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ABSTRACT

Over the past years, there has been an increase in the application
of model driven engineering in industry. Similar to traditional soft-
ware engineering, understanding how technologies are actually
used in practice is essential for developing good tooling, and de-
cision making processes. Unfortunately, obtaining and analyzing
empirical data in a model-driven context is still tedious and time
consuming, introducing large lead-times. In this paper we present
a framework for the automated extraction, analysis, and visualiza-
tion of data and metrics on model-driven artifacts. We subsequently
present various examples of how the framework was successfully
applied in a large industrial setting to answer a plethora of different
questions with respect to decision making and tool development.
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1 INTRODUCTION

Model-Driven Engineering (MDE) promises to increase produc-
tivity and quality in software development [21]. These promises
are a reason for adoption of MDE in various industries such as
automotive [17], lithography [31], and health-care [32].

However, MDE also has downsides: besides the heavily researched
topic of maintenance in MDE [10, 11, 16, 20, 29], Hutchinson et
al. [18] have performed an empirical study showing that there are
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several factors hampering adoption of MDE in industry. The au-
thors state that “a lack of knowledge of exactly how MDE is used
in industry” gives rise to “a danger that resources may be wasted
and that software tools will fail to develop appropriately” [18].

Consider for instance the object constraint language (OCL) [34],
the OMG [3] standard for defining constraints on objects. The OCL
is a rich and expressive language. As such, developing tooling that
supports OCL entails a significant effort. Indeed such claims are
supported by the study of Hutchinson et al. [18]: “43% [of respon-
dents] think that MDE tools are too expensive (24% disagree)”.
Thus, in order to reduce the development cost of tools, and increase
their chance at adoption, tools have to be tailored to practical ap-
plications. To effectuate this for OCL, in previous work, we have
empirically studied the practical usage of OCL on GitHub [27]. This
study suggests that only 10 OCL constructs make up 97.8% of OCL
expressions in practice. Such results are invaluable when construct-
ing tooling, as tool implementations can be limited to practically
occurring constructs. Furthermore, analytical tractability can be
tailored towards those cases that occur most frequently in practice.

Unfortunately, obtaining the empirical data necessary for such
empirical studies is often tedious. In this paper we present the EMF
(Meta)Model Analysis (EMMA) tool, an analysis framework that
allows users to: (1) easily gather MDE-related artifacts from version
control systems; (2) preprocess the data using extensive querying
and filtering options; (3) easily add new metrics to existing analyses
tools already in EMMA; (4) customize data selection, filtering, and
aggregation using SQL, and (5) automatically visualize analyses out-
puts using the integrated dashboard. Integrating all aforementioned
features, EMMA greatly increases the lead-time on obtaining in-
sights in MDE-related artifacts. The obtained insights subsequently
allows for faster and better decision making.

The remainder of this paper is structured as follows: In Section 2
we describe EMMA and its components. In Section 3 we report on
industrial case studies, and discuss them in Section 4. Finally, we
present future work in Sections 5 and conclude in Section 6.

2 EMMA

The EMF (Meta)Model Analysis Tool (EMMA), consists of several
components which provide operations on various sources of data.
The general process flow of EMMA is illustrated in Figure 1: EMMA
starts with extracting MDE-related files of interest (VCS miner)
and storing them in the local intermediate data structure. Then
EMMA performs several analyses such as computation of metrics
and differences between models, and stores the results in the data-
base. Finally, EMMA includes the data explorer allowing the user
to visualize and inspect their data.
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Figure 1: An overview of the EMMA work flow. EMMA’s
main components have been highlighted in blue.
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Figure 2: File structure that is used for persisting mined files
onto disk. This structure allows reconstruction of “snap-
shots” of the repository at particular points in time. [27]

2.1 VCS Miner

The VCS Miner component of EMMA systematically mines files
defined to be of interests from version-control system (VCS) repos-
itories. For example, in case of OCL, one could mine all files ending
in .ocl and .ecore (cf. [15, 27]). The mined files are then persisted
locally, using the intermediate data structure.

2.2 Intermediate Data Structure

The files obtained are persisted onto disk as illustrated in Figure 2.

On top of the file structure, EMMA offers an API for interacting
with this file-structure programatically (e.g., query and filter). This
APl is defined by means of a metamodel, as illustrated in Figure 3.
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Figure 3: The intermediate datastructure metamodel.

The core concept is, as the name suggests, the Dataset. A Dataset
consists of various Files, which have consecutive versions over
time (called Revisions of that file). Each Revision corresponds to
a file on the disk, obtained using the VCS miner.

Various file-types are supported, for brevity here, only meta-
model (i.e,, Ecore [1]) and transformation (e.g., QVTo [4, 12]) are
presented. Other file-types include models and constraints (e.g.,
OCL). Furthermore, as a convenience, the Snapshot gathers all
Revisions that exist at a particular point in the Snapshot.allFiles
relation. In essence, every commit in the VCS corresponds to a
Snapshot. The Revisions that were actually modified in that com-
mit are also present in the Snapshot.modifiedFiles relation.

2.3 Analysis

After preprocessing, the user can analyze their data. At present
EMMA supports two types of analyses: Metrics (Section 2.3.1) and
Differencing (Section 2.3.2).

2.3.1 Metrics. The first analysis EMMA is able to perform is
metrics calculation. In addition to the default metrics defined in
EMMA, a user can introduce custom metrics. A user is required to
specify for what object type their metric is defined (e.g., Graph,
Node) as well as how the metric is calculated on that object type
(e.g., graph.nodes.size). An example of two such specifications,
vertex out degree and number of nodes in the graph, is presented
in Listing 1. Such “custom metrics” are similar to features offered
in many well-known software analyses/visualization frameworks
such as Moose/Roassal [5], or M3 [7].

EMMA iterates over every object in every artifact of the dataset
and calculates the defined metrics on objects of the defined types.
An example fragment of data yielded by the metrics component
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Listing 1: An example of metrics on a graph DSL

@Metric (name="outdegree ")
public int outgoing(Vertex v) {
return v.edges;

@Metric (name="numNodes ")
public int outgoing (Graph g) {
return g.nodes.size ();

}

Table 1: An example of metrics computed by EMMA
File_id | Object_id | Type | outDegree | inDegree | numNodes
1 1 Node | 10 10
2 2 Node | 10 5
3 3 Graph 15

Table 2: An example of differences computed by EMMA
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of EMMA can be found in Table 1. All mined data is subsequently
persisted into an SQL-database for further analyses.

2.3.2 Differences. In order to analyze changes over time, we
have incorporated EMFCompare [2] in EMMA. EMFCompare al-
lows for a meta-model independent way of computing differences
between artifacts. For instance, in Table 2 we show a few example
differences computed by EMFCompare [2, 25].

2.3.3 Database. All results of the analyses performed (e.g., ta-
bles in Sections 2.3.1 and 2.3.2) are persisted in a database. This
provides power users with with data selection, filtering, and group-
ing. However, for the most common tasks, EMMA provides a user-
friendly data explorer and visualizer, as described in Section 2.4.

2.4 Data Explorer

Visualizing metrics and other data on a dashboard is common prac-
tice in many classical software-engineering metrics packages such
as Grimoire [14], SECONDA [28] and dashboards as offered by Biter-
gia. Also in MDE, visualization dashboards are being constructed,
such as the one for metamodel clustering on MDEForge [6].
EMMA also includes a web-frontend that allows users to explore
and visualize their data. The primary data-processing is performed
using pivot tables [19]. This allows users to filter, group, and aggre-
gate their data. The resulting data can then be visualized using e.g.,
bar charts and scatter plots. Examples of visualizations produced
using EMMA can be found in Figures 4 and 5. Figure 4 shows the
evolution of the number of different elements, such as the number
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Figure 5: Frequency of language constructs used in a model-
to-model transformation at a single point in time.

of classes per package and the number of references per class, of
a DSL called PGWB. Figure 5 shows the frequency of language
constructs used in a model-to-model transformation.

3 INDUSTRIAL APPLICATIONS

Our research takes place at ASML, provider of lithography equip-
ment for the semiconductor industry. At ASML, MDE is used to al-
low engineers to model systems in terms of their domains. Such “de-
sign models” can subsequently be transformed to dedicated analysis
formalisms using model-to-model transformations. An example of
such application is the CARM [31] ecosystem of DSLs. The CARM
ecosystem consists of twenty-two DSLs and a hundred model-to-
model transformations with a revision history of over six years.



Gothenburg’17, October 2017, Gothenburg, Sweden

di_ e de LR LR

ALTSL el

Fieision nr.

Figure 6: Size and structure of CARM [31] DSLs over time,
some plots taken from previous works [23, 33].

We have deployed EMMA at ASML, and used it to facilitate
various studies. These studies have all contributed to gaining in-
sights, tailoring of tools, or improving decision-making processes.
Throughout this section we briefly describe a number of these stud-
ies, explain how EMMA contributed in the analyses, and highlight
the conclusions drawn.

3.1 Lehman’s Laws

The first question we discuss, relates to the evolution of DSLs. In tra-
ditional software engineering, there are the well-known “Lehman’s
Laws of Evolution” [8, 13, 22]. In particular, the law of increasing
complexity states that “as an E-type system evolves, its complexity
increases unless work is done to maintain or reduce it.”.

At ASML, the question arose whether evolution of their DSLs
adheres to the law of increasing complexity. There, using EMMA
we performed a case study on the CARM ecosystem [31].

We defined metrics to calculate the number of occurrences of
each datatype in DSL definitions, e.g., “number of classes per pack-
age”, “number of attributes per class”. By plotting these metrics, as
illustrated in Figure 6, we observe increasing trends in various DSLs,
and indeed find that there are specific moments in which DSLs are
refactored to reduce complexity and increase maintainability.

Using this knowledge, we show that Lehman’s law of increasing
complexity holds for the DSLs at ASML, and that DSL maintenance
is a topic that should not be taken lightly. As a result, more research
into DSL evolution has been commissioned by ASML. Some of the
research results obtained are detailed in the coming sections.

3.2 Nature of Metamodel Evolution

To support MDE at ASML, research is being conducted into the
automated co-evolution of metamodels and models. In order to
gain insight into how metamodels actually evolve, the differencing
module of EMMA was used to gain insight into the most frequently
occurring kinds of changes. We performed an exploratory case
study [30] on the CARM ecosystem of DSLs [31].

In CARM, we compared subsequent versions of every DSL in
the main branch of the git repository. We chose to only study the
main branch, as subsequent versions resemble finished products.
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The results of our case study [25], were that only 70 of 176 possi-
ble types of evolution actually occurred in practice. This knowledge
allowed us to effectively upgrade existing tooling in order to auto-
mate model co-evolution [33].

3.3 OCL Usage

The DSLs employed at ASML are highly complex and, as such, meta-
models alone are not sufficiently expressive to accurately model the
language. To address this limitation ASML uses OCL. We study the
differences in complexity between industrial and open-source OCL
code. Indeed, if open source OCL code and industrial OCL code
are not that different, then open source OCL code can be used as a
proxy for industrial OCL code enabling further studies and further
tools. Conclusions of those studies can be then transferred to and
the tools can be applied to the industrial OCL code.

For this purpose, we use the large-scale dataset of open source
files containing OCL obtained and studied in previous work [27].
For the industrial OCL code, we used EMMA to create a similar
dataset of industrial files containing OCL, derived from CARM [31].

Subsequently, the Metrics module in EMMA was used to compute
complexity metrics [26] on both datasets. Using the data-explorer,
insights into the differences were gained, as illustrated in Figure 7.
Using the provided boxplots and appropriate statistical hypothesis
testing, we concluded that while industrial OCL code appears to
be less complex than open-source OCL code, this difference is not
statistically significant, suggesting that the open source OCL code
and the industrial OCL code are not that different [24].

4 DISCUSSION

In Section 3 we reported on a series of industrial studies conducted
using EMMA. Preliminary conclusion of these studies is that the
results obtained with EMMA are encouraging: ASML engineers
are using EMMA to gain insight into the MDE artifacts they are
responsible for.

To encourage replication of our studies and further development
of EMMA, we make it publicly available on GitLab!.

5 FUTURE WORK

We envision various directions of future work.

First, we consider extending EMMA to incorporate mining data
from additional data sources. For instance, similar to MetricsGri-
moire [14], we would like to incorporate data from such sources
as bug trackers, code review repositories and mailing lists. Indeed,
these data sources can provide complementary insights in communi-
cation and collaboration between software engineers creating DSL

1gitlab.com:PHD-MDCE/MetricsMiner, gitlab.com:PHD-MDCE/EMMA-Frontend
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metamodels, on the one hand, and software engineers in charge of
models and model transformations dependent on those metamodels,
on the other hand.

Next, at present EMMA does not offer support for concrete syn-
tax definitions (e.g., XText [9]). We would like to extend EMMA to
incorporate even more file types, such as concrete and graphical
syntax definitions.

While the results produced by EMMA are already being used by
the ASML engineers, we plan to evaluate usability of EMMA in the
industrial context by means of several user studies. Furthermore,
so far EMMA has only be applied to the open source data and to
commercial data of ASML. Application of EMMA to MDE artifacts
of different companies or from different industries might necessitate
adaptations to EMMA.

6 CONCLUSIONS

In this paper we have presented EMMA, the EMF (Meta)Model
Analysis tool. EMMA is an analysis framework and data exploration
dashboard. EMMA allows industrial users and researchers alike
to gain easy insight into their MDE artifacts, allowing for more
effective and accurate decision making.

Furthermore, we have presented several case studies, in which
we have applied EMMA in a large-scale industrial setting. There,
we have found that EMMA allows us to gain easy insights into
many facets of the MDE artifacts present.
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