
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 0000; 00:1–30
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

Empirical analysis of the relationship between CC and SLOC
in a large corpus of Java methods and C functions

Davy Landman1*, Alexander Serebrenik2, Eric Bouwers3 and Jurgen J. Vinju124

1Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2Eindhoven University of Technology, Eindhoven, The Netherlands

3Software Improvement Group, Amsterdam, The Netherlands
4INRIA Lille Nord Europe, Lille, France

SUMMARY

Measuring the internal quality of source code is one of the traditional goals of making software development
into an engineering discipline. Cyclomatic Complexity (CC) is an often used source code quality metric, next
to Source Lines of Code (SLOC). However, the use of the CC metric is challenged by the repeated claim that
CC is redundant with respect to SLOC due to strong linear correlation.
We conducted an extensive literature study of the CC/SLOC correlation results. Next, we tested correlation
on large Java (17.6 M methods) and C (6.3 M functions) corpora. Our results show that linear correlation
between SLOC and CC is only moderate as caused by increasingly high variance. We further observe that
aggregating CC and SLOC as well as performing a power transform improves the correlation.
Our conclusion is that the observed linear correlation between CC and SLOC of Java methods or C functions is
not strong enough to conclude that CC is redundant with SLOC. This conclusion contradicts earlier claims
from literature, but concurs with the widely accepted practice of measuring of CC next to SLOC.
Copyright © 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: McCabe cyclomatic complexity; empirical validation; software maintenance; metrics

1. INTRODUCTION

In previous work [1] one of the authors analyzed the potential problems of using the Cyclomatic
Complexity (CC) metric to indicate or even measure source code complexity per Java method. Still,
since understanding code is known to be a major factor in providing effective and efficient software
maintenance [2], measuring the complexity aspect of internal source code quality remains an elusive
goal of the software engineering community. In practice the CC metric is used on a daily basis for
this purpose precisely, next to another metric, namely Source Lines of Code (SLOC) [3, 4].

There exists a large body of literature on the relation between the CC metric and SLOC. The general
conclusion from experimental studies [5–8] is that there exists a strong linear correlation between
these two metrics for arbitrary software systems. The results are often interpreted as an incentive
to discard the CC metric for any purpose that SLOC could be used for as well, or as an incentive to
normalize the CC metric for SLOC.

At the same time, the CC metric appears in every available commercial and open-source source
code metrics tool, for example http://www.sonarqube.org/, and is used in the daily practice of

*Correspondence to: Centrum Wiskunde & Informatica, Amsterdam, The Netherlands. E-mail: davy.landman@cwi.nl

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

http://www.sonarqube.org/
davy.landman@cwi.nl

2 D LANDMAN ET AL.

software assessment [4] and fault/effort prediction [9]. This avid use of the metric directly contradicts
the evidence of strong linear correlation. Why go through the trouble of measuring CC?

Based on the related work on the correlation between CC and SLOC we have the following working
hypothesis:

Hypothesis 1
There is strong linear (Pearson) correlation between the CC and SLOC metrics for Java methods and
C functions.

Note that the current paper both includes and extends the contributions of a previously published
conference paper which focused on the Java language [10]. The new contributions of this paper are
as follows:

• construction of a big C corpus,
• corpus-based analysis of CC/SLOC correlation for another programming language (C),
• a significantly extended literature study,
• comparison between the results for C and Java,
• more detailed study of possible explanations for higher correlation after aggregation on the file

level,
• study of the possibly confounding effect of the size of the corpora.

We studied a C language corpus since it is most representative of the languages analyzed in
literature and we could construct a large corpus based on open-source code. Java is an interesting
case next to C as it represents a popular modern object-oriented language, for which we could also
construct a large corpus. A modern language with a comparable but significantly more complex
programming paradigm than C, such as Java, is expected to provide a different perspective on the
correlation between SLOC and CC.

Both for Java and C, our results of investigating the strong correlation between CC and SLOC are
negative, challenging the external validity of the experimental results in literature as well as their
interpretation. The results of analyzing a linear correlation are not the same for our (much larger)
corpora of modern Java code that we derived from Sourcerer [11] and C code derived from the
packages of Gentoo Linux. Similarly we observe that higher correlations can only be observed after
aggregation to the file level or when we arbitrarily remove the larger elements from the corpus. Based
on analyzing these new results we will conclude that CC cannot be discarded based on experimental
evidence of a linear correlation. We therefore support the continued use of CC in industry next to
SLOC to gain insight in the internal quality of software systems for both the C and the Java language.

The interpretation of experimental results of the past is hampered by confusing differences in
definitions of the concepts and metrics. In the following, Section 2, we therefore focus on definitions
and discuss the interpretation in related work of the evidence of correlation between SLOC and CC.
We also identify six more hypotheses. In Section 3 we explain our experimental setup. After this, in
Section 4, we report our results and in Section 5 we interpret them before concluding in Section 6.

2. BACKGROUND THEORY

In this section we carefully describe how we interpret the CC and SLOC metrics, we identify related
work, and introduce the hypotheses based on differences observed in related work.

2.1. Defining SLOC and CC

Although defining the actual metrics for lines of code and cyclomatic complexity used in this paper
can be easily done, it is hard to define the concepts that they actually measure. This lack of precisely
defined dimensions is an often lamented, classical problem in software metrics [12, 13]. The current
paper does not solve this problem, but we do need to discuss it in order to position our contributions
in the context of related work.

First we define the two metrics used in this paper.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 3

Definition 1 (Source Lines of Code (SLOC))
A line of code is any line of program text that is not a comment or blank line, regardless of the
number of statements or fragments of statements on the line. This specifically includes all lines
containing program headers, declarations, and executable and non-executable statements [14, p. 35].

Definition 2 (Cyclomatic Complexity (CC))
The cyclomatic complexity of a program† is the maximum number of linearly independent circuits in
the control flow graph of said program, where each exit point is connected with an additional edge to
the entry point [15].

As explained by McCabe [15], the CC number can be computed by counting forks in a control flow
graph and adding 1, or equivalently counting the number of language constructs used in the Abstract
Syntax Tree (AST) which generate forks (“if”, “while”, etc.) and adding 1.

This last method is the easiest and therefore preferred method of computing CC. Unfortunately,
which AST nodes generate decision points in control flow for a specific programming language is
not so clear since this depends on the intrinsic details of programming language semantics. The
unclarity leads to metric tools generating different values for the CC metric, because they count
different kinds of AST nodes [16]. Also, derived definitions of the metric exist, such as “extended
cyclomatic complexity” [17] to account for a different way of computing cyclomatic complexity.
Still, the original definition by McCabe is sufficiently general. If we interpret it based on a control
flow graph it is applicable to any programming language which has subroutines to encapsulate a list
of imperative control flow statements. Section 3 describes how we compute CC for C and Java.

Note that we include the Boolean && and || operators as conditional forks because they have short-
circuit semantics in both Java and C, rendering the execution of their right-hand sides conditional.
Still, this is not the case for all related work. For completeness sake we therefore put the following
hypothesis up for testing as well:

Hypothesis 2
The strength of linear correlation between CC and SLOC of neither Java methods nor C functions is
significantly influenced by including or excluding the Boolean operators && and ||.

We expect that exclusion of && and || does not meaningfully affect correlations between CC and
SLOC, because we expect Boolean operators not to be used often enough and not in enough quantities
within a single subroutine to make a difference.

2.2. Literature on the correlation between CC and SLOC

We have searched methodically for related work that experimentally investigates a correlation between
CC and SLOC. This results, to the best of our knowledge, in the most complete overview of published
correlation figures between CC and SLOC to date. Our previous literature study [10] resulted in 15
relevant papers obtained by scanning the titles of 600 papers. For the current overview we scanned
the full text of 326 new papers identifying 18 new relevant papers.

In our previous literature study we used Google Scholar to find all papers citing Shepperd’s paper
from 1988 [12] which also investigate Hypothesis 1. Furthermore, in the same study we scanned the
titles of the 200 most relevant search results‡ for papers citing McCabe’s original paper [15] and
matching the “Empirical” search query.

The previous literature study can be seen as a restricted form of snowballing [18]. To extend our
coverage of the literature, and correct for limitations of snowballing [19], we combine snowballing and
Systematic Literature Review (SLR). We formulated the PICO criteria inspired by the SLR guidelines
of Kitchenham and Charters [20]:

Population Software

†In this context a “program” means a subroutine of code like a procedure in Pascal, function in C, method in Java,
sub-routine in Fortran, program in COBOL. From here on we use the term “subroutine” to denote either a Java method or
a C function.

‡Google Scholar’s sort by relevancy.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

4 D LANDMAN ET AL.

Intervention CC or Cyclomatic or McCabe
Comparison SLOC or LOC or Lines of Code
Outcomes Correlation or Regression or Linear or R2

Ideally, following the Kitchenham and Charters’ guidelines [20] we should have constructed a query
using the PICO criteria: “Software and (CC or Cyclomatic or McCabe) and (SLOC or LOC or Lines
of Code) and (Correlation or Regression or Linear or R2)”. Unfortunately, Google Scholar does
not supported nested conditional expressions. Therefore, we have used the PICO criteria to create
1 × 3 × 3 × 4 = 36 different queries producing 24 K results. Since Google scholar sorts the results on
relevancy, we chose to read only the first two pages of every query, leaving 720 results. After noise
filtering and duplication removal 326 papers remained, containing 11 of the 15 papers included in
our previous literature study [10]. Together, we systematically scanned the full-text of these papers,
using the following inclusion criteria:

1. Is the publication peer-reviewed?
2. Is SLOC or Lines of Code (LOC) measured?
3. Is CC measured (possibly as weight in Weighted Methods per Class (WMC) [21])?
4. Is Pearson correlation or any other statistical relation between SLOC and CC reported?
5. Are the measurements performed on method, function, class, module, or file level (higher

levels are ignored)?

Using this process we identified 18 new papers. The resulting 33 papers are summarized in Table I.
The SLR guidelines require the inclusion and the search queries to be based on the title, abstract

and keywords. We deviated from this because for the current study we are interested in a reported
relation between SLOC and CC, whether the paper focuses on this relation or not. This required us to
scan the full text of each paper which the Kitchenham and Charter process does not cater for. Note
that Google Scholar does index the body of papers.

The result of the above process is summarized by the multi-page Table I. All levels and corpus
descriptions in the table are as reported in the original papers: the interpretation of these might have
subtle differences, e.g. Module and Program in Fortran could mean the same. Since the original
data is no longer available, it is not possible to clarify these differences. The variables mentioned
in the Correlation column are normalized as follows. If all lines in a unit (file, module, function,
or method) were counted, LOC was reported. If comments and blank lines were ignored, SLOC was
reported. If the line count was normalized on statements, we reported Logical Lines of Code (LLOC).
We normalized R to R2 by squaring it whenever R was originally reported.

Table I. Overview of related work on CC and SLOC up to 2014, this extends Shepperd’s table [12]. The
correlations with a star (∗) indicate correlations on the subroutine level. The ◦ denotes that the relation
between CC and SLOC was the main focus of the paper. The statistical significance was always high, if

reported, and therefore not indicated in this table (except Malhotra [22]).

Year Level Correlation Language Corpus R2 Comments

◦1979
[23]

Subrou-
tine

SLOC vs CC Fortran 27 programs with
SLOC ranging from
25 to 225

∗0.65
0.81

The first result is for a CC
correlation on subroutine level,
and the second result is on a
program level.

◦1979
[5]

Program SLOC vs CC Fortran 27 programs with
SLOC ranging from
36 to 57

0.41

◦1979
[6]

Program log(LLOC)
vs log(CC)

PL/1 197 programs with
a median of 54
statements.

∗0.90

◦1979
[24]

Subrou-
tine

LOC vs CC Fortran 26 subroutines ∗0.90

◦1980
[25]

Module LOC vs CC Fortran 10 modules, 339
SLOC

0.90

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 5

Table I. (Continued)

Year Level Correlation Language Corpus R2 Comments

◦ 1981
[26]

Module SLOC vs CC Fortran 25.5 KSLOC over
137 modules

0.65

◦1984
[7]

Module SLOC vs CC Fortran 517 code segments
of one system

0.94 No correlation between module
SLOC and module CC. Then the
authors grouped modules into 5
buckets (by size), and calculated
the average CC per bucket. Over
these 5 data-points they reported
the high correlation.

◦ 1987
[27]

Program SLOC vs CC Fortran 255 student
assignments, range
of 10 to 120 SLOC

0.82 Study comparing 31 metrics,
showing histogram of the corpus,
and scatter-plots of selected
correlation.

1987
[28]

Module SLOC vs CC S3 Two subsystems
with 67 modules

0.83
0.87

After a power transform on the
first subsystem the R2 increased
to 0.89.

◦1989
[29]

Routine SLOC vs CC Pascal &
Fortran

1 system, 4.5 K
routines,
232 KSLOC Pascal,
112 KSLOC
Fortran

∗0.72
0.70

The first result was for Pascal,
the second Fortran.

1989
[30]

Procedure SLOC vs CC Pascal 1 stand-alone
commercial system,
7 K procedures

∗0.96

1990
[31]

Program LOC vs CC COBOL 311 student
programs

∗0.80

1990
[32]

Module LOC vs CC Pascal 981 modules from
27 course projects

0.40 10% outliers were removed.

◦ 1991
[33]

Module SLOC vs CC Pascal &
COBOL

19 systems, 824
modules,
150 KSLOC

0.90 The paper also compared
different variants of CC.

◦1993
[34]

Program LOC vs CC COBOL 3 K programs ∗0.76

1997
[35]

File SLOC vs CC COBOL 600 modules of a
commercial system

∗0.79

2000
[9]

Module LOC2 vs CC Unre-
ported

380 modules of an
Ericson system

0.62 Squaring the LOC variable was
performed as an argument for the
non-linear relationship.

2000
[36]

File LOC vs CC C &
DLSs

1.5 MLOC
subsystem of
telephony switch,
2.5 K files

0.94

2001
[37]

Class SLOC vs CC C++ 174 classes 0.77 A study discussing the
confounding factor of size for OO
metrics, WMC is a sum of CC for
the methods of a Class.

2001
[38]

File LOC vs CC RPG 293 programs
200 KLOC

0.86

2005
[39]

Module LOC vs CC Pascal 41 small programs 0.59 The programs analysed were
written by the authors with the
sole purpose of serving as data
for the publication.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

6 D LANDMAN ET AL.

Table I. (Continued)

Year Level Correlation Language Corpus R2 Comments

2006
[40]

File LOC vs CC C NASA JM1 data set,
22 K files,
11 KLOC

0.71

2007
[41]

File LOC vs CC C & C++ 77k small programs 0.78 The corpus contains multiple
implementation of 59 different
challenges. Outliers where
removed based on the CC
variable. The correlation was
calculated after calculating the
mean per challenge.

2007
[42]

Function SLOC vs CC C XMMS project,
109 KSLOC over
260 files

∗0.51

2007
[43]

File log(SLOC)
vs log(CC)

C FreeBSD packages,
694 K Files.

0.87 Using the SLOC variable, 1 K
files suspected of being
generated code were removed.

◦2008
[44]

Diff LOC vs CC Java & C
& C++ &
PHP &
Python &
Perl

13 M diffs from
SourceForge

0.56 The paper contains a lot of
different correlations based on
the revision diffs from 278
projects. The authors observed
lower correlations for C.

2009
[45]

File SLOC vs CC Java 4813 proprietary
Java Modules

0.52

◦2009
[46]

File log(LOC) vs
log(CC)

Java & C
& C++

2200 Projects from
SourceForge

0.78
0.83
0.73

After discussing the distribution
of both LOC and CC and their
wide variance, the authors
calculate a repeated median
regression and recalculate R2:
0.87, 0.93, and 0.97.

◦2010
[47]

File log(SLOC)
vs log(CC)

C ArchLinux
packages, 300 K
Files, of which
200 K non header
files.

0.59
0.69

Initially they observed a low
correlation between CC and
SLOC, further analysis revealed
header files as the cause. The
second correlation is after
removing these. The authors
show the influence of looking at
ranges of SLOC on the
correlation.

◦2010
[48]

Class SLOC vs CC Java &
C++

800 KSLOC over
12 hand-picked
OSS Projects

0.66

2011
[22]

Class SLOC vs
max CC and
mean CC

Java Arc dataset: 234
classes

0.12
0.08

Correlations were not
statistically significant.

2014
[49]

Module LOC vs CC C NASA CM1 dataset 0.86

◦2014
[8]

Function LOC vs CC C Linux kernel ∗0.77 The authors show the scatter-plot
of LOC vs CC, and report on a
high correlation. Hereafter they
limit to methods with a CC
higher than 100, for these 138
functions they find a much lower
correlation to SLOC.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 7

●

●

0.00

0.25

0.50

0.75

1.00

1980 1990 2000 2010

Year

R
2

Language
●

●

●

●

●

●

COBOL

Fortran

Pascal

C

Java

Other

Aggregation

●

None

File

Other

Figure 1. Visualization of the R2 reported in related work (Table I). The colors denote the most common
languages, and the shape the kind of aggregation; aggregation “None” means that the correlation has been
reported on the level of a subroutine. Note that for languages such as COBOL the lowest level of measurement
of CC and SLOC is the File level. Therefore, these are reported as an aggregation of “None” (similar to the *

indication in Table I) .

Figure 1 visualizes the R2 from the related work in Table I grouped by language and aggregation
level. Most related work reports R2 higher than 0.5, and there is not a clear upwards or downwards
trend over the years. The only observable trends are that newer work (after 2000) predominantly
performed aggregation on a file level (with the notable exception of four papers [8, 22, 42, 44]) and
that while the early studies have been mostly conducted on Fortran, the most common languages
analyzed after 2000 are Java and C.

In the rest of this section we will formulate hypotheses based on observations in the related work:
different aggregation methods (Section 2.3), data transformations (Section 2.4), and the influence of
outliers and other biases in the used corpora (Section 2.5).

2.3. Aggregating CC over larger units of code

CC applies to control flow graphs. As such CC is defined when applied to code units which have
a control flow graph. This has not stopped researchers and tool vendors to sum the metric over
larger units, such as classes, programs, files and even whole systems. We think that the underlying
assumption is that indicated “effort of understanding” per subroutine would add up to indicate total
effort. However, we do not clearly understand what such sums mean when interpreted back as an
attribute of control flow graphs, since the compositions of control flow graphs that these sums should
reflect do not actually exist.

Perhaps not surprisingly, in 2013 Yu et al. [50] found a Pearson correlation of nearly 1 between
whole system SLOC and the sum of all CC. They conclude the evolution of either metric can represent
the other. One should keep in mind, however, that choosing the appropriate level of aggregation
is vital for validity of an empirical study: failure to do so can lead to an ecological fallacy [51]
(interpreting statistical relations found in aggregated data on individual data). Similarly, the choice of
an aggregation technique can greatly affect the correlation results [52–54].

Curtis and Carleton [13] and Shepherd [12] were the first to state that without a clear definition of
what source code complexity is, it is to be expected that metrics of complexity are bound to measure
(aspects of) code size. Any metric that counts arbitrary elements of source code sentences, actually
measures the code’s size or a part of it. Both Curtis and Carleton, and Shepherd conclude that this
should be the reason for the strong correlation between SLOC and CC. However, even though CC is a
size metric; it still measures a different part of the code. SLOC measures all the source code, while

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

8 D LANDMAN ET AL.

CC measures only a part of the statements which govern control flow. Even if the same dimension is
measured by two metrics that fact alone does not fully explain a strong correlation between them.
We recommend the work of Abran [55], for an in-depth discussion of the semantics of CC.

Table I lists which studies use which level of aggregation. Note that the method of aggregation is
sum in all but one of the papers reviewed. A possible explanation for strong correlations could be the
higher levels of aggregation. This brings us to our third hypothesis:

Hypothesis 3
The correlation between aggregated CC for all subroutines and the total SLOC of a file is higher than
the correlation between CC and SLOC of individual subroutines.

If this hypothesis is true it would explain the high correlation coefficients found in literature when
aggregated over files: it would be computing the sum over subroutines that causes it rather than
the metric itself. Hypothesis 3 is nontrivial because it depends, per file, on the size of the bodies
compared to their number what the influence of aggregation may be. This influence needs to be
observed experimentally.

A confounding factor when trying to investigate Hypothesis 3 is the size of the code outside of the
subroutines; such as import statements and class and field declarations in Java, and macro definitions
and function headers, typedefs and structs in C. For the sake of brevity we refer to this part of source
code files as the “header”, even though this code may be spread over the file. A large variance in
header size would negatively influence correlation on the file aggregation level which may hide the
effect of summing up the CC of the subroutines. We do not know exactly how the size of the header is
distributed in C or Java files and how this size relates to the size of subroutines. To be able to isolate
the two identified factors on correlation after aggregation we also introduce the following hypothesis:

Hypothesis 4
The more subroutines we add up the CC for—the more this aggregated sum correlates with aggregated
SLOC of these subroutines.

This hypothesis isolates the positive effect of merely summing up over the subroutines from the
negative effect of having headers of various sizes. Hypothesis 4 is nontrivial for the same reasons as
Hypothesis 3 is nontrivial.

2.4. Data Transformations

Hypothesis 1 is motivated by the earlier results from the literature in Table I. Some newer results of
strong correlation are only acquired after a log transform on both variables [6, 43, 46, 47]: indeed, log
transform can help to normalize distributions that have a positive skew [56] (which is the case both for
SLOC and for CC) and it also compensates for the “distorting” effects of the few but enormous elements
in the long tail. A strong correlation which is acquired after log transform does not directly warrant
dismissal of one of the metrics, since any minor inaccuracy of the linear regression is amplified by
the reverse log transform back to the original data. Nevertheless, the following hypothesis is here to
confirm or deny results from literature:

Hypothesis 5
After a log transform on both the SLOC and CC metrics, the Pearson correlation is higher than the
Pearson correlation on the untransformed data.

We note that the literature suggests that the R2 values for transformed and untransformed data are
not comparable [57, 58]. However, we do not attempt to find the best model for the relation between
CC and SLOC, rather to understand the impact of log transformation as used by previous work on the
reported R2 values.

2.5. Corpus Bias

The aforementioned log transform is motivated in literature after observing skewed long tail
distributions of SLOC and CC [43, 46, 47, 59]. On the one hand, this puts all related work on smaller
data sets which do not interpret the shape of the distributions in a different light. How to interpret

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 9

these older results? Such distributions make relatively “uninteresting” smaller subroutines dominate
any further statistical observations. On the other hand, our current work is based on two large corpora
(see Section 3). Although this is motivated from the perspective of being as representative as possible
for real world code, the size of the corpus itself does emphasize the effects of really big elements in
the long tail (the more we look, the more we find) as well as strengthens the skew of the distribution
towards the smaller elements (we will find disproportionate amounts of new smallest elements).
Therefore we should investigate the effect of different parts of the corpus, ignoring either elements in
the tail or ignoring data near the head:

Hypothesis 6
The strength of the linear correlation between SLOC and CC is improved by ignoring the smallest
subroutines (as measured by SLOC).

Hypothesis 7
The strength of the linear correlation between SLOC and CC is improved by ignoring the largest
subroutines (as measured by SLOC).

Hypothesis 6 was also inspired by Herraiz and Hassan’s observation of an increasing correlation
for the higher ranges of SLOC [47]. One could argue that the smallest of subroutines are relatively
uninteresting, and a correlation which only holds for the more nontrivial subroutines would be
satisfactory as well.

Hypothesis 7 investigates the effect of focusing on the smaller elements of the data, ignoring (parts
of) the tail. Inspired by related work [32, 41, 43] that assumes that these larger subroutines can be
interpreted as “outliers”. It is important for the human interpretation of Hypothesis 1 to find out what
their influence is. Although there are not that many tail elements, a linear model which ignores them
could still have value.

3. EXPERIMENTAL SETUP

In this section we discuss how the study has been set up. To perform empirical evaluation of
the relation between SLOC and CC for subroutines we needed a large corpus of such subroutines.
To construct such a corpus we have processed Sourcerer [11] , a collection of 19 K open source
Java projects (Section 3.1) and Gentoo§, a full Linux distribution containing 9.6 K C packages
(Section 3.2). Then SLOC and CC have been computed for each method or function (subroutine) in
the corpus (Sections 3.3 and 3.4). Finally, we performed statistical analysis of the data (Section 3.5).

3.1. Preparing the Java Corpus

Sourcerer [11] is a large corpus of open source Java software. It was constructed by fully downloading
the source code of 19 K projects, of which 6 K turned out to be empty.

Remove non-Java files While Sourcerer contains a full copy of each project’s Source Code
Management (SCM), because of our focus on Java, we excluded all non-Java files.

Remove SCM branches When Sourcerer was compiled the whole SCM history was cloned. In
particular, this means that multiple versions of the same system are present. However, inclusion
of multiple similar versions of the same method would bias statistical analysis. Therefore, we
removed all directories named /tags/, /branches/, and /nightly/ which are commonly used
to indicate snapshot copies of source trees or temporarily forked development.

Remove duplicate projects Sourcerer projects have been collected from multiple sources including
Apache, Java.net, Google Code and SourceForge. Based on Sourcerer’s meta-data we detected
172 projects which were extracted from multiple sources—e.g., from both SourceForge and

§https://www.gentoo.org/

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

https://www.gentoo.org/

10 D LANDMAN ET AL.

Google Code. Similarly to removal of SCM branches we have kept only one version of each
project, in this case we chose the largest version in bytes.

Manually reviewed duplicate files We calculated the MD5 hash per file. The 278 projects containing
more than 300 duplicate files (equal hash) were manually reviewed and fixed in case the
duplication could be explained. Common reasons were non-standard SCM structure (different
labels for tags and branches) and the code of third-party libraries. A list of the duplicate projects
and manually removed directories is available online¶.

Remove out-of-scope code Finally, we have decided to remove code which is either
external to the studied project, or is test code. It is a priori not clear whether
test code exhibits the same relation between SLOC and CC as non-test code. We
removed all directories matching the following case-insensitive regular expression:
/[/\-]tests?\/|\/examples?\/|(third|3rd)[\-_]?party/. This filtering differs from the
one used in the previous paper [10], and was based on insight gained during the construction of
the C corpus. This is also why the numbers for Java in the Section 4 differ from those reported
previously [10].

Performing these steps we have reduced the 390 GB corpus to 14.3 GB containing 13 K projects over
2 M files. The resulting corpus has been made publicly available [60].

3.2. Preparing the C Corpus

We are not aware of a C corpus of size, age, and spread of domains comparable to Sourcerer.
Therefore we have constructed a new corpus based on Gentoo’s Portage packages||. We have chosen
Gentoo because its packages cover a wide range of domains. Compared to other Linux distributions,
Gentoo distributes the source code instead of pre-compiled binaries, enabling our analysis.

On October 14, 2014 the repository contained 65 K packages. The extensions of 40 K packages
indicated an archive (for example tar.gz). The following process was used to construct our C corpus
based on these packages.
Remove non-code packages We filtered debug-symbols, patch-collections, translations, binary-

installers, data-packages, binary packages, auxiliary files, and texlive modules.
Remove multiple versions The Portage repository of Gentoo contains multiple versions of

packages. We kept only the newest version of every package. Note that Portage does come with
meta-data—“ebuild”—to collect the latest Gentoo packages, selecting a sub-set of the entire
repository. We refrained from using this meta-data, because it is based on design decisions
which would introduce a selection bias (like hardening for security and library compatibility).

Extract packages The remaining 20 K packages were unpacked, resulting in 8 M files.
Detect C code C and C++ code share file extensions. Both .c and .h can contain C or C++ code.

Using heuristics inspired by GitHub’s linguist [61], we developed a tool to detect if a file
contained either C or C++ code. The heuristics uses syntactical differences to detect C++ and
differences between the often included standard library header files for C and C++.
Of the 1.35 M files with C extensions, 1.02 M contained C code, and 0.33 M contained C++.
We removed all the files with C++ code.

Remove out-of-scope code Similarly to the preparation of our Java corpus, we have chosen to
remove code which is not part of the application or library studied. We have used the exact
same filter, removing the folders: tests, examples, and third-party.

Detect duplicates Similarly to the preparation of our Java corpus, we calculated the MD5 hash
of all the files. The 223 packages containing more than 300 duplicate files were manually
reviewed and fixed in case the duplication could be explained. Common reasons were failures
in detecting multiple versions (90 packages), forks, and included third-party libraries.

¶All code and data is available at: http://www.cwi.nl/~landman/jsep2015/
||https://packages.gentoo.org/

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://www.cwi.nl/~landman/jsep2015/
https://packages.gentoo.org/

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 11

1: int calcCC(Statement impl) {
2: int result = 1;
3: visit (impl) {
4: case \if(_,_) : result += 1;
5: case \if(_,_,_) : result += 1;
6: case \case(_) : result += 1;
7: case \do(_,_) : result += 1;
8: case \while(_,_) : result += 1;
9: case \for(_,_,_) : result += 1;
10: case \for(_,_,_,_) : result += 1;
11: case foreach(_,_,_) : result += 1;
12: case \catch(_,_): result += 1;
13: case \conditional(_,_,_): result += 1;
14: case infix(_,"&&",_) : result += 1;
15: case infix(_,"||",_) : result += 1;
16: }
17: return result;
18: }

Figure 2. RASCAL source code to calculate the CC of a given method. The visit statement is a combination
of a regular switch and the visitor pattern. The cases pattern match on elements of the AST.

Keep only related files For the packages still containing C files, we also kept all files related to the
possible compilation of the library. All other files were removed.

Performing these steps resulted in a corpus of 19 GB containing 9.8 K packages with 13 GB of C
code in 798 K files. The corpus is publicly available [62].

3.3. Measuring Java’s SLOC and CC

While numerous tools are available to measure SLOC and CC on a file level**, to perform our study we
require to calculate SLOC and CC per method and to precisely control the definition of both metrics.
We use the M3 framework [63], which is based on the Eclipse JDT††, to parse the full Java source
code and identify the methods in the corpus. This also generates full ASTs for each method for further
analysis. Figure 2 depicts the source code of computing the CC from the AST of a method. The code
recursively traverses the AST and matches the enumerated nodes, adding 1 for each node that would
generate a fork in the Java control flow graph.

For SLOC we decided not to depend on the information in the Eclipse ASTs (ASTs are not designed
for precisely recording the lexical syntax of source code). Instead we use the ASTs only to locate the
source code of each separate method. To compute its SLOC we defined a grammar in RASCAL [64] to
tokenize Java input into newlines, whitespace, comments and other words. The parser produces a list
of these tokens which we filter to find the lines of code that contain anything else but whitespace or
comments. We tested and compared our SLOC metric with other tools measuring full Java files to
validate its correctness.

To be able to compare SLOC of only the subroutines compared to SLOC of the entire file we store
the SLOC of each Java method body separately (see Hypothesis 4). For Java, files without method
bodies, such as interface definitions, were ignored. Out of the 2 M files, 306 K were ignored since
they did not contain any method bodies.

3.4. Measuring C’s SLOC and CC

To perform our analysis on the C code we use the Software Analysis Toolkit (SAT) of the Software
Improvement Group‡‡ (SIG). This proprietary toolkit uses a robust analysis approach, processes
over a billion SLOC per year and forms the basis of the consultancy services of SIG. As part of these
services the measurements performed by the toolkit are continuously validated, both by the internal
development team as well as externally by the development teams of clients and third-party suppliers.

**e.g., http://cloc.sourceforge.net/, http://www.sonarqube.org/
††http://www.eclipse.org/jdt
‡‡http://www.sig.eu

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://cloc.sourceforge.net/
http://www.sonarqube.org/
http://www.eclipse.org/jdt
http://www.sig.eu

12 D LANDMAN ET AL.

1: #ifdef debug
2: void get_string(char prefix) {
3: #else
4: void get_string() {
5: #endif
6: }

Figure 3. C code example with conditional pre-processor directives.

The measurement process of the SAT consists roughly of four phases: preprocessing, tokenization,
scope creation, and measurements. In the first phase, preprocessor directives are removed from the
source-code. This step is required to solve issues such as illustrated in Figure 3 where only one
unit-declaration ends up in the final binary depending on whether debug is defined. When both parts
are kept two unit headers, but only a single close-bracket would be used as input to the next phase.
To prevent problems in the scope creation phase, i.e. not being able to find the correct units, only the
first code blocks of conditional preprocessor directives are kept. I.e, in the code in Figure 3 only the
second and sixth line is passed on to the next phase.

This pragmatic approach is used because running the preprocessor is prone to errors and labour
intensive due to projects relaying on specific tools and versions. Moreover, choosing a representative
set of system constants is often not possible and adds unnecessary complexity to the assessment
process. Processing all sources in the same way reduces overhead and makes the measurement step
more objective. In our experience, choosing the first preprocessor block captures most of the code
and provides reliable results in assessments where the results are validated with the development
teams. Since this validation step is not possible in this experiment all files which after processing
contain unbalanced curly braces are removed from the corpus.

In the second phase the code is tokenized using an internally developed tokenizer. The resulting list
of tokens is used in the scope creation phase to extract a scope tree containing subroutines, modules,
and packages (depending on the language). For C, the token list is inspected for patterns representing
the headers of subroutines (for example the second line in the code above) and the body blocks (the
brackets on line two and six). These scope blocks are then put into an internal graph structure.

To perform the actual measurements all nodes representing subroutines are processed by a visitor
which works on the list of tokens associated with the node. Similar to the approach for Java, SLOC is
measured by identifying all lines within a function which contain anything else than comments or
whitespace. To calculate the CC all tokens representing the keywords case, if, for and while and
the operators ||, && and ? are counted. Note that since we match on tokens instead of AST nodes the
while token also captures any do...while statements, making this implementation equal to the one
defined for Java—Figure 2.

C code is split over .c and .h files. Herraiz and Hassan [47] ignored all headers files (.h), but we
did include them. The reason is that for C, although it is a less common idiom, putting functions in a
header file is possible. Our C corpus contains 333 K header files. We chose to ignore all .c and .h

files without any function bodies (similar to Java interfaces). This results in removing 310 K .h and
23 K .c files.

3.5. Visualization & Statistics Methods

Before discussing the results (Section 4), we will first discuss the chosen visualizations and statistical
methods.

3.5.1. Distributions Before comparing SLOC and CC, we describe the distributions in our data using
histograms and descriptive statistics (median, mean, min and max). The shape of distributions does
have an impact on the correlation measures used, as explained above. All results (Section 4) should
be interpreted with these distributions in mind.

3.5.2. Hexagonal Scatter plots Scatter plots with SLOC on the x-axis and CC on the y-axis represent
the data in a raw form. Due to the long tail distributions of both CC and SLOC, the data is concentrated
in the lower left quadrant of the plots and many of the dots are placed on top of each other. Therefore,

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 13

we also use log-log scatter plots. We use hexagonal scatter plots [65] to address overplotting and
Type I errors (false positives). The latter method divides the two-dimensional plane of the plot area in
50 times 50 hexagons. It then counts how many of the data points fall into each individual hexagon
and uses a logarithmic 255-step gray scale gradient to color it. Compared to vanilla scatter plots the
hexagonal plots are a lot less confusing; the main problem is that a limited resolution on paper can
create artifacts such as big black blobs of ink where in fact the raw data does not feature maximum
density at all (i.e. overplotting causing Type I errors). Nevertheless, it should be noted that the
gradient as well as human perception have a limited resolution and as such hexagonal plots can still
hide the full impact of the skewness of the distributions and the variance in the data.

3.5.3. Correlation Most related work, if reported, uses Pearson product-moment correlation
coefficient [66] (hereafter Pearson correlation), measuring the degree of linear relationship between
two variables. The square of Pearson correlation is called the coefficient of determination (R2).
R2 estimates the variance in the power of one variable to predict the other using a simple linear
regression. Hereafter we report the R2 to describe a correlation.

Many researchers have observed that the distributions of SLOC (and CC) are right-skewed. While
opinions differ on robustness of the Pearson correlation against normality violations [56, 67], a
number of earlier studies attempt to compensate for the skewness of the distribution by applying a log
transform and then compute the Pearson correlation [6, 43, 46]. The important matter of interpreting
the results after a log transform back to the original data is discussed in Section 5.

Other researchers have transformed the data using more advanced methods in order to improve the
chances for linear correlation. For example, using Box-Cox transformation [47] or performing the
Repeated Median Regression (RMR) method on a random sample [46]. Box-Cox is a power transform
similar to the basic log transform. We have chosen to stick with the simpler method, following the
rest of the related work which we are trying to reproduce (Hypothesis 5).

The next method, RMR, may be useful to find some linear model, but it entails a lossy transformation.
The median regression method reduces the effect of random measurement errors in the data by
computing a running median. We do not have random errors in the CC or SLOC measurements, so a
running median would hide interesting data. Therefore, RMR is outside the scope of this paper.

If no linear correlation is to be expected, or is found using Pearson’s method, we use Spearman’s
rank-order correlation coefficient [68] (hereafter Spearman correlation or ρ). Similarly to the Pearson
correlation, Spearman’s correlation is a bivariate measure of correlation/association between two
variables. However, opposed to the Pearson correlation, Spearman’s correlation is employed with
rank-order data, measuring the degree of monotone relationship between two variables. We apply this
method only for completeness sake, since it does not generate a predictive model which we could
use to discard one of the metrics.

3.5.4. Regression The square of Pearson’s correlation coefficient is the same as the R2 in simple
linear regression. Hence, if we would find a strong correlation coefficient we would be able to
construct a good predictive linear model between the two variables, and one of the metrics would be
obsolete. It is therefore important to experimentally validate the reported high correlation coefficients
in literature (see Table I). In general for other correlation measures (such as Spearman’s method)
this relation between regression and correlation is not immediate. In particular, a strong Pearson
correlation coefficient after a log transform does not give rise to an accurate linear regression model
of the original data. We discuss this in more detail later when interpreting the results in Section 5.

4. RESULTS

In this section we report the results of our experiments and the statistics we applied to it. We postpone
discussion of these results until Section 5.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

14 D LANDMAN ET AL.

0

100

200

300

1e+00 1e+01 1e+021e+02 1e+03 1e+04 1e+05 1e+06
Total SLOC

F
re

q
u

en
cy

(a) Java projects

0

50

100

150

200

1e+00 1e+01 1e+021e+02 1e+03 1e+04 1e+05 1e+06
Total SLOC

F
re

q
u

en
cy

(b) C packages
Figure 4. Distribution of the non-empty projects/packages over their total SLOC. SLOC is on a log10 scale, bin

width is 0.05.

Table II. Statistics of the total SLOC per project in the corpus.

Corpus Min. 25% Median Mean 75% Max.

Java 0 1009 3219 15 270 10 250 2 207 000
C 1 671 3036 21 200 12 430 3 333 000

Table III. Descriptive statistics of the SLOC and CC per Java method and C function.

Corpus Variable Min. 25% Median Mean 75% Max.

Java SLOC 1 3 3 9.38 9 33 850
CC 1 1 1 2.33 2 4377

C SLOC 1 6 12 26.36 27 44 880
CC 1 1 3 5.98 6 18 320

4.1. Distributions for Java and C

Figure 4 shows the histogram of SLOC per project and Table II describes this distribution. The Java
corpus contains 17.6 M methods spread out over 1.7 M files and the C corpus has 6.3 M functions
spread over 462 K files. The C corpus seems to have a disproportional number of packages with a
low SLOC, even on the logarithmic scale. After randomly inspecting a number of packages in the
range between 1 and 20 files we concluded that next to naturally small packages these are C files
which are part of larger packages written in other languages such as Java, Python or Perl. Lacking
any argument to dismiss these files, we assume them to be just as representative of arbitrary C code
as the rest.

Figure 5 shows the distribution of SLOC per Java method and C function. Table III describes their
distributions. We observe skewed distributions with a long tail. To measure the degree of skewness
we calculate the moment coefficient of skewness [69], i.e. the third standardized moment of the
probability distribution. A positive value indicates that the right-hand tail is longer or fatter than
the left-hand one. A negative value indicates the reverse. A value close to zero suggest a symmetric
distribution. For our corpora the moment coefficient of skewness equals 234.75 for SLOC in Java and
107.28 for SLOC in C. After the log transform it equals 1.05 for Java and 0.40 for C.

This means that the mean values are not at all representative for the untransformed corpora, and
that the smallest subroutines dominate the data. For Java, 8.8 M of the methods have 3 SLOC or fewer.
This is 50% of all data points. There are 1.2 M methods with 1 or 2 SLOC, these are the methods
with an empty body, in two different formatting styles or (generated) methods without newlines. The
other 7.6 M methods of 3 SLOC contain the basic getters, setters, and throwers pattern frequently
seen in Java methods—often called one-liners. For C, this is less extreme, only 13% of the functions
have a SLOC of 3 or less. The corpora differ in the strength of the skewness here: the C corpus has

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 15

1e+01

1e+03

1e+05

1e+07

1 10 100100 1000 10000
SLOC

F
re
q
u
en
cy

(a) Java methods

1e+01

1e+03

1e+05

1 10 100100 1000 10000
SLOC

F
re
q
u
en
cy

(b) C functions

Figure 5. Histogram of the SLOC per subroutine in both corpora, in log-log space (bin width is 0.1). Here we
see that for both Java and C, small methods and functions are the most common. The bar around 1000 for
Java and 3000 for C are two cases where a project contained multiple files of generated code that slightly

differed per file. See Figure 7 to compare the distribution.

1e+01

1e+03

1e+05

1e+07

1 10 100100 1000
CC

F
re
q
u
en
cy

(a) Java methods

1e+01

1e+03

1e+05

1 10 100100 1000 10000
CC

F
re
q
u
en
cy

(b) C functions

Figure 6. Histogram of the CC per subroutine in both corpora, in log-log space (bin width is 0.1). Here we see
that for both Java and C, methods and functions with little control flow are the most common. See Figure 7 to

compare the distribution.

0.0

0.2

0.4

0.6

1 10 100100 1000 10000
SLOC

R
el

at
iv

e
F

re
q

u
en

cy

C
Java

0.0

0.2

0.4

0.6

1 10 100100 1000 10000
CC

R
el

at
iv

e
F

re
q

u
en

cy

C
Java

Figure 7. Relative frequency polygons for both corpora and both variables. The variables are displayed on a
logarithmic scale. Relative frequency polygons are histograms normalized by the amount of data points, the

area under the curve is 1. They visualize the relative difference between distributions.

proportionally fewer of the smallest subroutines than the Java corpus has. Nevertheless both plots
have their mode at 3 SLOC.

Figure 6 shows the distribution of CC per Java method and C function. For the Java corpus, 15.2 M
methods have a CC of 3 or less. This is 86% of all data points. There are 11.6 M methods without
any forks in the control flow (1 CC), i.e. 65%. This observation is comparable with the 64% reported
by Grechanik et al. for 2 K randomly chosen Java projects from SourceForge [70]. We observe that

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

16 D LANDMAN ET AL.

the lion’s share of Java methods are below the common CC thresholds of 10 (97.00%) [15] or 15
(98.60%) [71]. The C corpus shows a comparable picture, but again with a more even distribution
which puts less emphasis on the smallest subroutines. For C the median is at 3 while for Java it was
1. Still 33% of the C subroutines have a CC of 1 (straight line code). We do see that both corpora
have their mode of CC at 1. For C 85.60% functions are below the common CC threshold of 10 and
91.70% below 15.

Comparing the shape of Java’s and C’s distributions is complicated by the difference in corpus size.
To visualize the difference in the distribution, we have used relative frequency polygons (Figure 7).
These relative frequency polygons are normalized by the size of the corpus and thus the area under
the curve is 1. This more clearly shows the difference in distribution between Java and C; for Java
there are relatively more methods with a small SLOC and CC than C functions. The shape of the
distributions is a controversial matter which we consider outside the scope of this article.

4.2. Scatter plots

Figure 8 shows two zoomed in (CC ≤ 500 and SLOC ≤ 1800) hexagonal scatter-plots of the
subroutines in our corpus. Due to the skewed-data, this figure still shows 99.98% of all data points.
Figure 9 shows the same hexagonal scatter-plots in a log-log space, allowing to show more data. The
two black lines in both figures show the linear regressions before and after the log transform which
will be discussed in Section 4.3. The logarithmic grayscale gradient of the points in the scatter-plot
visualizes how many subroutines have that combination of CC and SLOC: the darker, the more data
points. Figure 10 shows an even more zoomed in range of the scatter-plots, in these box plots we can
more clearly see the variance of CC increasing as SLOC increases. Moreover the median is increasing,
but so is the inter-quartile range. We have not created these plots for the full range of the data since
these plots do not scale.

Figures 8 and 9 show a widely scattered and noisy field, with a high concentration of points in the
left corner. The outline of these concentrations might hint at a positive (linear) monotone relation.
However, the same outline is bounded by the minimum CC number (1) and the expected maximum CC
number (CC is usually not higher than SLOC given a source code layout of one conditional statement
on a single line).

We do find some points above the expected maximum CC, which we found out to be generated
code and code with dozens of Boolean operators on one single line.

In previous work on the same Java corpus we reported the same data as plotted in Figure 9a in a
normal scatter plot (Figure 5 in our previous work [10]). There we observed several “lines” which
might be attributed to common code idioms. The current hexagonal plot does not show these lines
(see Section 3.5.2 which motivates hexagonal plots).

4.3. Pearson correlation

In Table IV, the first row shows the Pearson correlation over the whole corpus. The R2 of SLOC
and CC is 0.40 for Java and 0.44 for C. Figures 8a and 8b respectively depicts these linear fits,
CC = 0.92 + 0.15 · SLOC and CC = 1.70 + 0.16 · SLOC, as a solid black line. These R2 are much lower
than the related work in Table I, even if we focus on the related work at the subroutine/function/method
level.

The Pearson correlation after a log transform showed higher numbers, which are more in line
with related work that also applies a log transform [6, 43, 46, 47]. The fit for Java, the dashed line
in Figures 8a and 9a, is log10(CC) = −0.28 + 0.65 · log10(SLOC) ⇔ CC = 10−0.28 · SLOC0.65. The fit
for C (Figures 8b and 9b) is CC = 10−0.41 · SLOC0.79. More on the interpretation of this transform and
the results is discussed in Section 5.

As discussed earlier, the data is skewed towards small subroutines and simple control flow graphs.
Since 50% of Java’s method and 13% of C’s functions have a SLOC between 1 and 3, these points have
a high influence on the correlation. We could argue that the relation—between SLOC and CC—for
these smaller subroutines are less interesting. Therefore, to test Hypothesis 6, Table IV also shows

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 17

0

100

200

300

400

500

0 500 1000 1500

SLOC

C
C

(a) Java

0

100

200

300

400

500

0 500 1000 1500

SLOC

C
C

(b) C

Figure 8. Scatter plots of SLOC vs CC zoomed in on the bottom left quadrant. The solid and dashed lines are
the linear regression before and after the log transform. The grayscale gradient of the hexagons is logarithmic.

1

10

100

1000

4000

1 10 100 1000 4000

SLOC

C
C

(a) Java

1

10

100

1000

4000

1 10 100 1000 4000

SLOC

C
C

(b) C

Figure 9. Scatter plots of SLOC vs CC on a log-log scale. The solid and dashed lines are the linear regression
before and after the log transform. The grayscale gradient of the hexagons is logarithmic.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

18 D LANDMAN ET AL.

(a) Java

(b) C

Figure 10. Box plots of CC per SLOC on the lower range, illustrating the wide spread of Figure 9a and
Figure 9b. The median is the black line in the box, bottom and top of the box are the first and third quartile,

the hinges are at the traditional 1.57 ∗ inter-quartile range [72].

the Pearson correlations for parts of the tail of the SLOC variable§§. Each row shows a different
percentage of the tail of the data, and the minimum SLOC for that part.

Perhaps surprisingly the higher the minimum SLOC—Table IV—the worse the correlation. This
directly contradicts results from Herraiz and Hassan [47], who reported improving correlations for
higher regions of SLOC. However, Jbara et al. [8] also reported decreasing correlations, except that
they looked at higher CC instead of SLOC.

In three papers we cited earlier [32, 41, 43] the largest subroutines are removed from the data
before calculating correlation strength, as opposed to removing the smallest subroutines (see above).
To be able to compare we report in Table V the effect of removing different percentages of the tail
(related to Hypothesis 7). We mention the maximum SLOC which is still included in each sub-set.

We further explore removing both the smallest and the largest subroutines. We observed that for
a fixed maximum SLOC, increasing the minimum SLOC results in lower R2 (similarly to Table IV).
We further observe that for a fixed minimum SLOC, increasing the maximum SLOC results in the
increase of R2 followed by the decrease (similarly to Table V). Finally we observe that the optimal
R2 values are obtained when no small subroutines are eliminated and the maximum SLOC is 130 for
Java (R2 = 0.60) and 430 for C (R2 = 0.67). While the optimal R2 values seem to be quite close, the
maximum SLOC for C exceeds the maximum SLOC for Java by more than three times. This factor is

§§Normal quantiles do not make sense for this data since the first few buckets would hold most of the data points for
only a few of the CC and SLOC values (e.g. 1–4)

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 19

Table IV. Correlations for part of the tail of the independent variable SLOC. All correlations have a high
significance level (p ≤ 1 × 10−16).

(a) Java methods

Min. SLOC Coverage R2 log R2 ρ Methods

1 100% 0.40 0.68 0.80 17 633 256
3 50% 0.37 0.58 0.74 8 816 628
5 40% 0.36 0.50 0.67 7 053 303
9 25% 0.34 0.38 0.60 4 408 314

11 20% 0.33 0.33 0.57 3 526 652
20 10% 0.30 0.20 0.50 1 763 326
77 1% 0.21 0.03 0.33 176 333

230 0.100% 0.14 0.00 0.21 17 634
688 0.010% 0.08 0.00 0.17 1764

(b) C functions

Min. SLOC Coverage R2 log R2 ρ Functions

1 100% 0.44 0.71 0.83 6 259 031
12 50% 0.42 0.52 0.71 3 129 516
16 40% 0.41 0.47 0.68 2 503 613
27 25% 0.39 0.37 0.64 1 564 758
33 20% 0.38 0.33 0.62 1 251 807
56 10% 0.36 0.22 0.56 625 904

218 1% 0.28 0.05 0.39 62 591
703 0.100% 0.20 0.01 0.30 6260

2627 0.010% 0.12 0.00 0.01 626

Table V. Correlations for part tail of the independent variable SLOC removed. All correlations have a high
significance level (p ≤ 1 × 10−16).

(a) Java methods

Max. SLOC Coverage R2 log R2 ρ Methods

33 851 100% 0.40 0.68 0.80 17 633 256
934 99.995% 0.53 0.68 0.80 17 632 374
688 99.990% 0.54 0.68 0.80 17 631 492
230 99.900% 0.59 0.68 0.80 17 615 622

77 99% 0.59 0.67 0.79 17 456 923
20 90% 0.51 0.55 0.74 15 869 930
11 80% 0.43 0.41 0.66 14 106 604

9 75% 0.37 0.32 0.60 13 224 942
5 60% 0.07 0.04 0.28 10 579 953
3 50% 0.00 0.00 0.02 8 816 628

(b) C functions

Max. SLOC Coverage R2 log R2 ρ Functions

44 881 100% 0.44 0.71 0.83 6 259 031
3715 99.995% 0.63 0.71 0.83 6 258 718
2622 99.990% 0.63 0.71 0.83 6 258 405

703 99.900% 0.67 0.70 0.83 6 252 771
218 99% 0.66 0.69 0.83 6 196 440

56 90% 0.56 0.61 0.80 5 633 127
33 80% 0.47 0.54 0.75 5 007 224
27 75% 0.44 0.50 0.73 4 694 273
16 60% 0.33 0.38 0.65 3 755 418
12 50% 0.26 0.29 0.59 3 129 515

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

20 D LANDMAN ET AL.

−100

−10

−1

0

1

10

100

0 1 10 100 1000 4000

SLOC

R
e
s
id
u
a
l

(a) Java

−100

−10

−1

0

1

10

100

0 1 10 100 1000 4000

SLOC

R
e
s
id
u
a
l

(b) C

Figure 11. Residual plot of the linear regressions after the log transform, both axis are on a log scale. The
grayscale gradient of the hexagons is logarithmic.

reminiscent of the apparent ratios between 1st quartile, median, mean, and 3rd quartile of the Java
and C corpora in Table III.

As we will discuss in Section 5, the increasing variance in both dimensions causes the largest
subroutines have a large effect on linear correlation strength. To dig further we did read the code of a
number of elements in these long tails (selected using a random number generator). For Java we read
ten methods out of 1762 with SLOC > 688 and for C we also read ten functions out of the 652 with
SLOC > 2622. We observed that five out of these ten methods in Java were clearly generated code
and four out of the ten sampled C functions as well.

We further analyze the strength of the linear correlation after log transform (Hypothesis 5).
Figure 11 shows the residual plot of the dashed line shown in the scatter-plots. A residual plot
displays the difference between the prediction and the actual data. For a good model, the error should
contain no pattern, and have a random distribution around the zero-line. Here we clearly see the
variance in CC increasing as SLOC increases. This further supports results from Table IV, where the
prediction error for CC grows with higher SLOC.

This increasing variance we observed is a form of heteroscedasticity. Heteroscedasticity refers
to the non-constant variance of the relation between two variables. The Breusch-Pagan test [73]
confirmed (p < 2.20 × 10−16) that the relation between CC and SLOC is indeed heteroscedastic
for both Java and C. Heteroscedasticity may bias estimated standard errors for the regression
parameters [73] making the interpretation of the linear regression potentially error-prone.

4.4. Alternative explanations

This subsection will explorer alternative explanations to further understand the impact of different
choices made by related work (Section 2.2).

4.4.1. CC variant As discussed in Section 2.1, there is confusion on which AST nodes should be
counted for CC. To understand the effect of this confusion on the correlation, we have also calculated
the CC without counting the && and || Boolean operators. The CC changed for 1.3 M of the 17.6 M
Java methods, of with the CC of 74.2 K methods changed by more than 50%. For C, 1.5 M of the
6.3 M functions had a different CC, of which the CC of 73.3 K functions changed by more than 50%.
However, this change has negligible effect on correlation. For Java, the R2 changed from 0.40 to 0.41
and for C it stayed at 0.44. Similarly small effects were observed for other ranges of Table IV and V.

4.4.2. Aggregation To investigate Hypothesis 3 we have also aggregated CC and SLOC on file level.
This A/B experiment isolates the factor of aggregation. In Table VI the “None” rows repeat the R2

before aggregation for Java and C (cf. the first rows in Tables V). The “File” rows show the R2 for
the aggregated CC and SLOC before and after the log transform.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 21

Table VI. Correlations (before and after a log transform) between the aggregated SLOC and CC metrics on a
file level (Hypothesis 3) and after summing only the bodies of the subroutines (Hypothesis 4). The first row

per language are a copy of the first rows in Tables V.

Language Aggregation R2 log R2

Java
None 0.40 0.68
File 0.64 0.87∑

Method 0.73 0.90

C
None 0.44 0.71
File 0.39 0.84∑

Function 0.70 0.90

0

500

1000

1500

2000

0 2000 4000 6000

SLOC

C
C

(a) Java

0

500

1000

1500

2000

0 2000 4000 6000

SLOC

C
C

(b) C

Figure 12. Scatter plots of SLOC vs CC for Java and C files. The solid and dashed lines are the linear regression
before and after the log transform. The grayscale gradient of the hexagons is logarithmic.

Figure 12 shows the hexagonal scatter plots for the aggregation on file level. The two black lines
show the linear regression before and after the log transform. The dashed line is the regression after
log transform. It can be observed that for larger files these regressions do not seem to fit the data, i.e.
smaller files dominate the fitting of the regression line.

Since the previous experiment includes the confounding factor of header size, we now report on
another A/B test to investigate Hypothesis 4. We aggregate the subroutine values of CC and SLOC on
file level. The “

∑
Method” and “

∑
Function” rows in Table VI indicate the increase of R2 both for

Java and C.
In Section 4.3 we showed how the non-constant variance (heteroscedasticity) causes the largest

subroutines to have a large impact on the correlations. To investigate the difference between file
level (Hypothesis 3) and subroutine level (Hypothesis 4) aggregation we also report the effect of
removing the largest files on the correlations. Removing the 5%�� largest files from Java (848 files)
and C (231 files)—similarly to Section 4.3—improves R2 to 0.83 (from 0.64) for Java and 0.64 for
C (from 0.39).

Digging further to see what kind of code could have such an large impact, we used a random
number generator to sample ten large files for both corpora (SLOC > 3601 for Java and SLOC >
19934 for C). We then manually inspected the source code in these files. Five out of ten files were
clearly generated code in the Java selection and nine out of ten in the C selection. Two of these
generated C files, were the result of a process called “amalgamation” where the developer includes
all hand-written code of a library project into a single file to help C compiler optimization or ease
deployment.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

22 D LANDMAN ET AL.

4.5. Spearman correlation

Although our main hypothesis is about linear Pearson correlation, we can compute Spearman’s
correlation to find out if there is a monotone relation. The results are also in Table IV and Table V,
showing reasonably high ρ values, but decreasing rapidly when we move out of the lower ranges
that the distribution skews towards.

This indicates that for the bulk of the data it is indeed true that a new conditional leads to a new
line of code; an unsurprising and much less profound observation than the acceptance or rejection
of Hypothesis 1. However, it is still interesting to observe the decline of the Spearman correlation
for higher SLOC which reflects the fact that many different combinations of SLOC and CC are being
exercised in the larger methods of the corpus.

5. DISCUSSION

Here we interpret the results from Section 4. Note that we only have results for Java and C and we
sometimes compare these informally to results on different programming languages summarized in
Table I.

5.1. Hypothesis 1—Strong Pearson correlation

Compared to R2 between 0.51 and 0.96 [6,8,23,24,29–31,34,35] summarized in Table I, our R2 of
0.40 and 0.44 are relatively low. This is reason enough to reject the hypothesis: for Java methods and
C functions there is no evidence of a strong linear correlation between SLOC and CC in these large
corpora, suggesting that—at least for Java and C—CC measures a different aspect of source code
than SLOC, or that other confounding factors are generating enough noise to miss the relation. Here
we focus on related work with the same aggregation level and without log transforms. We conclude
that these results, for different programming languages and smaller corpora, do not generalize to our
corpora. For higher aggregation levels see our discussion of Hypothesis 3 below.

The cause of the low R2 in our data seems to be the high variance of CC over the whole range of
SLOC. We observe especially that the variance seems to increase when SLOC increases: the density of
control flow statements for larger subroutines is not a constant. This heteroscedasticity is confirmed
by the Breusch-Pagan test. Of course the shape of the distribution influences the results as well,
which we investigate while answering Hypothesis 5.

There is no evidence for strong linear correlation between CC and SLOC. Lower R2 values can
be attributed to high variance of CC for the whole range of SLOC.

5.2. Hypothesis 2—No effect of Boolean operators

The results show that the corpora did not contain significant use of the short-circuit Boolean
operators. At least there is not enough support to change the conclusion of Hypothesis 1. We can
therefore not reject Hypothesis 2.

Nevertheless, the CC of 8% Java methods and 23% C functions that do use Boolean operators
are influenced. It is interesting to note that these subroutines sometimes had very long lines. These
subroutines would be missed when counting only SLOC or when ignoring the operators for CC.

What we conclude is that the difference between related work and our results cannot be explained
by a different version of CC, since changing it does not affect the correlation. Our recommendation
is that for Java and C, the CC computation should include the && and || Boolean operators, since
they do measure a part of the control flow graph as discussed in Section 2.

Lack of correlation can not be explained by including or excluding boolean operators in the
calculation of CC.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 23

5.3. Hypothesis 3 and 4—Effect of aggregation (sum)

Related work [5, 7, 9, 22, 25–28, 32, 33, 36–41, 43, 45–49] reported high correlations between CC
and SLOC on a larger than methods/functions/subroutines level. For Java we found similar high
correlation after aggregating CC and SLOC on a file level, however not for C. After removing the
largest 5%�� files for C, we also do not find better correlations. Hypothesis 3 can therefore not be
rejected for Java, but it is rejected for the C corpus. Hence, for the Java corpus we may conclude
that a high R2 is indeed caused by summing up CC. For the C corpus we investigated if another
influencing factor such as the variance in the header code (see Sections 2.3 and 4.4.2) could explain
the rejection of Hypothesis 3.

Hypothesis 4 was introduced, therefore, to investigate the impact of the header code (in files)
on the correlation values as opposed to summation of the values at the subroutine level. The only
difference between Hypotheses 3 and 4 is the inclusion or exclusion of SLOC outside the subroutine
bodies for the entire corpus. For Java and C we both found high correlations after aggregating CC
and SLOC on a subroutine level, i.e. taking the sum of the CC and SLOC for all subroutines in a file.
These observations support Hypothesis 4 (now also for the C corpus) and indicate that the variance
of SLOC in the header was indeed a confounding factor for the previous experiment. High correlation
between the number of methods and the number of fields reported by Grechanik et al. [70] might
explain why header size did not have confounding effect for Java. We conclude that Hypothesis 4 is
not rejected for both Java and C.

Previously we rejected Hypothesis 1—a strong Pearson correlation for non-aggregated data. So,
we have a strong indication that the related work reporting a high correlation based on a file level
aggregation is likely caused by the aggregation itself rather than a linear relation between SLOC and
CC. Since we cannot literally reproduce the data of the related work, this conclusion must remain a
conjecture, but the above experiments do isolate a strong effect of aggregation on our corpora.

In conclusion, the number of subroutines is a factor of system size and aggregation influences
the correlation positively. Similar observation has been made for the relation between SLOC and the
number of defects [52]. Therefore, we deem aggregated CC more unnecessary as level of aggregation
grows larger (classes, packages, systems). If CC should be aggregated for another (external) reason,
more advanced aggregation techniques such as econometric inequality indexes [52–54] should be
used rather than sum.

Summing CC and SLOC on a file level could have caused high correlations reported in related
work.

5.4. Hypothesis 5—Positive effect of the log transform

As reported in related work [6,43,46,47], a log transform indeed increases the R2 values (from 0.40
to 0.68 for Java and from 0.44 to 0.71 for C). Because of this we do not reject Hypothesis 5. This
finding agrees with the earlier observation on the impact of the log transform on R2 [58].

However, what does a high Pearson correlation after log transform suggest for the relation
between SLOC and CC? Does it have predictive power? Recall that the Pearson correlation estimates
a linear model like this: CC = α + β · SLOC. Hence, if the model after the log transform is
log10(CC) = α + β · log10(SLOC), then CC = 10α · SLOCβ which implies the non-linear and
monotonic model. Note that the R2 of 0.68 and 0.71 do not have a natural interpretation in this
non-linear model. Indeed, as recognised in the literature [74, 75] the log scale results must be
retransformed to the original scale leading to “a very real danger that the log scale results may
provide a very misleading, incomplete, and biased estimate of the impact of covariates on the
untransformed scale, which is usually the scale of ultimate interest” [74]. The experiment resulting
in a Spearman ρ at 0.80 and 0.83 do confirm the monotonicity as well as the correlation, but it does
not help interpreting these results.

Comparing this R2 after the log transform to the R2 before transformation is a complex matter;
indeed the literature suggests that the R2 values are not comparable [57, 58]. In the lower range
of SLOC and CC, the effect of the log transform is small, however as SLOC increases, so does the
impact of the transform. Furthermore, the variance of the model after the transform increases a lot

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

24 D LANDMAN ET AL.

with higher SLOC as well (see Figure 11). We conclude that the observations of a R2 being higher
after transform reinforce the conclusion of Hypothesis 1 (there is no strong Pearson correlation),
but do not immediately suggest that there exists an exponential relation between SLOC and CC. The
variance is too high and not predictable enough.

In combination with aggregation (sum) log transform has lead to the highest R2 values observed
(cf. Table VI). However, the regression lines do not fit the data for larger files (cf. Figure 12). This
is caused by the heavy skew of the distributions towards the smaller values.

What we conclude is that the relatively high correlation coefficients after a log transform in
literature are reinforced by our own results. These results provide no evidence of CC being redundant
to SLOC because the non-linear model cannot easily be interpreted with accuracy.

A log transform increases the R2 values between CC and SLOC, however, interpreting the model
in terms of the untransformed variables is complex.

5.5. Hypothesis 6 and 7—Positive effect of zooming

The final try was to find linear correlation on parts of the data, in order to compensate for the shape
of distributions. Our results show that zooming in on tails reduced the correlation, while zooming
in on the heads improved it for the 80%–100% range. Intuitively, if we remove all elements from
the tail of the distributions then we may achieve the highest R2 (0.59 for Java and 0.67 for C).

Based on the data we reject Hypothesis 6 (hypothesizing an effect of the smallest elements) and
we do not reject Hypothesis 7 (hypothesizing an effect of a long tail). These results are corroborated
in Table IV and Table V, showing log transforms only improving correlations for the whole range.

We interpret the large effect of tail elements to the increasing variance with high SLOC
(heteroscedasticity), rather than label them as “outliers”. There is no reason to assume the code
is strange, erroneous or false more than the elements in the prefix of the data can be considered
strange. The benefit of having the two big corpora is that there are enough elements in the tail to
reason about their effect with confidence.

Our analysis, however, does motivate that (depending on the goals of measuring source code) tool
vendors may choose to exclude elements from the tail when designing their predictive or qualitative
models. Note however that even the head of the data suffers from heteroscedasticity so the same tool
vendors should still not assume a linear model between SLOC and CC.

The results for Hypothesis 6 and Hypothesis 7 support our original interpretation for the main
Hypothesis 1: CC is not redundant for Java methods or C functions. Nevertheless, the data also
shows enormous skew towards the smallest subroutines (2 or 3 lines), for which clearly CC offers
no additional insight over SLOC. If a Java system consists largely of very small methods, then its
inherent complexity is probably represented elsewhere which can be observed using OO specific
metrics such as the Chidamber and Kemerer suite [21].

For the larger subroutines, and even the medium sized subroutines, correlation decreases rapidly.
This means that for all but the smallest subroutines CC is not redundant. For example, looking at the
scatter-plot in Figure 8 and the box plots in Figure 10, we see that given a Java method of 100 SLOC,
CC has a range between 1 and 40, excluding the rare exceptions. In our Java corpus, there are still
104 K methods larger than or equal to 100 SLOC. For such larger Java methods, CC can be a useful
metric to further discriminate between relatively simple and more complex larger methods. We refer
to our previous work [1] and the work of Abran [55] for a discussion on the interpretation of the CC
metric on large subroutines.

Large subroutines have a negative influence on the correlations. They are not always generated
code, therefore, labeling them as outliers should be done with care.

5.6. Comparing Java and C

Java and C are different languages. While Java’s syntax is strongly influenced by C (and C++), the
languages represent different programming paradigms (respectively object-oriented programming

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 25

and procedural programming). While one could write procedural code in Java (the most common
model for C), OO style is encouraged and expected.

In our corpora C functions are larger and have more control flow than Java methods
(Figures 7 and 8). Future work could investigate whether this difference is caused by the difference
in programming paradigm and coding idioms or this is caused by another factor such as application
domain.

Note that the mode of both SLOC and CC are the same for Java and C. We also observe similar
shapes in the scatter plots (Figures 8 and 9): both corpora feature increasingly high variance. We
must conclude that although the corpora quantitatively have a different relation between CC and
SLOC, qualitatively we come to the same conclusions of a relatively weak linear correlation.

On the one hand, for the C language we observed that after aggregation to the file level the
correlation strength went down. We attributed the cause to the SLOC of C header code (the code
outside the function bodies) having high variance. This obscures the relation between SLOC and CC
for the C language on the file level, which was confirmed by testing for an increased correlation
strength after measuring only the SLOC sum of functions per file. On the other hand, for Java it
appears the header code is not a confounding factor. Again, this is not the point of the current paper,
but we conjecture that the stronger encapsulation primitives which Java offers bring upon a stronger
relation (cohesion) between header code and subroutine bodies.

The differences between C and Java code do not offer additional insight for the relation
between SLOC and CC in open source code, other than an increased external validity of the
analysis of Hypothesis 1. Our conclusions hold for both languages.

5.7. Threats to Validity

Next to the threats to validity we have identified in the experimental setup (Section 3) and the
previous discussion, we further discuss a few other important threats to validity here.

5.7.1. Construct validity Construct validity pertains to our ability to model the abstract hypothesis
using the variables we have measured [76]. We do not believe our study to be subject to construct
validity threats since the abstract hypothesis we have tested (Hypothesis 1) has already been
formulated in terms of measurable variables (SLOC, CC and R2) as opposed to more abstract
constructs (e.g., maintainability or development effort).

As to the use of Pearson’s coefficient, this was motivated by its common use in related work
which we tried to replicate. Our negative conclusions, meaning we deem the observed R2 values
significantly lower, are subject to the critical examination of the reader.

5.7.2. Internal validity We have tested the tools we developed for our experiments and compared
the output to manually expected results and other free and open-source metric tools. Moreover, to
mitigate any unknown issues and to allow for full reproducibility, we have also published both our
data and scripts at http://homepages.cwi.nl/~landman/jsep2015/.

To handle the preprocessor statements in C we have used a heuristic (see Section 3). This heuristic
filtered away 7% of the code in the corpus. We also filtered all C files with unbalanced braces which
may have been introduced by the aforementioned pre-processor heuristics —not a } for every {.
This removed 4 K files (0.50%) from the corpus. There is no reason to expect these filters have
introduced a bias for either the SLOC or the CC variables, but without these filters the corpus would
have contained invalid data.

Different from related work [47], we chose not to exclude all .h files (see Section 3.4). If we do
ignore all .h files the R2 for the subroutine level changes from 0.435 to 0.441, i.e. both 0.44 when
rounded to two significant digits.

5.7.3. External validity Both our corpora were constructed from open source software projects
containing either Java or C code. Therefore, our results should not be immediately generalized
to proprietary software or software written in other programming languages. We should observe

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://homepages.cwi.nl/~landman/jsep2015/

26 D LANDMAN ET AL.

●

●●●●

●●

0.00

0.25

0.50

0.75

1.00

Java C log(Java) log(C)

(a) Subroutine

●

●●●●●●●●

●●●●●●

0.00

0.25

0.50

0.75

1.00

Java C log(Java) log(C)

(b) File

Figure 13. Boxplots of the R2, for the different transformations, for 1000 randomly sampled subcorpora of
half the size. The ∗ denotes the R2 for the full corpus.

that although both languages and their respective corpora are significantly different, we do arrive at
similar conclusions regarding our hypotheses. We therefore conjecture that given a comparably large
corpus for C-like programming languages (e.g., C++, Pascal, C#) the results should be comparable.
A recent study of rank-based correlation between CC and SLOC in Scala GitHub repositories [77]
suggests that our results might be valid for Scala as well. While CC adaptations have also been
proposed for such languages as Miranda [78] and Prolog [79], those adaptations are quite remote
from the original notion of CC as introduced by McCabe [15] and therefore the relation between CC
and SLOC for these languages might be very different.

Moreover, we are aware that the size of the corpus may be a confounding factor and
therefore should be investigated [80] and that our study might have been biased by presence of
certain accidental data-points in our corpora. Therefore, we performed an additional sensitivity
analysis [81] for which the results are reported below. To assess whether the size of the corpus has
an important influence on the result, we test whether the strength of the linear correlation between
SLOC and CC is similar for randomly selected sub-corpora of half the size. Figure 13 shows the
distribution of R2 values for 1000 random sub-corpora.

The medians of the R2 values are very close—up to two significant digits—to the R2 of the
full corpora. However, there is a visible spread for the non-transformed variables, before and after
aggregation on file level. The log transform has a clearly stabilizing effect due to compression of the
tail. Because of the latter observation, we argue once more that the observed effects can be explained
by the increasing variance in the tail of the data (cf. Table V). Randomly selected sub-sets filter a
number of elements from the tail, explaining the spread between the 1000 experiments. Moreover,
the R2 in these experiments are not contradicting our previous discussion of the hypotheses.

The above experiment mitigates the risk of the size factor confounding our observations and
conclusions: it can be expected that for random sub-corpora of half the size the correlation strength
is the same as for the full corpora. In contrast we believe that the large size of the corpora has made
it possible to observe the relation between CC and SLOC on arbitrary real-world code with no other
known biases.

6. CONCLUSION

The main question of this paper was if CC correlates linearly with SLOC and if that would mean that
CC is redundant. In summary, as opposed to the majority of the previous studies we did not observe
a strong linear correlation between CC and SLOC of Java methods and C functions. Therefore, we do
not conclude that CC is redundant with SLOC.

Factually, on our large corpora of Java methods and C functions we observed (Section 4):

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 27

• CC has no strong linear correlation with SLOC on the subroutine level.
• The variance of CC over SLOC increases with higher SLOC.
• Ignoring && and || has no influence on the correlation.
• Aggregating CC and SLOC over files improves the strength of the correlation.
• A log transform improves the strength of the correlation.
• The correlation is lower for larger (SLOC) methods and functions.
• Excluding the largest methods and functions improves the strength of the correlation.
• The largest methods and functions are not just generated code, and therefore, should not be

ignored when studying the relation between SLOC and CC.

From our interpretation of this data (Section 5) we concluded that:

• CC summed over larger code units measures an aspect of system size rather than internal
complexity of subroutines. This largely explains the often reported strong correlation between
CC and SLOC in literature.
• Higher variance of CC over SLOC observed in our study as opposed to the related work can be

attributed to our choice for much larger corpora, enabling one to observe many more elements.
• The higher correlation after a log transform, supporting results from literature, should not be

interpreted as a reason for discarding CC.
• All the linear models suffered from heteroscedasticity, i.e. non-constant variance, further

complicating their interpretation.

Our work follows the ongoing trend of empirically re-evaluating (or even replicating [82]) earlier
software engineering claims (cf. [83, 84]). In particular we believe that studying big corpora allows
to observe features of source code that would otherwise be missed [85].

REFERENCES

1. Vinju JJ, Godfrey MW. What does control flow really look like? Eyeballing the Cyclomatic Complexity Metric.
9th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM), IEEE Computer
Society, 2012.

2. von Mayrhauser A, Vans AM. Program comprehension during software maintenance and evolution. IEEE Computer
1995; 28(8):44–55.

3. Baggen R, Correia JP, Schill K, Visser J. Standardized code quality benchmarking for improving software
maintainability. Software Quality Journal 2012; 20(2):287–307, doi:10.1007/s11219-011-9144-9.

4. Heitlager I, Kuipers T, Visser J. A practical model for measuring maintainability. Proceedings of 6th International
Conference on Quality of Information and Communications Technology, 2007; 30–39.

5. Sheppard SB, Curtis B, Milliman P, Borst MA, Love T. First-year results from a research program on human factors
in software engineering. AFIPS Conference Proceedings, vol. 48, New York, NY, USA, 1979; 1021–1027.

6. Feuer AR, Fowlkes EB. Some Results from an Empirical Study of Computer Software. Proceedings of the 4th
International Conference on Software Engineering, ICSE ’79, IEEE Press: Piscataway, NJ, USA, 1979; 351–355.

7. Basili VR, Perricone BT. Software errors and complexity: an empirical investigation. Communications of the ACM
1984; 27(1):42–52.

8. Jbara A, Matan A, Feitelson DG. High-MCC Functions in the Linux Kernel. Empirical Software Engineering 2014;
19(5):1261–1298, doi:10.1007/s10664-013-9275-7.

9. Fenton N, Ohlsson N. Quantitative analysis of faults and failures in a complex software system. Software
Engineering, IEEE Transactions on Aug 2000; 26(8):797–814, doi:10.1109/32.879815.

10. Landman D, Serebrenik A, Vinju JJ. Empirical analysis of the relationship between CC and SLOC in a large corpus
of Java methods. 30th IEEE International Conference on Software Maintenance and Evolution, ICSME 2014, IEEE,
2014; 221–230, doi:10.1109/ICSME.2014.44.

11. Linstead E, Bajracharya SK, Ngo TC, Rigor P, Lopes CV, Baldi P. Sourcerer: mining and searching
internet-scale software repositories. Data Mining and Knowledge Discovery 2009; 18(2):300–336, doi:10.1007/
s10618-008-0118-x.

12. Shepperd M. A critique of cyclomatic complexity as a software metric. Software Engineering Journal Mar 1988;
3(2):30–36, doi:10.1049/sej.1988.0003.

13. Curtis B, Carleton A. Seven plus ± two software measurement conundrums. Proceedings of the Second
International Software Metrics Symposium, 1994; 96–105.

14. Conte SD, Dunsmore HE, Shen VY. Software Engineering Metrics and Models. Benjamin-Cummings Publishing
Co., Inc.: Redwood City, CA, USA, 1986.

15. McCabe TJ. A complexity measure. IEEE Transactions Software Engineering 1976; 2(4):308–320.
16. Lincke R, Lundberg J, Löwe W. Comparing software metrics tools. Proceedings of the 2008 International

Symposium on Software Testing and Analysis, ISSTA ’08, ACM: New York, NY, USA, 2008; 131–142, doi:
10.1145/1390630.1390648.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

28 D LANDMAN ET AL.

17. Myers GJ. An extension to the cyclomatic measure of program complexity. SIGPLAN Notices October 1977;
12(10):61–64, doi:10.1145/954627.954633.

18. Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. 18th
International Conference on Evaluation and Assessment in Software Engineering, EASE, ACM, 2014; 38:1–38:10,
doi:10.1145/2601248.2601268.

19. Wohlin C, Runeson P, da Mota Silveira Neto PA, Engström E, do Carmo Machado I, de Almeida ES. On the
reliability of mapping studies in software engineering. Journal of Systems and Software 2013; 86(10):2594 – 2610,
doi:10.1016/j.jss.2013.04.076.

20. Kitchenham B, Charters S. Guidelines for performing Systematic Literature Reviews in Software Engineering.
Technical Report EBSE 2007-001, Keele University and Durham University Joint Report 2007.

21. Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Transactions on Software Engineering
Jun 1994; 20(6):476–493, doi:10.1109/32.295895.

22. Malhotra R, Singh Y. On the applicability of machine learning techniques for object oriented software fault
prediction. Software Engineering: An International Journal 2011; 1:24–37.

23. Curtis B, Sheppard SB, Milliman P. Third Time Charm: Stronger Prediction of Programmer Performance by
Software Complexity Metrics. Proceedings of the 4th International Conference on Software Engineering, ICSE
’79, IEEE Press: Piscataway, NJ, USA, 1979; 356–360.

24. Woodward MR, Hennell MA, Hedley D. A measure of control flow complexity in program text. IEEE Transactions
on Software Engineering Jan 1979; 5(1):45–50, doi:10.1109/TSE.1979.226497.

25. Paige M. A metric for software test planning. Conference Proceedings of COMPSAC 80, 1980; 499–504.
26. Sunohara T, Takano A, Uehara K, Ohkawa T. Program complexity measure for software development management.

Proceedings of the 5th International Conference on Software Engineering, ICSE ’81, IEEE Press: Piscataway, NJ,
USA, 1981; 100–106.

27. Li H, Cheung W. An Empirical Study of Software Metrics. IEEE Transactions on Software Engineering June 1987;
SE-13(6):697–708, doi:10.1109/TSE.1987.233475.

28. Kitchenham B, Pickard L. Towards a constructive quality model. part 2: Statistical techniques for modelling
software quality in the esprit request project. Software Engineering Journal July 1987; 2(4):114–126, doi:
10.1049/sej.1987.0015.

29. Lind RK, Vairavan K. An Experimental Investigation of Software Metrics and Their Relationship to Software
Development Effort. IEEE Transactions on Software Engineering May 1989; 15(5):649–653, doi:10.1109/32.
24715.

30. Lewis J, Henry S. A methodology for integrating maintainability using software metrics. Software Maintenance,
1989., Proceedings., Conference on, 1989; 32–39, doi:10.1109/ICSM.1989.65191.

31. Gorla N, Benander A, Benander BA. Debugging effort estimation using software metrics. IEEE Transactions on
Software Engineering 1990; 16(2):223–231.

32. Henry S, Selig C. Predicting source-code complexity at the design stage. Software, IEEE March 1990; 7(2):36–44,
doi:10.1109/52.50772.

33. Gill GK, Kemerer CF. Cyclomatic Complexity Density and Software Maintenance Productivity. IEEE Transactions
on Software Engineering Dec 1991; 17(12):1284–1288, doi:10.1109/32.106988.

34. O’Neal MB. An Empirical Study of Three Common Software Complexity Measures. Proceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice, SAC ’93, ACM: New York, NY,
USA, 1993; 203–207, doi:10.1145/162754.162867.

35. Kemerer CF, Slaughter SA. Determinants of software maintenance profiles: An empirical investigation. Journal of
Software Maintenance Jul 1997; 9(4):235–251.

36. Graves T, Karr A, Marron J, Siy H. Predicting fault incidence using software change history. Software Engineering,
IEEE Transactions on Jul 2000; 26(7):653–661, doi:10.1109/32.859533.

37. El Emam K, Benlarbi S, Goel N, Rai SN. The confounding effect of class size on the validity of object-oriented
metrics. IEEE Transactions on Software Engineering 2001; 27(7):630–650.

38. Succi G, Benedicenti L, Vernazza T. Analysis of the effects of software reuse on customer satisfaction in an RPG
environment. IEEE Transactions on Software Engineering May 2001; 27(5):473–479, doi:10.1109/32.922717.

39. Martin C, Pasquier J, Yanez C, Tornes A. Software development effort estimation using fuzzy logic: a case
study. Sixth Mexican International Conference on Computer Science, 2005., ENC 2005, 2005; 113–120, doi:
10.1109/ENC.2005.47.

40. Schneidewind N. Software reliability engineering process. Innovations in Systems and Software Engineering 2006;
2(3-4):179–190, doi:10.1007/s11334-006-0007-7.

41. van der Meulen MJ, Revilla MA. Correlations Between Internal Software Metrics and Software Dependability
in a Large Population of Small C/C++ Programs. Proceedings of the The 18th IEEE International Symposium
on Software Reliability, ISSRE ’07, IEEE Computer Society: Washington, DC, USA, 2007; 203–208, doi:
10.1109/ISSRE.2007.6.

42. Capiluppi A, Fernandez-Ramil J. A model to predict anti-regressive effort in open source software. IEEE
International Conference on Software Maintenance, 2007, ICSM 2007, 2007; 194–203, doi:10.1109/ICSM.2007.
4362632.

43. Herraiz I, Gonzalez-Barahona JM, Robles G. Towards a Theoretical Model for Software Growth. Proceedings of the
Fourth International Workshop on Mining Software Repositories, MSR ’07, IEEE Computer Society: Washington,
DC, USA, 2007; 21:1–21:8, doi:10.1109/MSR.2007.31.

44. Hindle A, Godfrey M, Holt R. Reading beside the lines: Indentation as a proxy for complexity metric. IEEE
International Conference on Program Comprehension, 2008; 133–142, doi:10.1109/ICPC.2008.13.

45. Bianco M, Kaneider D, Sillitti A, Succi G. Fault-proneness estimation and java migration: A preliminary case study.
Proceedings of the Software Services Semantic Technologies Conference (S3T 2009), 2009; 124–131.

46. Jay G, Hale JE, Smith RK, Hale DP, Kraft NA, Ward C. Cyclomatic Complexity and Lines of Code: Empirical
Evidence of a Stable Linear Relationship. Journal of Software Engineering and Applications 2009; 2(3):137–143.

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN CC AND SLOC 29

47. Herraiz I, Hassan AE. Beyond lines of code: Do we need more complexity metrics? Making Software What Really
Works, and Why We Believe It. chap. 8, O’Reilly Media, 2010; 126–141.

48. Ma YT, He KQ, Li B, Liu J, Zhou XY. A hybrid set of complexity metrics for large-scale object-oriented software
systems. Journal of Computer Science and Technology 2010; 25(6):1184–1201, doi:10.1007/s11390-010-9398-x.

49. Tashtoush Y, Al-Maolegi M, Arkok B. The correlation among software complexity metrics with case study.
International Journal of Advanced Computer Research 2014; 4(2):414–419.

50. Yu L, Mishra A. An empirical study of Lehman’s law on software quality evolution. International Journal of
Software & Informatics 2013; 7(3):469–481.

51. Posnett D, Filkov V, Devanbu P. Ecological inference in empirical software engineering. 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2011; 362–371, doi:10.1109/ASE.2011.
6100074.

52. Vasilescu B, Serebrenik A, van den Brand MGJ. By no means: A study on aggregating software metrics. 2nd
International Workshop on Emerging Trends in Software Metrics, WETSoM, ACM, 2011; 23–26.

53. Vasilescu B, Serebrenik A, van den Brand MGJ. You can’t control the unfamiliar: A study on the relations between
aggregation techniques for software metrics. IEEE 27th International Conference on Software Maintenance,
ICSM2011, 2011; 313–322, doi:10.1109/ICSM.2011.6080798.

54. Mordal K, Anquetil N, Laval J, Serebrenik A, Vasilescu B, Ducasse S. Software quality metrics aggregation in
industry. Journal of Software: Evolution and Process 2013; 25(10):1117–1135, doi:10.1002/smr.1558.

55. Abran A. Cyclomatic complexity number: Analysis of its design. Software Metrics and Software Metrology. chap. 6,
Wiley-IEEE Computer Society Pr, 2010; 131–143.

56. Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures. 4 edn., Chapman & Hall/CRC,
2007.

57. Kvålseth TO. Cautionary note about R2. The American Statistician 1985; 39(4):279–285.
58. Loehle C. Proper statistical treatment of species-area data. Oikos 1990; 57(1):143–145.
59. Troster J, Tian J. Measurement and Defect Modeling for a Legacy Software System. Annals of Software Engineering

1995; 1:95–118, doi:10.1007/BF02249047.
60. Landman D. A Curated Corpus of Java Source Code based on Sourcerer (2015). http://persistent-identifier.

org/?identifier=urn:nbn:nl:ui:18-23357 2015. [25 February 2015].
61. GitHub. Linguist: Language savant. https://github.com/github/linguist 2015. [10 February 2015].
62. Landman D. A Large Corpus of C Source Code based on Gentoo packages. http://persistent-identifier.org/

?identifier=urn:nbn:nl:ui:18-23154 2015. [10 February 2015].
63. Basten B, Hills M, Klint P, Landman D, Shahi A, Steindorfer M, Vinju J. M3: a General Model for Code Analytics

in Rascal . Proceedings of the first International Workshop on Software Analytics, SWAN, 2015. [To appear].
64. Klint P, van der Storm T, Vinju JJ. RASCAL: A Domain Specific Language for Source Code Analysis and

Manipulation. Proceedings of the 9th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM), IEEE, 2009; 168–177, doi:10.1109/SCAM.2009.28.

65. Carr DB, Littlefield RJ, Nicholson WL, Littlefield JS. Scatterplot Matrix Techniques for Large N. Journal of the
American Statistical Association 1987; 82(398):424–436.

66. Pearson K. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of
London 1895; 58:240–242.

67. Edgell SE, Noon SM. Effect of violation of normality on the t test of the correlation coefficient. Psychological
Bulletin 1984; 95(3):576–583.

68. Spearman C. The proof and measurement of association between two things. The American Journal of Psychology
1904; 15(1):72–101.

69. Joanes DN, Gill CA. Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society:
Series D (The Statistician) 1998; 47(1):183–189, doi:10.1111/1467-9884.00122.

70. Grechanik M, McMillan C, DeFerrari L, Comi M, Crespi S, Poshyvanyk D, Fu C, Xie Q, Ghezzi C. An empirical
investigation into a large-scale java open source code repository. Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ACM: New York, NY, USA, 2010; 11:1–11:10,
doi:10.1145/1852786.1852801.

71. Munson JC, Kohshgoftaar TM. Measurement of data structure complexity. Journal of Systems and Software 1993;
20(3):217–225, doi:10.1016/0164-1212(93)90065-6.

72. Chambers JM, William S Cleveland BK, Tukey PA. Comparing Data Distributions. Graphical Methods for Data
Analysis. chap. 2, Chapman and Hall: New York, 1983.

73. Breusch T, Pagan A. A simple test for heteroscedasticity and random coefficient variation. Econometrica Sep 1979;
47(5):1287–1294.

74. Manning WG. The logged dependent variable, heteroscedasticity, and the retransformation problem. Journal of
Health Economics 1998; 17(3):283–295, doi:10.1016/S0167-6296(98)00025-3.

75. Feng C, Wang H, Lu N, Tu XM. Log transformation: application and interpretation in biomedical research. Statistics
in Medicine 2013; 32(2):230–239, doi:10.1002/sim.5486.

76. Perry DE, Porter AA, Votta LG. Empirical studies of software engineering: A roadmap. Proceedings of the
Conference on The Future of Software Engineering, ICSE ’00, ACM: New York, NY, USA, 2000; 345–355, doi:
10.1145/336512.336586.

77. Coleman R, Johnson MA. A study of scala repositories on github. International Journal of Advanced Computer
Science and Applications 2014; 5(7):141–148.

78. van den Berg KG. Software measurement and functional programming. PhD Thesis, University of Twente,
Enschede, the Netherlands, Enschede June 1995.

79. Moores TT. Applying complexity measures to rule-based prolog programs. Journal of Systems and Software 1998;
44(1):45–52, doi:10.1016/S0164-1212(98)10042-0.

80. Rahman F, Posnett D, Herraiz I, Devanbu P. Sample size vs. bias in defect prediction. Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, ACM: New York, NY, USA, 2013;

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23357
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23357
https://github.com/github/linguist
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23154
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23154

30 D LANDMAN ET AL.

147–157, doi:10.1145/2491411.2491418.
81. Saltelli A, Tarantola S, Campolongo F. Sensitivity analysis as an ingredient of modeling. Statistical Science 2000;

15(4):377–395.
82. Shull FJ, Carver JC, Vegas S, Juristo N. The role of replications in empirical software engineering. Empirical

Software Engineering 2008; 13(2):211–218, doi:10.1007/s10664-008-9060-1.
83. Khomh F, Adams B, Dhaliwal T, Zou Y. Understanding the impact of rapid releases on software quality. Empirical

Software Engineering 2014; 20(2):336–373, doi:10.1007/s10664-014-9308-x.
84. Ray B, Posnett D, Filkov V, Devanbu P. A Large Scale Study of Programming Languages and Code Quality in

Github. Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ACM: New York, NY, USA, 2014; 155–165, doi:10.1145/2635868.2635922.

85. Siegmund J, Siegmund N, Appel S. Views on internal and external validity in empirical software engineering. 37th
International Conference on Software Engineering, ACM, 2015. [To appear].

Copyright © 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

	Introduction
	Background theory
	Defining SLOC and CC
	Literature on the correlation between CC and SLOC
	Aggregating CC over larger units of code
	Data Transformations
	Corpus Bias

	Experimental setup
	Preparing the Java Corpus
	Preparing the C Corpus
	Measuring Java's SLOC and CC
	Measuring C's SLOC and CC
	Visualization & Statistics Methods
	Distributions
	Hexagonal Scatter plots
	Correlation
	Regression

	Results
	Distributions for Java and C
	Scatter plots
	Pearson correlation
	Alternative explanations
	CC variant
	Aggregation

	Spearman correlation

	Discussion
	Hypothesis 1—Strong Pearson correlation
	Hypothesis 2—No effect of Boolean operators
	Hypothesis 3 and 4—Effect of aggregation (sum)
	Hypothesis 5—Positive effect of the log transform
	Hypothesis 6 and 7—Positive effect of zooming
	Comparing Java and C
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Conclusion

