditions that

are candidates for sinking. In this step, available alarm conditions
are computed from the alarm conditions hoisted in the intermediate

repositioning. For every available alarm condition c computed at a

program point p, we also compute exactly one program point pd to

be associated with c . The associated point pd is the highest program

point among the program points where c is available and their nodes
dominate the node of p. The point pd is used to reposition c during
the final repositioning.

To compute the associated point pd for an available condition c ,
initially c is associatedwith the single program point at which it gets

generated: a hoisting location from the intermediate repositioning.

Later, at the first meet-program point pm where c is observed to

have two or more different program points associated with it, the

association of c is updated to pm . With this operation we guarantee

that, for every condition c available at a program point p, there
exists only one program point associated with c and the node of

the associated point dominates the node of p.
For example in Figure 1, c := i ≥ 0 && i ≤ 4 gets generated

as available alarm condition at the hoisting locations exit(n6) and
exit(n8) in the intermediate repositioning example (refer Section

3.3.1). At its generation point exit(n6) (resp. exit(n8)), c gets associ-
ated with the same program point. As entry(n11) is first meet point

where c is available and also has those two program points exit(n6)
and exit(n8) associated with it, the association of c is changed to

entry(n11). The location entry(n11) associated with c is used later

to reposition the condition c finally, described in Section 5.

4 INTERMEDIATE REPOSITIONING
This section describes computation of anticipable alarm conditions

through backward data flow analysis, and performing the interme-

diate repositioning using the analysis results.

4.1 Anticipable Alarm Conditions Analysis
Given the CFG of a program and original alarms set Φ, this analysis
computes alarm conditions of the original alarms as anticipable

alarm conditions (antconds). For every antcond c computed at any

program point, this analysis also computes the input alarms,Φ′ ⊆ Φ,
which contribute to anticipability of c at that point.We refer to these

alarms Φ′ as the related original alarms (rel-alarms) of the condition

c . The rel-alarms are used to compute traceability links between

a repositioned condition and its corresponding original alarm(s).

Henceforth in the paper, we use repositioned condition to refer to

an alarm repositioned in the intermediate or final repositioning, to

distinguish it from the original alarms.

4.1.1 Notations. Let P be the set of all program points and V

be the set of variables in the program. Let C be the set of all condi-

tions that can be formed using program variables, constants, and

arithmetic and logical operators. We use tuple ⟨c,ϕ⟩ to denote an
antcond c ∈ C along with one of its rel-alarms ϕ ∈ Φ. Thus, the
values computed by this backward data flow analysis (antconds
analysis) at a program point are given by a subset of Lb = C × Φ.
For a given set S ⊆ Lb , we define the following:

(1) condsIn(S) = {c | ⟨c,ϕ⟩ ∈ S}, returns all antconds in S ; and
(1) tuplesOf (c, S) = {⟨c,ϕ⟩ | ⟨c,ϕ⟩ ∈ S}, returns all tuples of a given

antcond c in S .

4.1.2 Lattice. The antconds analysis computes subsets of Lb
flow-sensitively at every program point p ∈ P. The lattice of these
values computed is ⟨B,⊓B ⟩, where B is the powerset of Lb . As we

intend to compute antconds with their corresponding rel-alarms,

the meet ⊓B is defined as the following: Given X ,Y ∈ B,

X ⊓B Y =
⋃

c ∈(condsIn(X) ∩ condsIn(Y))

tuplesOf (c,X) ∪ tuplesOf (c,Y) (1)

4.1.3 Data Flow Equations. Figure 2 shows data flow equations

of the antconds analysis in intraprocedural setting: handling of the

call nodes is not shown for simplicity of the formalization. We use

AntInn and AntOutn , in Equations 3 and 2, to denote antconds com-

puted by the analysis at the entry and exit of a node n respectively.

Equation 6 shows processing of every alarm ϕ reported for the

statement of a node n, to generate cond(ϕ) as an anticipable con-

dition. Equation 7 denotes that the alarm condition cond(ϕ) is not
generated as an antcond when it is implied by an antcond cin flow-

ing in at the node n. However in this case, the alarm ϕ is associated

with cin . Equation 8 denotes computation of antconds transitively

at a node n. The equation assumes function wprecond(n, cp) to re-
turn the weakest precondition for (1) the statement of a given node

n, and (2) a postcondition cp . The ⊕ is used to denote an arith-

metic operator in {+,−, /, ∗}. For simplicity, only a few cases of the

statements associated with the node n are shown in Equation 8.

4.2 Intermediate Repositioning of Alarms
Recall the intermediate repositioning (Section 3.3.1) is implemented

by hoisting alarm condition of every alarm temporarily at the high-

est program point in every path reaching to the alarm program

point. The highest hoisting point is identified as the point before

which the alarm condition is no longer anticipable. We distinguish

between the two cases of identifying the highest hoisting points.

Case 1: An alarm condition c anticipable at entry(n) is not antic-
ipable at exit(m) whenm is a predecessor of n and also a branching

Repositioning of Static Analysis Alarms ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Letm, n ∈ N; c, c′ ∈ C; ϕ, ϕ′ ∈ Φ; u, v ∈ V;
t ∈ Constants; and X , Y ∈ B .

AntOutn =


∅ n is End nodel

m∈succ (n)
B
AntInm otherwise

(2)

AntInn = Genn (AntOutn) ∪ (AntOutn \ Killn (AntOutn)) (3)

Killn (X) =
{
⟨c, ϕ ⟩ ∈ X

���� n contains a definition of an

operand of c

}
(4)

Genn (X) = Gen’n (X) ∪ DepGenn (Killn (X))

(5)

Gen’n (X) =


{ process(ϕ, condsIn(X)) }

n has an alarm ϕ
reported for it

∅ otherwise

(6)

process(ϕ, Y) =

{
⟨c, ϕ ⟩ c ∈ Y , c ⇒ cond(ϕ)
⟨cond(ϕ), ϕ ⟩ otherwise

(7)

DepGenn (X) =


{
⟨wprecond(n, c), ϕ ⟩
| ⟨c, ϕ ⟩ ∈ X

} n: u=v ;
or n: u=v ⊕ t ;
or n: u=t ⊕ v ;

∅ otherwise

(8)

Figure 2: Data flow equations of the antconds analysis.

node (i.e. the statement ofm is a controlling condition). This case

occurs when c is not anticipable through one of the branches com-

ing out ofm, other than the branch having node n. In this case, the

antcond c is hoisted at the entry(n). Alternatively, the antconds to
be hoisted at entry(n) are given by

Hoistentry(n) = condsIn(AntInn) \
⋂

m∈pred(n)

condsIn(AntOutm) (9)

Condition i ≥ 0 && i ≤ 4 of A17 (and A19) in Figure 1 is antici-

pable at the entry(n13) but not at the exit(n4), and n4 is predecessor
of n13. Thus, the condition is hoisted at the entry(n13). �

Case 2: A condition c anticipable at exit(n) is not anticipable at
the entry(n)when (1) the node n contains a definition of an operand

of c i.e. anticipability of c is killed by n, and (2) the node n does

not generate any antcond transitively from c . In this case, we hoist

the condition c at the exit(n). That is, the alarm conditions to be

hoisted at exit(n) are given by

Hoistexit(n) =
{
c

���� c ∈ condsIn(Killn (AntOutn)),DepGenn ({c}) = ∅

}
(10)

As an example of the above hoisting case, the alarm condition of

A17 (and A19), i ≥ 0 && i ≤ 4, is anticipable at the exit(n6) but not
at the entry(n6) and n6 does not generate anticipable alarm condi-

tions transitively. Thus, the condition gets hoisted at the exit(n6).
Similarly, this condition also gets hoisted at the exit(n8). �

4.2.1 Discarding Redundant Hoistings. Recall hoisting of alarm
condition of A17 and A19 at the entry(n13) (Section 2), where the

hoisted alarm condition i ≥ 0 && i ≤ 4 always holds at the hoisting

location due to the value 0 assigned to i at line 2. We deem this

hoisting to be redundant and discard it. Formally, equations 11 and

12 define the non-redundant hoistings, where alwaysTrue(c,p) is
true only if the condition c always holds at p.

Hoistentry(n) =
{
c

���� c ∈ Hoistentry(n),
alwaysTrue(c, entry(n)) , true

}
(11)

Hoistexit(n) =
{
c

���� c ∈ Hoistexit(n),
alwaysTrue(c, exit(n)) , true

}
(12)

4.2.2 Algorithm. The intermediate repositioning of alarms—

hoisting at the entry and exit of all the nodes—is performed by

processing every node n ∈ N using the equations 11 and 12.

4.2.3 Computing Traceability Links. For a given antcond c in
S ⊆ Lb , we define function relAlarms(c, S) = {ϕ | ⟨c,ϕ⟩ ∈ S} to
return the rel-alarms of c . The traceability links are generated

from a hoisted condition c in Hoistentry(n) (resp. Hoistexit(n)) to
its corresponding rel-alarms given by relAlarms(c,AntInn) (resp.
relAlarms(c,AntOutn)).

4.2.4 Intermediate Repositioning Example. Following is the in-
termediate repositioning obtained for alarms for Figure 1.

(i) i ≥ 0 && i ≤ 4 is hoisted at the exit(n6) and exit(n8), with
both A17 and A19 as its rel-alarms.

(ii) n , 0 is hoisted at the exit(n26) (resp. entry(n29)) with Z27
(resp. Z29) as its rel-alarm.

(iii) j ≥ 0 && j ≤ 4 is hoisted at the exit(n34) with A37 as its rel-

alarm. Furthermore, due to the increment operation at line

38 and transitivity, j ≥ −1 && j ≤ 3 also gets hoisted at the

exit(n34) with A39 as its rel-alarm.

The two conditions hoisted in each of the cases (i) and (ii) belong

to different branches of an if statement and are candidates for

merging (sinking) during the refinement step. In the case (iii), the

two conditions repositioned at the same point get merged into a

single condition during the refinement step.

5 REFINEMENT OF INTERMEDIATE
REPOSITIONING

In this section we describe the computation of available alarm con-

ditions (avconds) using forward data flow analysis, and obtaining

the final repositioning using the analysis results.

5.1 Computing Final Repositioning
Let c be an avcond computed at a program point p from the condi-

tions hoisted in the intermediate repositioning, and pr be the single
program point associated with c . Recall the discussion in Section

3.3.2: the location pr associated with c is computed as the highest

program point at which c is available and whose node dominates

the node of p. We refer to this program point pr as repositioning
location of c . As we wish to compute avconds transitively, an avcond

c at a point p can be transformed version of a condition cr available
at pr . That is, c is transitively computed from cr along a path from

pr to p. We refer to this cr at pr as the repositioning condition of c .
Thus, due to the transitivity in avconds computation, we compute

the repositioning location pr and condition cr for every avcond

identified at any program point. These values, cr and pr , are used
later to implement the final repositioning.

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tukaram Muske, Rohith Talluri, and Alexander Serebrenik

We stress that,

• An avcond computed at any point is with exactly one repo-

sitioning location pr and one repositioning condition cr .
• Computing repositioning condition cr for an avcond c is

not required if avconds are not to be computed transitively

(because in this case, cr is same as c).
• The associated values, cr and pr , for an avcond are computed

depending on the hoisted conditions and locations in the

intermediate repositioning, rather than as dependent on the

original alarms input for repositioning.

5.2 Available Alarm Conditions Analysis
5.2.1 Notations. Let P be the set of all program points and C

be the set of all conditions that can be formed using the program

variables, constants, and arithmetic and logical operators. We use a

function f : C→ C× P, that maps an avcond c ∈ C to its associated

repositioning condition cr ∈ C and location pr ∈ P. We write the

condition c with the associated values as tuple ⟨c, cr ,pr ⟩. Thus, the
forward analysis (avconds analysis) at a program point p computes

a subset of Lf , where Lf = {⟨c, c
′,q⟩ | c ∈ Cp , f(c) = ⟨c

′,q⟩} and
Cp is the set of avconds at p.

For a given set S ⊆ Lf we define:

• condsIn(S) = {c | ⟨c, cr ,pr ⟩ ∈ S} returns all avconds in S .
• repCond(c, S) = cr | ⟨c, cr ,pr ⟩ ∈ S , returns the repositioning
condition of a given avcond c in S .
• repLoc(c, S) = pr | ⟨c, cr ,pr ⟩ ∈ S , returns the repositioning
location of a given avcond c in S .

5.2.2 Lattice. As avconds analysis computes subsets of Lf flow-

sensitively at every program point p ∈ P, we denote the lattice of

these values by ⟨F = 2
Lf ,⊓F ⟩. We use

n⊓F to denote the meet of

data flow values at the entry of a join node n. The meet operation is

as shown below (Equation 13), and it is idempotent, commutative,

and associative. For simplicity of the equation, we have assumed

that the join node n corresponding to a meet operation is known

when the meet is performed.

Given X ,Y ∈ F :

X n⊓F Y =
⋃

c ∈(condsIn(X) ∩ condsIn(Y))

{ mergeInfo(c, entry(n),X ,Y) } (13)

mergeInfo(c,pm ,X ,Y) =
⟨c, cr ,pr ⟩

⟨c, cr ,pr ⟩ ∈ X , ⟨c, c
′
r ,p
′
r ⟩ ∈ Y ,

pr = p
′
r

⟨c, c,pm⟩ otherwise

At a meet point entry(n), the above meet operation updates the

repositioning condition and location of an avcond c respectively to

c and entry(n), only if the repositioning locations of c flowing-in
via the two different paths at the meet point are different. In the

other case, the values associated with c remain unchanged.

5.2.3 Data Flow Equations. Figure 3 shows data flow equations

of the avconds analysis that computes avconds transitively in in-

traprocedural setting. AvInn and AvOutn denote avconds computed

with their associated values, respectively, at the entry and exit of a

node n (equations 14 and 15). Figure 4 illustrates the computing of

AvOutn . Equations 16 and 17 indicate that an avcond is generated

Letm, n ∈ N; u, v ∈ V; c, c′, cr ∈ C; pr ∈ P ;
t ∈ Constants; and X , Y ∈ F .

AvInn =


∅ n is Start nodel

m ∈ pred (n)

n

F
AvOutm otherwise

(14)

AvOutn = Genexit(n) ∪ AvOut’n (15)

Genexit(n) = { ⟨c, c, exit(n)⟩ | c ∈ Hoistexit(n) } (16)

AvOut’n = (AvIn’n \ Killn (AvIn’n)) ∪ DepGen(AvIn’n)

AvIn’n = AvInn ∪ Genentry(n)(AvInn)

Genentry(n)(X) =
{
⟨c, c, entry(n)⟩

���� c ∈ Hoistentry(n),
⟨c′, cr , pr ⟩ ∈ X , c′ ; c

}
(17)

Killn (X) =
{
⟨c, cr , pr ⟩ ∈ X

���� n contains a definition

of an operand of c

}
(18)

DepGenn (X) =


{
⟨postcond(n, c), cr , pr ⟩
| ⟨c, cr , pr ⟩ ∈ X

} n: u=v ;
or n: u=v ⊕ t ;
or n: u=t ⊕ v ;

∅ otherwise

(19)

Figure 3: Data flow equations of the avconds analysis.

entry(n) node n exit(n)
AvInn

Genentry(n)(AvInn) DepGenn (AvIn’n)

AvIn’n

Killn (AvIn’n)

AvOut’n

Genexit(n)

AvOutn

Figure 4: Processing a node in the avconds analysis

for every condition hoisted in the intermediate repositioning. The

Equation 17 does not generate an avcond for c ∈ Hoistentry(n) when
some other avcond in AvInn implies c . However, such implication

handling is not needed in Equation 16, because the antconds are

hoisted at the exit of a node only when the node stops anticipability

of those conditions.

Equation 19 describes transitive computation of the avconds. It

assumes function postcond(n, cp) to return the strongest postcondi-
tion for the statement of a given node n, and a given precondition cp .
Note that this equation does not update the repositioning condition

and location of any of the available alarm conditions. Thus, the as-

sociated values of an avcond c are updated only when c is generated
(equations 16 and 17), or the meet operation is performed.

5.3 Computing Traceability Links
For simplicity of the analysis formalization, we separately formalize

another forward data flow analysis required to compute the avconds

along with their corresponding rel-alarms. This analysis computes

subsets of C × Φ flow-sensitively at every program point and has

meet operation similar to Equation 1. Figure 5 presents data flow

equations of this analysis.We use fwdInn and fwdOutn , respectively,
to denote the avconds computed at the entry and exit of a node n.
At any program point, the avconds computed by this analysis will

Repositioning of Static Analysis Alarms ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Letm, n ∈ N; u, v ∈ V; c, c′ ∈ C; ϕ, ϕ′ ∈ Φ;
t ∈ Constants; and X , Y ∈ B .

fwdInn =


∅ n is Start nodel

m ∈ pred (n)
B
fwdOutm otherwise

fwdOutn = fwdOut’n ∪ Genexit(n)
fwdOut’n = (fwdIn’n \ Killn (fwdIn’n)) ∪ TransGen(fwdIn’n)

fwdIn’n = fwdInn ∪ Genentry(n)(fwdInn)

Genentry(n)(X) =


{ ⟨c, ϕ ⟩ }

c ∈ Hoistentry(n), ⟨c′, ϕ′⟩ ∈ X
c′ ; c, ϕ ∈ relAlarms(c, AntInn)

{ ⟨c′, ϕ ⟩ }
c ∈ Hoistentry(n), ⟨c′, ϕ′⟩ ∈ X
c′ ⇒ c, ϕ ∈ relAlarms(c, AntInn)

Killn (X) =
{
⟨c, ϕ ⟩ ∈ X

���� n contains a definition

of an operand of c

}

TransGenn (X) =


{
⟨postcond(n, c), ϕ ⟩
| ⟨c, ϕ ⟩ ∈ X

} n: u=v ;
or n: u=v ⊕ t ;
or n: u=t ⊕ v ;

∅ otherwise

Genexit(n) = { ⟨c, ϕ ⟩ | c ∈ Hoistexit(n), ϕ ∈ relAlarms(c, AntOutn) }

Figure 5: Computing avconds with related original alarms.

be same as the avconds computed by the analysis in Section 5.2,

with the only difference in the information computed for them.

5.4 Final Repositioning Algorithm
Algorithm 1 performs the final repositioning using the avconds.

5.4.1 Step 1 (Computing Repositioning Locations). We first iden-

tify avconds to be utilized for final repositioning. For every avcond

c identified, (1) the repositioning condition cr of c is repositioned at
the repositioning location pr of c , and (2) traceability link is created
from the repositioned condition cr to each of the rel-alarms of c .

The avconds to be utilized are identified by processing every

node n in the program using Equations 20 and 21. These equations

respectively compute the avconds that are no longer available im-

mediately after entry and exit of a node n. These equations are on
similar lines of the two cases in Section 4.2. The processing of every

node through the two equations ensures the following: (1) each

avcond c generated at a program point p gets utilized for reposi-

tioning along every path starting at p and ending at the program

exit except when it transitively results into some other avcond, and

(2) the utilization along any such path is only once and it occurs at

the last program point on the path where c is available.

Condsentry(n) = condsIn(Killn (AvIn’n)) (20)

Condsexit(n) = condsIn(AvOutn) \
⋂

s ∈succ(n)

condsIn(AvIns) (21)

As a special case, the algorithm utilizes every condition c ∈
condsIn(entry(End)) for repositioning, because a few avconds like

Algorithm 1 Algorithm for Final Repositioning

procedure performFinalRepositioning
for node n ∈ N do

for condition c ∈ Condsentry(n) do
reposition(c , AvIn’n , fwdIn’n);

end for
for condition c ∈ Condsexit(n) do

reposition(c , AvOutn , fwdOutn);
end for

end for

/* Special case for the program exit node */

for condition c ∈ condsIn(entry(End)) do
reposition(c , AvInEnd , fwdInEnd);

end for

for point p ∈ P do
Simplify conditions repositioned at p.

end for

/* Postprocessing of repositioned conditions */

Let CR be the set of all simplified repositioned conditions.

Postprocess CR to eliminate redundancy through grouping.

Postprocess the non-redundant conditions for fallback.
end procedure

procedure reposition(c , X , Y)
Reposition repCond(c,X) at repLoc(c,X) with its traceability

link to every alarm ϕ ′ ∈ {ϕ | ⟨c,ϕ⟩ ∈ Y }.
end procedure

n , 0 in Figure 1 can reach the program end point, but not get

computed by any of the equations 20 and 21 for any point.

5.4.2 Step 2 (Simplifying Repositioned Conditions). Next every
program point is processed to simplify the conditions repositioned

at that point. The simplification is performed on conjunction of the

repositioned conditions that are related by the same variables. The

traceability links for a condition resulting after the simplification

are obtained by merging traceability links of the conditions that

got simplified. For example, using the avconds at the program end

point (line 40) in Figure 1, Step 1 repositions j ≥ 0 && j ≤ 4 and

j ≥ −1 && j ≤ 3 at the exit(n34) with their links respectively toA37

and A39. After the simplification step, these two conditions result

in j ≥ 0 && j ≤ 3 with its traceability links to both A37 and A39.

5.4.3 Step 3 (Postprocessing for Redundancy Elimination). The
repositioning resulting after the previous simplification step may

have some redundancy. As an example, consider the code in Figure

6a that has three AIOB alarms reported at lines 7, 8, and 14. The

conditions repositioned after Step 2 are at the entry(n6), exit(n12),
and entry(n18). These three repositioned conditions are shown as

assertions at lines 5, 13, and 17, respectively. In this case, the repo-

sitioning performed does not reduce the overall alarms count.

Observe that the condition repositioned at entry(n18) (line 17) is
redundant in presence of the two other repositioned conditions: the

other two conditions act as dominant alarms for this condition. To

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tukaram Muske, Rohith Talluri, and Alexander Serebrenik

1 void f1(){

2 int i=lib1(), a[5];

3

4 if (...){

5 //assert(0 ≤ i ≤ 4); HA5

6 if(...)

7 a[i]=0; A7

8 else a[i]=1; A8

9

10 if(...) return;

11 }else{

12 i = lib2 ();

13 //assert(0 ≤ i ≤ 4); HA13

14 a[i] = 0; A14

15 if(...) return;

16 }

17 //assert(0 ≤ i ≤ 4);

18 i = 0;

19 }

(a) Applying grouping

1 void f2(){

2 int a[5], tmp=1, i=0, j;

3

4 if (...){

5 if (...){

6 i = lib1 ();

7 } else {

8 i = lib2 ();

9 }

10

11

12 } else {

13 tmp = lib3 ();

14 }

15 j = 0;

16

17 a[i] = 0; A17

18

19 }

(b) Applying fallback

Figure 6: Examples to illustrate postprocessing of the repo-
sitioned conditions.

improve the repositioning by eliminating such redundancy, (1) we

postprocess the repositioned conditions by applying the grouping

techniques [20, 24, 31], and (2) discard the repositioned conditions

that are identified as followers. Applying this postprocessing step
to the three repositioned conditions discards the redundant reposi-

tioned condition, and reduces the overall alarms count by one.

5.4.4 Step 4 (Postprocessing for Fallback). In certain cases, the

repositioning obtained after Step 3 may increase the number of

alarms. This occurs due to (1) the two repositioning goals impacting

each other (as illustrated below in certain scenarios), or (2) transitive

computation of the antconds and avconds.

Consider the code example in Figure 6b. This example is crafted

to illustrate impact of the two repositioning goals on each other. The

example has one alarmA17. Condition of this alarm, i ≥ 0 && i ≤ 4,

is not avcond at the entry(n15). Indeed, the condition hoisted at the

entry(n13) gets discarded via Equation 11 during the intermediate

repositioning, and due to this discarding the condition is not avcond

at the entry(n13), and hence at the entry(n15). Thus, repositioning
ofA17 results in the two conditions repositioned at the exit(n6) and
exit(n8) (the repositioned conditions are not shown in Figure 6b).

We discard redundant conditions during the intermediate repo-

sitioning to report the alarms closer to their cause points. However,

for this example, the discarding increases the alarms count. In the

absence of this discarding, the condition gets repositioned only at

the entry(n15), without increasing the alarms count. This indicates

the two repositioning goals impact each other, i.e., reporting alarms

closer to their causes might increase the number of alarms.

Hence, we postprocess the repositioned conditions resulting

after Step 3. In the postprocessing, we identify situations when the

number of alarms increases and revert (fallback approach), i.e., we

report original alarms instead of the repositioned ones. Algorithm

2 presents the fallback approach, where it for simplicity assumes

the following two functions.

Algorithm 2 Algorithm for Repositioning Fallback Approach

Input: Set of original alarms Φ,
Input: Set of repositioned alarms R,
Output: Set of repositioned alarms Rf after fallback,

procedure performFallBack
oriдAlarms ← Φ
Rf ← R
while oriдAlarms , ∅ do

workinдSet ← {choose(Φ)}
oriдAlarmsSet ← ∅
reposAlarmsSet ← ∅
visitedOriдAlarms ← ∅
whileworkinдSet , ∅ do

ϕ ← choose(workinдSet)
oriдAlarmsSet ← oriдAlarmsSet ∪ {ϕ}
visitedOriдAlarms ← visitedOriдAlarms ∪ {ϕ}
for r ∈ getRelReposAlarms(ϕ) do

reposAlarmsSet ← reposAlarmsSet ∪ {r }
for ϕ ′ ∈ getRelOrigAlarms(r) do

if ϕ ′ < visitedOriдAlarms then
workinдSet ← workinдSet ∪ {ϕ ′}

end if
end for

end for
end while
if size(reposAlarmsSet) > size(oriдAlarmsSet) then

Rf ← (Rf \ reposAlarmsSet) ∪ oriдAlarmsSet
end if
oriдAlarms ← oriдAlarms \ oriдAlarmsSet

end while
end procedure

• getRelOrigAlarms(r) returns set of rel-alarms associated with

a given repositioned alarm condition r .
• getRelReposAlarms(ϕ) returns set of repositioned alarms for

which ϕ is one of their rel-alarms.

As shown by our experimental evaluation, discussed in the next

section, fallback is rarely required
1
. �

5.4.5 Final Repositioning Example: Applying Algorithm 1 to

alarms in Figure 1 results in the following final repositioning. For

this example, the postprocessing steps 3 and 4 do not change (im-

prove) the repositioning obtained after Step 2.

(1) i ≥ 0 && i ≤ 4 is repositioned at the entry(n11) with its

traceability links to A17 and A19, where the repositioning is

identified by Equation 21 when applied to the exit(n11).
(2) n , 0 is repositioned at the entry(n32) with its traceability

links to Z27 and Z29, where the repositioning is identified

when entry(End) is processed as the special case.

(3) j ≥ 0 && j ≤ 3 is repositioned at the exit(n34) with its

traceability links to A37 and A39. �

5.4.6 Properties of Repositioning Algorithm 1. In this section we

discuss properties of Algorithm 1.

1
In fact, there existed only 20 instances that required fallback during repositioning of

33,162 alarms in practice.

Repositioning of Static Analysis Alarms ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Theorem 5.1. Given a set of alarms Φ, the repositioning of Φ
resulting from Algorithm 1 is safe.

Proof. Let ΦR be the set of alarms resulting from reposition-

ing of Φ by Algorithm 1. Proving repositioning obtained through

Algorithm 1 is safe requires the following two cases to be proved.

(1) For every original alarm ϕp ∈ Φ detecting an error at p, there
exists an alarm ϕ ′q ∈ ΦR denoting an error at q and detecting

the same error at p, and vice a versa.

(2) When every original alarm ϕp ∈ Φ is false, all alarms in ΦR
are also false, and vice a versa.

In the repositioning resulting due to Algorithm 1, the following

holds true.

i) Corresponding to every alarm ϕp ∈ Φ, there exists a reposi-
tioned alarm ϕ ′q ∈ ΦR along every path on which p appears

either before or after p, except the paths along which ϕp is

always safe (due to discarding of redundant hoisting). Fur-

thermore, cond(ϕ ′q) along each path is directly or transitively

derived from cond(ϕp).
ii) Corresponding to every repositioned alarm ϕ ′q ∈ ΦR , there

exists an originalϕp alarm along every path onwhichq appears,
and cond(ϕ ′) is directly or transitively derived from cond(ϕ).

Proving case 1 (Detection of an error):
Due to (i), (!cond(ϕp)) ⇒ ∃ ϕ ′ ∈ ΦR , (!cond(ϕ ′)).
Due to (ii), (!cond(ϕ ′)) ⇒ ∃ ϕ ∈ Φ, (!cond(ϕ)).

Proving case 2 (Alarms are false positives):
Due to (i), ∀ ϕ ∈ Φ, (cond(ϕp)) ⇒ ∀ ϕ ′ ∈ ΦR , (cond(ϕ ′)).
Due to (ii), ∀ ϕ ′ ∈ ΦR , (cond(ϕ ′)) ⇒ ∀ ϕ ∈ Φ, (cond(ϕ)). �

Theorem 5.2. For any given set of alarms, Algorithm 1 always
terminates.

Proof. The termination of Alogrithm 1 is proved by proving

termination of each of the steps in the algorithm.

Step 1: This step computes the final repositioning locations using

the results of avconds and antconds analyses. As the lattices of

these analyses have finite descending chains and the data flow

equations in figures 2, 3, and 5 are monotonic [17, 27], both the

analyses terminate. Since this step processes every program point

correpsonding to a node in finite set of nodes N , this step always

terminates.

Step 2: This step terminates because it iterates over all the program

points to simplify conjunction of the repositioned conditions.

Step 3: In this step, state-of-the-art grouping techniques [13, 20, 24,

31] are applied to postprocess the repositioned conditions and these

techniques are always terminating.

Step 4: Algorithm 2 presents identification of the situations where

repositioning increases the alarms count and reverting reposition-

ing in those situations. It is described in detail in Section 5.4.4. As

this algorithm terminates, this step also terminates. �

Theorem 5.3. For any given set of alarms, Algorithm 1 never
increases the number of alarms after repositioning.

Proof. In Step 4 (Section 5.4.4), Algorithm 2 identifies situations

for repositioning fallback: instances where the number of reposi-

tioned alarms is higher than the the number of their corresponding

original alarms (rel-alarms) and reporting the original alarms in-

stead of the repositioned ones. In the other situations, the number

of repositioned alarms is equal to or lesser than the the number

of their corresponding original alarms. Thus, Algorithm 1 never

increases the number of alarms after repositioning. �

Theorem 5.4. For a given set of dominant alarms Φ, Algorithm
1 performs sinking of an alarm ϕ ∈ Φ only if there is an impending
reduction in number of overall alarms.

Proof. The sinking of alarms occurs during avconds analysis

when two or more same alarm conditions but from different alarms

meet for the first time. This sinking is denoted by Equation 13,

where the two alarms are merged together to depict a single alarm.

Such merging (sinking) of alarms contribute to reducing overall

alarms count. For a single alarm, such sinking is not performed.

Although such merging can result in repositioning conditions that

are redundant (Section 5.4.3). However, such redundant alarms

resulting due to sinking are discarded via the postprocessing Step

3. Thus, Algorithm 1 pefroms sinking of an alarm only if there is

an impending reduction in number of overall alarms. �

6 EMPIRICAL EVALUATION
To determine the practicality and effectiveness of alarms reposition-

ing technique, we performed an empirical evaluation measuring

the reduction in the number of alarms.

6.1 Experimental Setup
6.1.1 Implementation. We implemented alarms repositioning

on top of analysis framework of a commercial static analysis tool

(CSAT). The analysis framework supports analysis of C programs,

and allows to implement data flow analyses using function sum-

maries. We implemented limited versions of the both antconds

analysis and avconds analysis in inter-functional setting, by solving

the data flow analyses in bottom-up order only. In the antconds

analysis, we propagated the conditions anticipable at the function-

entry to its caller only if the function is called from a single place.

In the avconds analysis, all the conditions available at the function-

exit are propagated to the caller irrespective of the call invocations

of the function. This implementation may result in repositioning

an original alarm at multiple locations, and for such cases we resort

to the fallback approach.

6.1.2 Selection of Applications and Alarms. For the evaluation
purpose, we selected in total 20 applications shown in Table 1: 16

open source and 4 industry applications. All these applications were

analyzed using CSAT on a machine with i7 2.5GHz processor and

16GB RAM. The open source applications are selected from the

benchmarks used for evaluating the grouping techniques [20, 31]:

the first 8 applications are from the study performed by Zhang et

al. [31] and the next 8 are from the study by Lee et al. [20]. The

remaining benchmarks from these studies either were not avail-

able or could not be compiled/analyzed using CSAT. The industry

applications selected are embedded systems from the automotive

domain. All the applications selected are written in C .
We selected alarms corresponding to four commonly checked

categories of run-time errors: division by zero (ZD), array index out

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tukaram Muske, Rohith Talluri, and Alexander Serebrenik

Table 1: Experimental Results showing reduction in number of alarms due to their repositioning.

Application

Size

(KLOC)

#

Input

#

Output

%

Redu-

ction

Redu-

ndant

conds

Fall-

backs

Timing Analysis (seconds) Inter-Functional Reasons for stopping

Origi-

nal

Reposi-

tioning

% Over-

Head

Merg-

ings

Repos.

Func

entry

Branches

Defini-

tions

acpid-1.0.8 1.7 5 4 20.00 0 0 4.5 2.6 57.0 0 0 1 2 1

spell-1.0 2.0 17 17 0.00 0 0 15.2 4.7 30.9 0 0 3 9 5

barcode-0.98 4.9 580 540 6.90 0 0 54.2 12.4 23.0 0 0 2 363 175

antiword-0.37 27.1 748 689 7.89 6 0 941.7 116.1 12.3 1 35 93 454 142

sudo-1.8.6 32.1 2548 2407 5.53 28 0 2618.9 451.5 17.2 30 54 303 971 1133

uucp-1.07 73.7 263 244 7.22 4 0 455.3 42.2 9.3 0 0 17 134 93

ffmpeg-0.4.8 83.7 18523 17557 5.22 169 12 2059.2 535.4 26.0 85 610 1252 10263 6042

sphinxbase-0.3 121.9 908 887 2.31 24 0 162.0 48.1 29.7 5 41 39 662 186

archimedes-0.7.0 0.8 2251 2146 4.66 6 0 27.4 8.6 31.5 1 15 5 1078 1063

polymorph-0.4.0 1.3 10 8 20.00 0 0 5.3 2.1 39.5 0 0 1 6 1

nlkain-1.3 2.5 89 88 1.12 0 0 5.0 1.9 37.2 0 0 0 59 29

stripcc-0.2.0 2.5 88 77 12.50 8 0 17.5 2.8 16.1 0 0 2 49 26

ncompress-4.2.4 3.8 64 58 9.38 0 0 5.9 3.4 57.2 0 0 1 33 24

barcode-0.96 4.2 440 408 7.27 0 0 39.3 11.3 28.7 0 0 2 285 121

combine-0.3.3 10.0 454 407 10.35 9 0 46.7 12.5 26.8 0 2 9 295 103

gnuchess-5.05 10.6 1600 1503 6.06 40 0 86.4 19.9 23.0 10 38 90 782 631

industryApp 1 3.4 326 266 18.40 0 0 20.9 8.8 42.0 0 20 7 148 111

industryApp 2 18.0 163 162 0.61 1 0 44.4 11.4 25.8 0 5 14 112 36

industryApp 3 18.1 1111 1007 9.36 1 0 72.6 21.8 30.0 0 31 16 800 191

industryApp 4 30.9 2974 2541 14.56 1 11 1253.5 76.4 6.1 44 592 167 1675 699

Total 453.2 33162 31016 6.47 297 23 7935.9 1393.9 17.6 176 1443 2024 18180 10812

Table 2: Reduction in alarms error category-wise.

#Input #Output %Reduction

AIOB 3464 3221 7.02

ZD 985 975 1.02

OFUF 24843 23564 5.15

UIV 3914 3607 7.84

of bounds (AIOB), integer overflow underflow (OFUF), and uninitial-

ized variables (UIV). The alarms selected were postprocessed using

the state-of-the-art alarms grouping techniques [20, 24, 31], and

we considered only the dominant alarms as input to the reposition-

ing. The grouping technique was employed before repositioning,

because as indicated in Sections 1 and 2; we aim at overcoming the

limitations of the grouping techniques. Due to the possible side

effects caused by function calls, the alarms having function calls in
their alarm conditions are excluded from grouping [24]. Thus, we

also have excluded them from input to the repositioning.

6.2 Evaluation Results
Table 1 presents the number of alarms before and after the repo-

sitioning, and the percentage of alarms reduced: columns #Input,
#Output, and %Reduction respectively. The percentage of reduced

alarms ranges between 0 and 20%, with the median reduction 7.25%

and the average reduction 6.47%. The average reduction on open

source applications is 5.41% as compared to the 13.07% on the in-

dustry applications. In a follow-up study we will study the reasons

for higher reduction on the industry applications.

Table 1 also details the improvements resulting from the post-

processing of repositioned conditions (steps 3 and 4 in Section 5.4).

Column Redundant conds of Table 1 presents the number of reposi-

tioned conditions identified as followers, i.e., redundant conditions,
by the grouping technique in Step 3 (Section 5.4.3). It indicates that

around 1% of the repositioned conditions computed by Step 2 are

identified as redundant by Step 3. Column Fallbacks presents the
number of instances, 23, where fallback got applied (Section 5.4.4).

This indicates that the fallback gets applied rarely in practice. Our

manual analysis of these instances showed that (a) three instances

were due to the kind of interfunctional implementation we had for

avconds/antconds computation; (b) 18 instances were because of

the two repositioning goals impacting each other; and (c) the other

2 cases were due to computing the conditions transitively.

To compute the performance overhead incurred by the reposi-

tioning, we compared the time for repositioning (column Reposition-
ing) to the time to analyze the code for the categories selected (col-

umn Original). On average, the repositioning added performance

overhead of 17.6% while it reduced the alarms count by 7.25%.

To investigate which run-time categories are benefited the most

through repositioning, we performed evaluation by repositioning

alarms in each category separately. The evaluation results in Table

2 shows that reduction percentages for AIOB, OFUF, and UIV are

comparable and are lowest for ZD. Our analysis of the results for

ZD showed that the division operations mostly appear in one of the

if branches only. In such cases, repositioning is unable to merge

such an alarm with another.

6.3 Results Discussion and Future Work
The reduction in alarms due to repositioning, 7.25%, is on top of

the alarms reduction obtained through the grouping techniques

[20, 24, 31]. Thus, the reduction indicates failure of the grouping

Repositioning of Static Analysis Alarms ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

techniques to merge those many alarms. Recall that the reposition-

ing technique also uses alarms grouping to identify and remove

redundant repositionined conditions (Section 5.4.3). Thus, these

techniques help each other when used to reduce the number of

alarms generated. Furthermore we observe that, if implication is

handled during computation of the antconds and avconds (Equa-

tions 6 and 17), the presented repositioning technique subsumes the

grouping of alarms, and therefore grouping of the original alarms

can be skipped when repositioning is performed.

We believe that the backward inter-functional repositioning can

provide more benefits in manual inspection of alarms. The expected

gain is due to eliminating code traversals from the functions of their

original reporting to the functions having repositioned alarms. We

consider empirical evaluation of this gain as future work.

From the evaluation, we also see that while merging alarms

originally reported in different functions is not frequent (column

#Mergings), repositioning alarms across the function boundaries

is quite common (column #Repos.). Our attempt to understand the

reasons for stopping backward repositioning showed the following.

(1) For around 6% of the repositioned alarms, the backward reposi-

tioning stopped at the entry of a function as the function was called

from more than one place (column #Func entry); (2) For around 59%
of the repositioned alarms, the backward repositioning stopped due

to branching nodes: the repositioned warning appears only in one

branch of the if statement (column #Branches); (3) For the other
repositioned alarms (35%), the backward repositioning stopped due

to definitions of a variable appearing in the alarm conditions (col-

umn #Definitions). We plan to improve the repositioning results of

Case 2, by designing a strategy to identify branching conditions

that are irrelevant to the alarm conditions, therefore they should

not stop the repositioning process.

7 RELATEDWORK
Several approaches to postprocessing of alarms have been proposed

in the literature [14, 26]. The approaches are like grouping, ranking,

pruning, automated false positives elimination, and even manual

inspections of the alarms. Furthermore, there exists several tech-

niques for each of the approaches. Thus, we limit the comparisons of

our technique to the approaches/techniques that are closely related.

As discussed in Section 2, grouping of alarms based on similar-

ity/correlations is the most related approach to postprocess the

alarms. This approach [20, 24, 31] has helped to reduce the number

of alarms significantly (34 to 60%). However, they fail to group

alarms in certain cases (discussed in Section 2) and also report

the alarms away from their causes. Gerhke et al. [13] have used

repositioning approach similar to ours to overcome this limitation,

however sometimes they end up repositioning more alarms than

the alarms input for repositioning (Section 2). Also, their approach

does not perform sinking of alarms when it helps to reduce over-

all alarms count. Furthermore, they do not maintain traceability

link(s) between a repositioned alarm and the corresponding original

alarm(s). In the absence of these links, reviewer needs to perform

additional code traversals but in forward direction to locate the

original alarms corresponding to a repositioned alarm, when (1) an

error is found at repositioned alarm, and (2) correction is needed at

the original alarm program point. Our technique has been designed

to overcome these limitations.

Cousot et al. [8] have proposed usage of necessary preconditions

which are hoisted to the method entry, corresponding to the in-

evitable checks within a method. The conditions hoisting is used in

the context of providing the preconditions required by the Design

by Contract [22]. On similar lines, Das et al. [10] have proposed

angelic verification technique for verification of open programs.

This technique is intended to prune the alarms generated during

verification of open programs with unconstrained environment.

The alarms repositioning technique is applicable to programs with

both constrained and unconstrained environments.

Muske and Khedker [25] have proposed cause points analysis to

handle alarms effectively during the manual inspections. In their

approach, instead of alarms, ranked causes to the alarms are re-

ported and user inputs are sought in several iterations to resolve

the alarms. This approach does not reduce the number of alarms

without user intervention.

We observe that the alarms repositioning can be applied in con-

junction with other alarms postprocessing techniques to comple-

ment each other, and also, we believe that the combinations will

provide more benefits as compared to the benefits obtained by ap-

plying them individually. Benefits of such combinations should be

subject of further studies.

8 CONCLUSION
We have proposed a novel alarms postprocessing technique in-

tended mainly to reduce the alarms count. The technique is also

designed to report alarms as close as possible to their cause points.

We have evaluated the technique using a large set of alarms

generated on twenty open source and industry applications. The

technique reduces the number of alarms up to 20%, with median re-

duction of 7.25% on top of the state-of-the-art grouping techniques.

These grouping techniques fail to merge and reduce those alarms

as they report alarms in their original form and at their original

locations. On the contrary, our repositioning approach identifies

suitable locations for reporting of the alarms, targeting not only

reducing the alarms count but also reporting them closer to their

cause points. Furthermore, we observe that the repositioning tech-

nique can replace the grouping as a postprocessing technique.

We believe that the repositioning technique, being orthogonal

to many of the existing approaches to postprocess alarms, can be

applied in conjunction with those approaches.

REFERENCES
[1] [n. d.]. Polyspace Code Prover. http://in.mathworks.com/products/

polyspace-code-prover/. [Online: accessed 30-Jan-2017].

[2] Frances E. Allen. 1970. Control Flow Analysis. In Symposium on Compiler Opti-
mization. ACM, New York, NY, USA, 1–19. https://doi.org/10.1145/800028.808479

[3] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs Fixit. In

International Symposium on Software Testing and Analysis. ACM, New York, NY,

USA, 241–252. https://doi.org/10.1145/1831708.1831738

[4] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian

Zhou. 2007. Evaluating Static Analysis Defect Warnings on Production Software.

In Workshop on Program Analysis for Software Tools and Engineering. ACM, New

York, NY, USA, 1–8. https://doi.org/10.1145/1251535.1251536

[5] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.

Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source

Software. In International Conference on Software Analysis, Evolution, and Reengi-
neering, Vol. 1. 470–481. https://doi.org/10.1109/SANER.2016.105

http://in.mathworks.com/products/polyspace-code-prover/
http://in.mathworks.com/products/polyspace-code-prover/
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1109/SANER.2016.105

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tukaram Muske, Rohith Talluri, and Alexander Serebrenik

[6] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few

Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.

Commun. ACM 53, 2 (2010), 66–75. https://doi.org/10.1145/1646353.1646374

[7] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from

Program Analysis: An Empirical Study. In International Conference on Automated
Software Engineering. ACM, New York, NY, USA, 332–343. https://doi.org/10.

1145/2970276.2970347

[8] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013.

Automatic Inference of Necessary Preconditions. Springer Berlin Heidelberg, Berlin,
Heidelberg, 128–148.

[9] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,

and Boris Yakobowski. 2012. Frama-c. In International Conference on Software
Engineering and Formal Methods. Springer, 233–247.

[10] Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li. 2015. Angelic Verification:
Precise Verification Modulo Unknowns. Springer International Publishing, Cham,

324–342.

[11] Vinicius Rafael Lobo deMendonca, Cassio Leonardo Rodrigues, Fabrízzio Alphon-

sus A de M. N. Soares, and Auri Marcelo Rizzo Vincenzi. 2013. Static analysis

techniques and tools: A systematic mapping study. In International Conference
on Software Engineering Advances.

[12] Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated Error Diagnosis

Using Abductive Inference. In Conference on Programming Language Design and
Implementation. ACM, New York, NY, USA, 181–192. https://doi.org/10.1145/

2254064.2254087

[13] Marcel Gehrke. 2014. Bidirectional Predicate Propagation in Frama-C and its Appli-
cation to Warning Removal. Master’s thesis. Hamburg University of Technology.

[14] Sarah Heckman and Laurie Williams. 2011. A Systematic Literature Review of

Actionable Alert Identification Techniques for Automated Static Code Analysis.

Inf. Softw. Technol. 53, 4 (2011), 363–387. https://doi.org/10.1016/j.infsof.2010.12.

007

[15] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN Not.
39, 12 (2004), 92–106. https://doi.org/10.1145/1052883.1052895

[16] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.

In International Conference on Software Engineering. IEEE Press, Piscataway, NJ,

USA, 672–681.

[17] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. 2009. Data flow analysis:
theory and practice. CRC Press.

[18] Yit Phang Khoo, Jeffrey S. Foster, Michael Hicks, and Vibha Sazawal. 2008. Path

Projection for User-centered Static Analysis Tools. In Workshop on Program
Analysis for Software Tools and Engineering. ACM, New York, NY, USA, 57–63.

https://doi.org/10.1145/1512475.1512488

[19] Lucas Layman, Laurie Williams, and Robert St. Amant. 2007. Toward Reducing

Fault Fix Time: Understanding Developer Behavior for the Design of Automated

Fault Detection Tools. In International Symposium on Empirical Software Engi-
neering and Measurement. 176–185. https://doi.org/10.1109/ESEM.2007.11

[20] Woosuk Lee, Wonchan Lee, and Kwangkeun Yi. 2012. Sound Non-statistical

Clustering of Static Analysis Alarms. In International Conference on Verification,
Model Checking, and Abstract Interpretation. Springer-Verlag, Berlin, Heidelberg,
299–314. https://doi.org/10.1007/978-3-642-27940-9_20

[21] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A User-guided

Approach to Program Analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,

462–473.

[22] Bertrand Meyer. 2002. Design by contract. Prentice Hall.
[23] Tukaram Muske. 2014. Improving Review of Clustered-Code Analysis Warnings.

In International Conference on Software Maintenance and Evolution. IEEE Com-

puter Society, Washington, DC, USA, 569–572. https://doi.org/10.1109/ICSME.

2014.97

[24] Tukaram Muske, Ankit Baid, and Tushar Sanas. 2013. Review efforts reduction

by partitioning of static analysis warnings. In International Working Conference
on Source Code Analysis and Manipulation. 106–115. https://doi.org/10.1109/

SCAM.2013.6648191

[25] Tukaram Muske and Uday P. Khedker. 2016. Cause Points Analysis for Effec-

tive Handling of Alarms. In International Symposium on Software Reliability
Engineering. 173–184. https://doi.org/10.1109/ISSRE.2016.45

[26] Tukaram Muske and Alexander Serebrenik. 2016. Survey of approaches for

handling static analysis alarms. In International Working Conference on Source
Code Analysis and Manipulation. 157–166.

[27] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 1999. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[28] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin

Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In International
Conference on Software Engineering. IEEE Press, Piscataway, NJ, USA, 598–608.

[29] YN Srikant and Priti Shankar. 2007. The compiler design handbook: optimizations
and machine code generation. CRC Press.

[30] Arnaud Venet. 2008. A Practical Approach to Formal Software Verification by

Static Analysis. Ada Lett. XXVIII, 1 (2008), 92–95. https://doi.org/10.1145/

1387830.1387836

[31] Dalin Zhang, Dahai Jin, Yunzhan Gong, and Hailong Zhang. 2013. Diagnosis-

Oriented Alarm Correlations. In Asia-Pacific Software Engineering Conference,
Vol. 1. 172–179. https://doi.org/10.1109/APSEC.2013.33

[32] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P.

Hudepohl, and Mladen A. Vouk. 2006. On the Value of Static Analysis for

Fault Detection in Software. IEEE Trans. Softw. Eng. 32, 4 (2006), 240–253.

https://doi.org/10.1109/TSE.2006.38

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/1512475.1512488
https://doi.org/10.1109/ESEM.2007.11
https://doi.org/10.1007/978-3-642-27940-9_20
https://doi.org/10.1109/ICSME.2014.97
https://doi.org/10.1109/ICSME.2014.97
https://doi.org/10.1109/SCAM.2013.6648191
https://doi.org/10.1109/SCAM.2013.6648191
https://doi.org/10.1109/ISSRE.2016.45
https://doi.org/10.1145/1387830.1387836
https://doi.org/10.1145/1387830.1387836
https://doi.org/10.1109/APSEC.2013.33
https://doi.org/10.1109/TSE.2006.38

	Abstract
	1 Introduction
	2 Informal Discussion
	3 Technique Overview
	3.1 Background: Control Flow Graph
	3.2 Definitions
	3.3 Repositioning Technique

	4 Intermediate Repositioning
	4.1 Anticipable Alarm Conditions Analysis
	4.2 Intermediate Repositioning of Alarms

	5 Refinement of Intermediate Repositioning
	5.1 Computing Final Repositioning
	5.2 Available Alarm Conditions Analysis
	5.3 Computing Traceability Links
	5.4 Final Repositioning Algorithm

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Evaluation Results
	6.3 Results Discussion and Future Work

	7 Related Work
	8 Conclusion
	References

