Automated Analyses of Model-Driven Artifacts

Obtaining Insights Into Industrial Application of MDE

Josh G. M. Mengerink,

Alexander Serebrenik
Eindhoven University of Technology
Eindhoven, The Netherlands
j.g.m.mengerink,a.serebrenik@tue.nl

ABSTRACT

Over the past years, there has been an increase in the application
of model driven engineering in industry. Similar to traditional soft-
ware engineering, understanding how technologies are actually
used in practice is essential for developing good tooling, and de-
cision making processes. Unfortunately, obtaining and analyzing
empirical data in a model-driven context is still tedious and time
consuming, introducing large lead-times. In this paper we present
a framework for the automated extraction, analysis, and visualiza-
tion of data and metrics on model-driven artifacts. We subsequently
present various examples of how the framework was successfully
applied in a large industrial setting to answer a plethora of different
questions with respect to decision making and tool development.

CCS CONCEPTS

- Software and its engineering — Model-driven software en-
gineering; Software evolution; Maintaining software;

KEYWORDS

Model Driven Engineering, Mining Software Repositories, Model
Comparison, Metrics, Software Evolution

ACM Reference format:

Josh G. M. Mengerink, Alexander Serebrenik, Ramon R. H. Schiffelers,
and Mark G. J. van den Brand. 2017. Automated Analyses of Model-Driven
Artifacts. In Proceedings of IWSM Mensura, Gothenburg, Sweden, October
2017 (Gothenburg’17), 5 pages.

https://doi.org/10.475/123_4

1 INTRODUCTION

Model-Driven Engineering (MDE) promises to increase produc-
tivity and quality in software development [21]. These promises
are a reason for adoption of MDE in various industries such as
automotive [17], lithography [31], and health-care [32].

However, MDE also has downsides: besides the heavily researched
topic of maintenance in MDE [10, 11, 16, 20, 29], Hutchinson et
al. [18] have performed an empirical study showing that there are

*Also with Eindhoven University of Technology.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Gothenburg’17, October 2017, Gothenburg, Sweden

© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06...$15.00

https://doi.org/10.475/123_4

Ramon R. H. Schiffelers*
ASML
Veldhoven, The Netherlands
ramon.schiffelers@asml.com

Mark G. J. van den Brand
Eindhoven University of Technology
Eindhoven, The Netherlands
m.g.j.v.d.brand@tue.nl

several factors hampering adoption of MDE in industry. The au-
thors state that “a lack of knowledge of exactly how MDE is used
in industry” gives rise to “a danger that resources may be wasted
and that software tools will fail to develop appropriately” [18].

Consider for instance the object constraint language (OCL) [34],
the OMG [3] standard for defining constraints on objects. The OCL
is a rich and expressive language. As such, developing tooling that
supports OCL entails a significant effort. Indeed such claims are
supported by the study of Hutchinson et al. [18]: “43% [of respon-
dents] think that MDE tools are too expensive (24% disagree)”.
Thus, in order to reduce the development cost of tools, and increase
their chance at adoption, tools have to be tailored to practical ap-
plications. To effectuate this for OCL, in previous work, we have
empirically studied the practical usage of OCL on GitHub [27]. This
study suggests that only 10 OCL constructs make up 97.8% of OCL
expressions in practice. Such results are invaluable when construct-
ing tooling, as tool implementations can be limited to practically
occurring constructs. Furthermore, analytical tractability can be
tailored towards those cases that occur most frequently in practice.

Unfortunately, obtaining the empirical data necessary for such
empirical studies is often tedious. In this paper we present the EMF
(Meta)Model Analysis (EMMA) tool, an analysis framework that
allows users to: (1) easily gather MDE-related artifacts from version
control systems; (2) preprocess the data using extensive querying
and filtering options; (3) easily add new metrics to existing analyses
tools already in EMMA; (4) customize data selection, filtering, and
aggregation using SQL, and (5) automatically visualize analyses out-
puts using the integrated dashboard. Integrating all aforementioned
features, EMMA greatly increases the lead-time on obtaining in-
sights in MDE-related artifacts. The obtained insights subsequently
allows for faster and better decision making.

The remainder of this paper is structured as follows: In Section 2
we describe EMMA and its components. In Section 3 we report on
industrial case studies, and discuss them in Section 4. Finally, we
present future work in Sections 5 and conclude in Section 6.

2 EMMA

The EMF (Meta)Model Analysis Tool (EMMA), consists of several
components which provide operations on various sources of data.
The general process flow of EMMA is illustrated in Figure 1: EMMA
starts with extracting MDE-related files of interest (VCS miner)
and storing them in the local intermediate data structure. Then
EMMA performs several analyses such as computation of metrics
and differences between models, and stores the results in the data-
base. Finally, EMMA includes the data explorer allowing the user
to visualize and inspect their data.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Gothenburg’17, October 2017, Gothenburg, Sweden

ves »git Analyses
v ,
ves mﬁiner Database |

{3

Lo o

Dataset

Custom h
Metrics K€h2

* &
\O'be
\%
Pre-process fe_Gd_lga_Ck_ _ _Dashboard /|\7||
O T il

Figure 1: An overview of the EMMA work flow. EMMA’s
main components have been highlighted in blue.

Dataset

examplel.ecore

_timestamp1.ecore
_ timestamp2.ecore
_ timestamp3.ecore

=P | example2.ocl

timestamp1.ocl
timestamp2.deleted

Figure 2: File structure that is used for persisting mined files
onto disk. This structure allows reconstruction of “snap-
shots” of the repository at particular points in time. [27]

2.1 VCS Miner

The VCS Miner component of EMMA systematically mines files
defined to be of interests from version-control system (VCS) repos-
itories. For example, in case of OCL, one could mine all files ending
in .ocl and .ecore (cf. [15, 27]). The mined files are then persisted
locally, using the intermediate data structure.

2.2 Intermediate Data Structure

The files obtained are persisted onto disk as illustrated in Figure 2.

On top of the file structure, EMMA offers an API for interacting
with this file-structure programatically (e.g., query and filter). This
APl is defined by means of a metamodel, as illustrated in Figure 3.

J.G.M. Mengerink et al.

prev, next
0.1
Dataset snapshots Snapshot
name : String | timestamp : int
0.*
1@
8
@
]
>
3
o
2
=
@ L
= i T
1.8 1719 1.7|%
4

abstractFile | revisionOf revisions [_abstract Revision -
name : String |« prev, next

1.1 1.7

Transformation TransformationRevision

MetaModel

0.*

“sidino
— sindul

Y
MetaModelRevision
namespace : String

Figure 3: The intermediate datastructure metamodel.

The core concept is, as the name suggests, the Dataset. A Dataset
consists of various Files, which have consecutive versions over
time (called Revisions of that file). Each Revision corresponds to
a file on the disk, obtained using the VCS miner.

Various file-types are supported, for brevity here, only meta-
model (i.e,, Ecore [1]) and transformation (e.g., QVTo [4, 12]) are
presented. Other file-types include models and constraints (e.g.,
OCL). Furthermore, as a convenience, the Snapshot gathers all
Revisions that exist at a particular point in the Snapshot.allFiles
relation. In essence, every commit in the VCS corresponds to a
Snapshot. The Revisions that were actually modified in that com-
mit are also present in the Snapshot.modifiedFiles relation.

2.3 Analysis

After preprocessing, the user can analyze their data. At present
EMMA supports two types of analyses: Metrics (Section 2.3.1) and
Differencing (Section 2.3.2).

2.3.1 Metrics. The first analysis EMMA is able to perform is
metrics calculation. In addition to the default metrics defined in
EMMA, a user can introduce custom metrics. A user is required to
specify for what object type their metric is defined (e.g., Graph,
Node) as well as how the metric is calculated on that object type
(e.g., graph.nodes.size). An example of two such specifications,
vertex out degree and number of nodes in the graph, is presented
in Listing 1. Such “custom metrics” are similar to features offered
in many well-known software analyses/visualization frameworks
such as Moose/Roassal [5], or M3 [7].

EMMA iterates over every object in every artifact of the dataset
and calculates the defined metrics on objects of the defined types.
An example fragment of data yielded by the metrics component

Automated Analyses of Model-Driven Artifacts

Listing 1: An example of metrics on a graph DSL

@Metric (name="outdegree ")
public int outgoing(Vertex v) {
return v.edges;

@Metric (name="numNodes ")
public int outgoing (Graph g) {
return g.nodes.size ();

}

Table 1: An example of metrics computed by EMMA
File_id | Object_id | Type | outDegree | inDegree | numNodes
1 1 Node | 10 10
2 2 Node | 10 5
3 3 Graph 15

Table 2: An example of differences computed by EMMA

Gothenburg’17, October 2017, Gothenburg, Sweden

Files

Datasets / realistic / pgwb.ecore

pgwb.ecore

Save Load Refresh adv| | off

Area Chart 8§ | revisin~ object id~ value~

[Configurations

Sum

Sum(value) vs date by metric

EMMA 1.0 is designed for use in chrome. Although other browsers may work, they are not supported.

Figure 4: Evolution of size and structure of a metamodel.

o Gount 3| aate - |

= e Gount vs date by ObijectType

Change ParentType | Feature | ValueType Value
ADD AndExp right BooleanLiteralExp | TRUE
CHANGE | AndExp left BooleanLiteralExp | FALSE

of EMMA can be found in Table 1. All mined data is subsequently
persisted into an SQL-database for further analyses.

2.3.2 Differences. In order to analyze changes over time, we
have incorporated EMFCompare [2] in EMMA. EMFCompare al-
lows for a meta-model independent way of computing differences
between artifacts. For instance, in Table 2 we show a few example
differences computed by EMFCompare [2, 25].

2.3.3 Database. All results of the analyses performed (e.g., ta-
bles in Sections 2.3.1 and 2.3.2) are persisted in a database. This
provides power users with with data selection, filtering, and group-
ing. However, for the most common tasks, EMMA provides a user-
friendly data explorer and visualizer, as described in Section 2.4.

2.4 Data Explorer

Visualizing metrics and other data on a dashboard is common prac-
tice in many classical software-engineering metrics packages such
as Grimoire [14], SECONDA [28] and dashboards as offered by Biter-
gia. Also in MDE, visualization dashboards are being constructed,
such as the one for metamodel clustering on MDEForge [6].
EMMA also includes a web-frontend that allows users to explore
and visualize their data. The primary data-processing is performed
using pivot tables [19]. This allows users to filter, group, and aggre-
gate their data. The resulting data can then be visualized using e.g.,
bar charts and scatter plots. Examples of visualizations produced
using EMMA can be found in Figures 4 and 5. Figure 4 shows the
evolution of the number of different elements, such as the number

NameAttouteName
object id -
numDataTypesPerPackage -

objectType ~

IR T !

Figure 5: Frequency of language constructs used in a model-
to-model transformation at a single point in time.

of classes per package and the number of references per class, of
a DSL called PGWB. Figure 5 shows the frequency of language
constructs used in a model-to-model transformation.

3 INDUSTRIAL APPLICATIONS

Our research takes place at ASML, provider of lithography equip-
ment for the semiconductor industry. At ASML, MDE is used to al-
low engineers to model systems in terms of their domains. Such “de-
sign models” can subsequently be transformed to dedicated analysis
formalisms using model-to-model transformations. An example of
such application is the CARM [31] ecosystem of DSLs. The CARM
ecosystem consists of twenty-two DSLs and a hundred model-to-
model transformations with a revision history of over six years.

Gothenburg’17, October 2017, Gothenburg, Sweden

di_ e de LR LR

ALTSL el

Fieision nr.

Figure 6: Size and structure of CARM [31] DSLs over time,
some plots taken from previous works [23, 33].

We have deployed EMMA at ASML, and used it to facilitate
various studies. These studies have all contributed to gaining in-
sights, tailoring of tools, or improving decision-making processes.
Throughout this section we briefly describe a number of these stud-
ies, explain how EMMA contributed in the analyses, and highlight
the conclusions drawn.

3.1 Lehman’s Laws

The first question we discuss, relates to the evolution of DSLs. In tra-
ditional software engineering, there are the well-known “Lehman’s
Laws of Evolution” [8, 13, 22]. In particular, the law of increasing
complexity states that “as an E-type system evolves, its complexity
increases unless work is done to maintain or reduce it.”.

At ASML, the question arose whether evolution of their DSLs
adheres to the law of increasing complexity. There, using EMMA
we performed a case study on the CARM ecosystem [31].

We defined metrics to calculate the number of occurrences of
each datatype in DSL definitions, e.g., “number of classes per pack-
age”, “number of attributes per class”. By plotting these metrics, as
illustrated in Figure 6, we observe increasing trends in various DSLs,
and indeed find that there are specific moments in which DSLs are
refactored to reduce complexity and increase maintainability.

Using this knowledge, we show that Lehman’s law of increasing
complexity holds for the DSLs at ASML, and that DSL maintenance
is a topic that should not be taken lightly. As a result, more research
into DSL evolution has been commissioned by ASML. Some of the
research results obtained are detailed in the coming sections.

3.2 Nature of Metamodel Evolution

To support MDE at ASML, research is being conducted into the
automated co-evolution of metamodels and models. In order to
gain insight into how metamodels actually evolve, the differencing
module of EMMA was used to gain insight into the most frequently
occurring kinds of changes. We performed an exploratory case
study [30] on the CARM ecosystem of DSLs [31].

In CARM, we compared subsequent versions of every DSL in
the main branch of the git repository. We chose to only study the
main branch, as subsequent versions resemble finished products.

J.G.M. Mengerink et al.

industrial meta-models —_—

open-source meta-models | | }——— @ @000 000

o 5 10 15 20 25 30 35
Complexity of OCL Expressions

Source of the OCL Expressions

Figure 7: Boxplot of complexity for open-source and indus-
trial metamodels, taken from [26]

The results of our case study [25], were that only 70 of 176 possi-
ble types of evolution actually occurred in practice. This knowledge
allowed us to effectively upgrade existing tooling in order to auto-
mate model co-evolution [33].

3.3 OCL Usage

The DSLs employed at ASML are highly complex and, as such, meta-
models alone are not sufficiently expressive to accurately model the
language. To address this limitation ASML uses OCL. We study the
differences in complexity between industrial and open-source OCL
code. Indeed, if open source OCL code and industrial OCL code
are not that different, then open source OCL code can be used as a
proxy for industrial OCL code enabling further studies and further
tools. Conclusions of those studies can be then transferred to and
the tools can be applied to the industrial OCL code.

For this purpose, we use the large-scale dataset of open source
files containing OCL obtained and studied in previous work [27].
For the industrial OCL code, we used EMMA to create a similar
dataset of industrial files containing OCL, derived from CARM [31].

Subsequently, the Metrics module in EMMA was used to compute
complexity metrics [26] on both datasets. Using the data-explorer,
insights into the differences were gained, as illustrated in Figure 7.
Using the provided boxplots and appropriate statistical hypothesis
testing, we concluded that while industrial OCL code appears to
be less complex than open-source OCL code, this difference is not
statistically significant, suggesting that the open source OCL code
and the industrial OCL code are not that different [24].

4 DISCUSSION

In Section 3 we reported on a series of industrial studies conducted
using EMMA. Preliminary conclusion of these studies is that the
results obtained with EMMA are encouraging: ASML engineers
are using EMMA to gain insight into the MDE artifacts they are
responsible for.

To encourage replication of our studies and further development
of EMMA, we make it publicly available on GitLab!.

5 FUTURE WORK

We envision various directions of future work.

First, we consider extending EMMA to incorporate mining data
from additional data sources. For instance, similar to MetricsGri-
moire [14], we would like to incorporate data from such sources
as bug trackers, code review repositories and mailing lists. Indeed,
these data sources can provide complementary insights in communi-
cation and collaboration between software engineers creating DSL

1gitlab.com:PHD-MDCE/MetricsMiner, gitlab.com:PHD-MDCE/EMMA-Frontend

Automated Analyses of Model-Driven Artifacts

metamodels, on the one hand, and software engineers in charge of
models and model transformations dependent on those metamodels,
on the other hand.

Next, at present EMMA does not offer support for concrete syn-
tax definitions (e.g., XText [9]). We would like to extend EMMA to
incorporate even more file types, such as concrete and graphical
syntax definitions.

While the results produced by EMMA are already being used by
the ASML engineers, we plan to evaluate usability of EMMA in the
industrial context by means of several user studies. Furthermore,
so far EMMA has only be applied to the open source data and to
commercial data of ASML. Application of EMMA to MDE artifacts
of different companies or from different industries might necessitate
adaptations to EMMA.

6 CONCLUSIONS

In this paper we have presented EMMA, the EMF (Meta)Model
Analysis tool. EMMA is an analysis framework and data exploration
dashboard. EMMA allows industrial users and researchers alike
to gain easy insight into their MDE artifacts, allowing for more
effective and accurate decision making.

Furthermore, we have presented several case studies, in which
we have applied EMMA in a large-scale industrial setting. There,
we have found that EMMA allows us to gain easy insights into
many facets of the MDE artifacts present.

REFERENCES

[1] Ecore. lhttp://www.eclipse.org/modeling/emf/. (?2??). Accessed: 2016-7-20.

[2] 2015. EMF Compare. https://www.eclipse.org/emf/compare/. (2015). Accessed:
2015-04-07.

[3] 2015. OMG. http://www.omg.org. (2015). Accessed: 2017-07-03.

[4] 2015. QVTo. http://www.eclipse.org/mmt/?project=qvto. (2015). Accessed:
2015-04-07.

[5] Vanessa Pena Araya, Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and
Jannik Laval. 2013. Agile visualization with Roassal. Deep Into Pharo (2013),
209-239.

[6] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico
Tovino, and Alfonso Pierantonio. 2014. MDEForge: an Extensible Web-Based Mod-
eling Platform. In Proceedings of the 2nd International Workshop on Model-Driven
Engineering on and for the Cloud co-located with the 17th International Conference
on Model Driven Engineering Languages and Systems, CloudMDE@MoDELS 2014,
Valencia, Spain, September 30, 2014. (CEUR Workshop Proceedings), Richard F.
Paige, Jordi Cabot, Marco Brambilla, Louis M. Rose, and James H. Hill (Eds.),
Vol. 1242. CEUR-WS.org, 66-75. http://ceur-ws.org/Vol-1242/paper10.pdf

[7] Bas Basten, Mark Hills, Paul Klint, Davy Landman, Ashim Shahi, Michael J
Steindorfer, and Jurgen J Vinju. 2015. M3: A general model for code analytics in
Rascal. In Software Analytics (SWAN), 2015 IEEE 1st International Workshop on.
IEEE, 25-28.

[8] John Businge, Alexander Serebrenik, and Mark G. J. van den Brand. 2010. An

empirical study of the evolution of Eclipse third-party plug-ins. In IWPSE-EVOL,

Andrea Capiluppi, Anthony Cleve, and Naouel Moha (Eds.). ACM, 63-72.

Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement Your Language

Faster Than the Quick and Dirty Way. In Proceedings of the ACM International

Conference Companion on Object Oriented Programming Systems Languages and

Applications Companion (OOPSLA °10). ACM, New York, NY, USA, 307-309. https:

//doi.org/10.1145/1869542.1869625

[10] Moritz Eysholdt, Séren Frey, and Wilhelm Hasselbring. 2009. EMF Ecore Based

Meta Model Evolution and Model Co-Evolution. Softwaretechnik-Trends 29, 2
(2009). http://pi.informatik.uni-siegen.de/stt/29_2/01_Fachgruppenberichte/SRE/
09-frey.pdf

[11] Jokin Garcia, Oscar Diaz, and Maider Azanza. 2013. Model Transformation

Co-evolution: A Semi-automatic Approach. In SLE. LNCS, Vol. 7745. Springer,

144-163.

Christine M. Gerpheide, Ramon R. H. Schiffelers, and Alexander Serebrenik. 2016.

Assessing and improving quality of QVTo model transformations. Software

[9

[

[12

Gothenburg’17, October 2017, Gothenburg, Sweden

Quality Journal 24, 3 (2016), 797-834. https://doi.org/10.1007/s11219-015-9280-8

[13] Michael W. Godfrey and Daniel M. German. 2014. On the evolution of Lehman’s
Laws. Journal of Software: Evolution and Process 26, 7 (2014), 613-619. https:
//doi.org/10.1002/smr.1636

[14] Jests M. Gonzalez-Barahona, Gregorio Robles, and Daniel Izquierdo-Cortazar.

2015. The MetricsGrimoire Database Collection. In 12th IEEE/ACM Working

Conference on Mining Software Repositories, MSR 2015, Florence, Italy, May 16-17,

2015, Massimiliano Di Penta, Martin Pinzger, and Romain Robbes (Eds.). IEEE

Computer Society, 478-481. https://doi.org/10.1109/MSR.2015.68

Regina Hebig, Truong Ho-Quang, Michel R. V. Chaudron, Gregorio Robles, and

Miguel Angel Fernandez. 2016. The quest for open source projects that use UML:

mining GitHub. In Proceedings of the ACM/IEEE 19th International Conference on

Model Driven Engineering Languages and Systems, Saint-Malo, France, October

2-7, 2016, Benoit Baudry and Benoit Combemale (Eds.). ACM, 173-183. https:

//doi.org/10.1145/2976767

[16] R.Hebig, D. E. Khelladi, and R. Bendraou. 2017. Approaches to Co-Evolution of
Metamodels and Models: A Survey. IEEE Transactions on Software Engineering
43, 5 (May 2017), 396-414.

[17] Markus Herrmannsdérfer, Sebastian Benz, and Elmar Juergens. 2008. Automata-
bility of Coupled Evolution of Metamodels and Models in Practice. In MoDELS.
Springer, 645-659.

[18] John Edward Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristof-

fersen. 2011. Empirical assessment of MDE in industry. In ICSE. 471-480.

Bill Jelen and Michael Alexander. 2006. Pivot Table Data Crunching for Microsoft(R)

Office Excel(R) 2007 (Business Solutions). Que Corp., Indianapolis, IN, USA.

[20] Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin, and Marie-
Pierre Gervais. 2016. Metamodel and Constraints Co-evolution: A Semi Automatic
Maintenance of OCL Constraints. Springer, 333-349.

[21] Anneke G Kleppe, Jos B Warmer, and Wim Bast. 2003. MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Professional.

[22] M. M. Lehman. 1984. On Understanding Laws, Evolution, and Conservation
in the Large-program Life Cycle. J. Syst. Softw. 1 (Sept. 1984), 213-221. https:
//doi.org/10.1016/0164-1212(79)90022-0

[23] Josh Mengerink, Ramon RH Schiffelers, Alexander Serebrenik, and Mark van den
Brand. 2016. DSL/Model Co-Evolution in Industrial EMF-Based MDSE Ecosys-
tems.. In ME@ MODELS. 2-7.

[24] Josh G. M. Mengerink, Jeroen Noten, Ramon R. H. Schiffelers, Mark G. J. van den
Brand, and Alexander Serebrenik. 2017. A Case of Industrial vs. Open-Source
OCL: Not So Different After All. In 20th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems.

[25] J. G. M. Mengerink, Alexander Serebrenik, Ramon R. H. Schiffelers, and M. G. J.
van den Brand. 2016. A Complete Operator Library for DSL Evolution Specifica-
tion. In 2016 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. IEEE Computer Society, 144-154.
https://doi.org/10.1109/ICSME.2016.32

[26] Jeroen Noten. 2017. Usage Analysis of the Object Constraint Language in Model
Driven Engineering. Master’s thesis. Eindhoven University of Technology, the
Netherlands.

[27] Jeroen Noten, Josh G. M. Mengerink, and Alexander Serebrenik. 2017. A Data Set
of OCL Expressions on GitHub. In 14th Working Conference on Mining Software
Repositories.

[28] Javier Pérez, Romuald Deshayes, Mathieu Goeminne, and Tom Mens. 2012. SEC-
ONDA: Software Ecosystem Analysis Dashboard. In 16th European Conference
on Software Maintenance and Reengineering, CSMR 2012, Szeged, Hungary, March
27-30, 2012, Tom Mens, Anthony Cleve, and Rudolf Ferenc (Eds.). [EEE Computer
Society, 527-530. https://doi.org/10.1109/CSMR.2012.69

[29] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack.
2009. An analysis of approaches to model migration. In MoDSE-MCCM. 6-15.

[30] Per Runeson and Martin Host. 2008. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2 (2008), 131.

[31] Ramon R. H. Schiffelers, Wilbert Alberts, and J. P. M. Voeten. 2012. Model-based

Specification, Analysis and Synthesis of Servo Controllers for Lithoscanners. In

6th International Workshop on Multi-Paradigm Modeling. ACM, 55-60.

Pieter Van Gorp, Irene Vanderfeesten, Willem Dalinghaus, Josh Mengerink, Bram

van der Sanden, and Pieter Kubben. 2012. Towards generic MDE support for

extracting purpose-specific healthcare models from annotated, unstructured texts.

In International Symposium on Foundations of Health Informatics Engineering and

Systems. Springer Berlin Heidelberg, 213-221.

[33] Y. Vissers, J. G. M. Mengerink, Ramon R. H. Schiffelers, Alexander Serebrenik,
and Michel A. Reniers. 2016. Maintenance of specification models in industry
using Edapt. In 2016 Forum on Specification and Design Languages, FDL 2016,
Bremen, Germany, September 14-16, 2016, Rolf Drechsler and Robert Wille (Eds.).
IEEE, 1-6. https://doi.org/10.1109/FDL.2016.7880374

[34] Jos Warmer and Anneke Kleppe. 2003. The Object Constraint Language: Getting
Your Models Ready for MDA (2 ed.). Addison-Wesley.

[15

=
)

[32

lhttp://www.eclipse.org/modeling/emf/
https://www.eclipse.org/emf/compare/
http://www.omg.org
http://www.eclipse.org/mmt/?project=qvto
http://ceur-ws.org/Vol-1242/paper10.pdf
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
http://pi.informatik.uni-siegen.de/stt/29_2/01_Fachgruppenberichte/SRE/09-frey.pdf
http://pi.informatik.uni-siegen.de/stt/29_2/01_Fachgruppenberichte/SRE/09-frey.pdf
https://doi.org/10.1007/s11219-015-9280-8
https://doi.org/10.1002/smr.1636
https://doi.org/10.1002/smr.1636
https://doi.org/10.1109/MSR.2015.68
https://doi.org/10.1145/2976767
https://doi.org/10.1145/2976767
https://doi.org/10.1016/0164-1212(79)90022-0
https://doi.org/10.1016/0164-1212(79)90022-0
https://doi.org/10.1109/ICSME.2016.32
https://doi.org/10.1109/CSMR.2012.69
https://doi.org/10.1109/FDL.2016.7880374

	Abstract
	1 Introduction
	2 EMMA
	2.1 VCS Miner
	2.2 Intermediate Data Structure
	2.3 Analysis
	2.4 Data Explorer

	3 Industrial Applications
	3.1 Lehman's Laws
	3.2 Nature of Metamodel Evolution
	3.3 OCL Usage

	4 Discussion
	5 Future Work
	6 Conclusions
	References

