
Waiting around or job half-done? Sentiment in
self-admitted technical debt

Gianmarco Fucci∗, Nathan Cassee†, Fiorella Zampetti∗, Nicole Novielli‡, Alexander Serebrenik†, Massimiliano Di Penta∗
∗University of Sannio, Italy {gianmarco.fucci,fiorella.zampetti,dipenta}@unisannio.it

†Eindhoven University of Technology, The Netherlands {n.w.cassee,a.serebrenik}@tue.nl
‡University of Bari, Italy nicole.novielli@uniba.it

Abstract—Self-Admitted Technical Debt (SATD) represents
the admission, made through source code comments or other
channels, of portions of a program being poorly implemented,
containing provisional solutions or, in general, simply being not
ready yet. To better understand developers’ habits in SATD an-
notation, and possibly support their exploitation in tool support,
this paper provides an in-depth analysis of the content provided
in SATD comments, and the expressed sentiment. We manually
inspect and classify 1038 instances from an existing dataset,
grouping them along a taxonomy composed of 41 categories
(of which 9 top-level ones), identifying their sentiment, and the
presence of external references such as author names or issue
IDs. Results of our study indicate that (i) the SATD content
is crosscutting along life-cycle dimensions identified in previous
work, (ii) comments related to functional problems or on-hold
SATD are generally more negative than poor implementation
choices or partially implemented functionality, and (iii) despite
observations from previous literature, only a minority of SATD
comments leverage external references.

Index Terms—Self-Admitted technical debt; sentiment analy-
sis; empirical study

I. INTRODUCTION

Self-admitted technical debt (SATD) [1] are source code
comments indicating that the corresponding source code is
(temporarily) inadequate, e.g., because the implementation is
incomplete, buggy, or smelly. The identification of SATD
[2], [3], as well as its introduction or removal have attracted
significant attention of the research community [4]–[6].

To understand what kind of TD need to be addressed,
previous work also categorized SATD comments.
Categorizations of SATD proposed so far are based on
the phases of the software development process [7], [8]
and as such (a) miss the opportunity to identify concerns
transcending the boundaries of individual phases such as
waiting for other components to be ready, and (b) are
somewhat broad because the SATD content still lacks an
in-depth classification. Moreover, while SATD might manifest
at one phase of the software development phase, resolving
it might require activities typically associated with another
phase. For instance, the following SATD comment can
be expected to manifest during testing but its resolution
requires a bug to be fixed, a typical implementation activity:
“doesn’t work: Depending on the compression engine used,
compressed bytes may differ. False errors would be reported.
assertTrue(‘‘File content mismatch’’,

FILE_UTILS.contentEquals(. . .)));.” Hence, while
the existing classifications contribute to the understanding of
the SATD phenomenon, designing recommenders supporting
SATD resolution calls for a different categorization of the
highlighted problems. By providing a more fine-grained
classification of the problems experienced by contributors we
expect that more actionable insights can be obtained from
SATD. Thus, we ask the following research question:

RQ1: What kind of problems do SATD annotations
describe?

To address RQ1, we first take 1038 SATD comments
sampled from the dataset of Maldonado et al. [2] and perform a
fine-grained classification. We classify SATD comments from
the point of view of their textual content, as opposed to a
software development life-cycle, as it was done in previous
work [7], [8]. We create our taxonomy using a bottom-
up strategy (i.e., what do SATD comments mention?) rather
than top-down (i.e., how do SATD comments map onto a
software development life-cycle?). This leads us towards a
taxonomy featuring 9 top-level categories specialized into 32
sub-categories. The taxonomy spotlights categories that are, on
the one hand, crosscutting to the life-cycle and, on the other
hand, more related to the reasons why SATD was admitted
and to the goal developers are trying to achieve.

As projects might have hundreds of SATD comments [5],
resolving them requires prioritization. Specifically, previous
work by Pletea et al. [9] found that issues and pull requests
comments reporting security concerns convey more negative
sentiment than others. Furthermore, timely detection of neg-
ative emotions, such as frustration, might be leveraged to
identify and support developers experiencing difficulties [10],
thus preventing burnout and loss of productivity [11]. Similarly
to previous research [10], [12], [13] we conjecture that the
presence of a negative sentiment as a proxy to the comment
importance as perceived by the developers themselves. Addi-
tionally, we expect certain kind of problems discussed in the
SATD to be be associated with a stronger negative sentiment
than others. Therefore we ask:

RQ2: How is the sentiment polarity distributed
across different kinds of SATD annotations?

To address RQ2 we label sentiment polarity on the 1038
SATD comments used for addressing RQ1. We label as non-



negative all comments merely stating the problem or sug-
gesting an improvement, e.g., “TO DO : delete the file if it
is not a valid file,”. Conversely, we considered as negative
all comments expressing a negative attitude, e.g., “TODO :
YUCK!!! fix after HHH-1907 is complete”.

Surprisingly we observe that only 30% of the SATD
comments convey negative sentiment. To get a more re-
fined understanding of the way the sentiment is expressed in
SATD comments, we analyzed the extent to which different
categories of our taxonomy, as well as different categories
of Maldonado et al. [2], exhibit a different distribution of
sentiment polarity: we observe that the percentage of negative
comments associated with functional issues (49%) and waiting
(46%) is much higher than associated with an incomplete
implementation (13%).

Finally, SATD annotations are closely related to the task an-
notations studied by Storey et al. [14], as the task annotations
use similar keywords as the SATD comments considered in
this study. Storey et al. surveyed 70 developers to understand
what additional details they tend to record when adding
task annotations to the source code. Almost two-thirds of
the respondents declared that they add references to other
classes, methods, plug-ins, or modules; more than half of the
respondents include their name or initials in the source code
annotations, 44% include references to bugs, 30% to the URLs,
19% record the date, 10% record “memorable keywords” and
merely 13% do not add additional details. Using the dataset
collected to answer RQ1 and RQ2 we conduct a conceptual
replication [15] of this study and ask:

RQ3: To what extent do SATD annotations belonging
to different categories contain additional details?

We focus on references to class and method names, authors’
names and initials, comment dates, as well as pointers to issues
and external documents/URLs. However, we automatically
or manually mine them rather than asking for developers’
perception. Our results indicate that, although some types of
references are perceived as extremely important by partici-
pants of Storey et al. [14] study, they infrequently appear in
SATD comments, however, developers tend to mention more
frequently classes and/or methods, probably for improving the
overall traceability.

The full dataset, and files used during the annotation, are
publicly available.1

II. STUDY DESIGN

The goal of the study is to analyze SATD comments, to
categorize their content and, in general, understand the way
developers communicate the presence of SATD in source code.

A. Study Context

We start from a curated dataset of SATD comments by
Maldonado et al. [2], consisting of 4071 SATD comments
belonging to 10 different open source Java projects. These
comments were classified by Maldonado et al. [2] into five

1https://figshare.com/s/0b83bc75dbc9ea99f2f6

TABLE I
NUMBER OF SATD COMMENTS IN THE ORIGINAL DATASET AND IN THE

SAMPLED ONES.

SATD Type Initial Dataset Without Duplication Sampled
Defect 472 350 116
Design 2703 2260 657
Documentation 54 49 39
Implementation 757 550 183
Test 85 80 43
TOTAL 4071 3289 1038

categories (Defect, Design, Documentation, Implementation,
and Test); Implementation features also Requirement debt
from the original taxonomy of Maldonado and Shihab [7].

First, we remove 782 duplicated comments (i.e., comments
having the same content but attached to different source
code elements) since our focus is on the content. After the
removal, we manually analyze a statistically significant sample
of 1038 SATD comments (confidence interval of ±3.33% for
a confidence level of 99%). As reported in Table I, our sample
has the same percentage of SATD comments types in the initial
dataset, guaranteeing that each SATD type is well represented
in our study. For instance, our dataset without duplication
counts 350 SATD belonging to DEFECT, i.e., ' 11% over the
total number of SATD comments (3289), and in our sample,
we have manually analyzed 116 SATD comments in the same
category that accounts for 11% of the total number of SATD
comments being analyzed.

B. Addressing RQ1: SATD content coding

To derive a SATD contents’ taxonomy, the manual analysis
has been done following a card-sorting procedure, and specifi-
cally a cooperative (multiple annotators) open card-sorting (no
predefined categories) [16].

In a first round, two of the authors independently created
labels for 108 SATD comments randomly chosen from the
dataset without duplication in proportion to each SATD type.
After completing, the two annotators discussed their labels,
i.e., also resolving inconsistencies and redundancies, and
grouped the tags into a hierarchy. After that, two different
authors reviewed the initial set of created labels, in turn
suggesting improvements. After the first round, the authors
end up with a taxonomy made up of 11 high-level categories
specialized into a total of 26 sub-categories.

In a second round, two authors used the first version of
the taxonomy to label a different set of 115 SATD comments
randomly picked from the dataset without duplicated instances
and, again in proportion to each SATD type. More specifically,
while reading a SATD comment content the annotator could
choose to reuse an existing label or to add a new one. Upon
completion, the two annotators solved inconsistencies and
evaluated the introduction of newly added labels. The updated
version of the taxonomy has been sent to two different authors,
that after some improvements ended up with a taxonomy
accounting for ten high-level categories specialized into a
total of 28 sub-categories. More specifically, two high-level
categories have been used as specialization of other categories
and one has been added (see details in the online dataset).



In a third round, using the same process, the authors
manually analyzed 114 SATD comments. As a result, they
obtained a new modified version of the taxonomy made up of
11 high-level categories, of which two are newly introduced
ones and one became a sub-category. The high-level categories
were properly specialized into a total of 36 sub-categories, five
of which were not reported in the previous version.

This final version of the taxonomy has been used to label the
remaining 701 comments that were randomly assigned to four
authors, such that each SATD comment was independently
analyzed by two of them. Also in this case, the annotators
could either use the existing labels or create a new one if
no one fitted a specific comment. As it happens in teamwork
card-sorting [16], newly introduced labels (groups) became
immediately available also for other annotators. Upon com-
pletion, the annotators discussed their classifications resolving
inconsistencies and revised the taxonomy. In this round, the
authors did not introduce any new high-level category while
using two of them to specialize existing ones, even if there is
the introduction of two new sub-categories. In summary, since
in our last round no new high-level categories are introduced,
the identified taxonomy is general enough. However, this does
not exclude that, in the future, further contents could emerge
and be therefore included in the taxonomy.

To address RQ1, we present our final version of the
taxonomy, explaining, with some examples, the identified
categories, and also highlighting the number of comments
found for each category.

C. Addressing RQ2: Sentiment annotation

To address RQ2, all 1038 comments have been manually
annotated with sentiment polarity. By definition, SATD de-
scribes an undesirable situation, so we do not expect to observe
many positive comments and opt to classify sentiment as either
negative or non-negative, where the latter category includes
both positive and neutral comments. Comments conveying
both positive and negative sentiment are labeled as mixed. We
label as negative comments containing expressions that clearly
communicate negative sentiment, e.g., emotions or negative
opinions about the underlying code, beyond the negativity
inherent in problem reporting as in SATD comments.

Determining sentiment for a text is a subjective task, i.e.,
the labels given by individuals depend on their cultural back-
ground, upbringing, and interpretation of the comment [17]. As
such, following clear annotation guidelines is recommended
for enabling reliable annotation [18]. To ensure robust and
consistent labeling, we defined a set of annotation guidelines
by conducting a pilot labeling study. We randomly sampled 32
comments from the 1038 comments and asked each author to
label them individually, based on their subjective perception of
each comment polarity. Then, we jointly discussed disagree-
ments in a plenary session, resolving conflicts and addressing
ambiguities in the definition of negative sentiment. Based on
the results of our discussion, we drafted our coding guidelines
to be used for the labeling study as follows:

• negative: If the comment expresses negative sentiment
about the underlying source-code (e.g., “this method is a
nightmare”);

• non-negative: If the comment expresses either positive or
no sentiment about the code referenced in the comment
(e.g., “TODO: Why is this a special case?”);

• mixed: If the comment expresses both positive and neg-
ative sentiment (e.g., “This is a fairly specific hack for
empty string, but it does the job”).

Before proceeding with manual labeling, we explored the
possibility of automating sentiment analysis of SATD. To this
aim, we evaluated the accuracy of three publicly available
sentiment analysis tools that have been specifically tuned for
the software engineering domain, i.e., SentiStrength-SE [19],
Senti4SD [20], and SentiCR [21] on the 32 SATD comments
manually labeled. We apply the tools “off-the-shelf”, i.e., with-
out further tuning or training [22]. Looking at the agreement
between manual labels and the tools’ predictions as recom-
mended by Novielli et al. [18], [23], we found that Senti4SD
has the highest F-1 score (0.69), lower than the one reported
by the authors of the tool (0.87) [20]. By manually looking at
disagreements we found that some negative comments were
missed by the tool due to the presence of lexicon which is
specific to SATD comments. For example, “FIXME: Big fat
hack here, because scope names are expected to be interned
strings by the parser” is labeled as negative by the human
judges but classified as neutral by Senti4SD. We conclude that
the operationalization of sentiment by tools does not align with
our operationalization of sentiment in SATD, and decide to
manually label all remaining SATD comments in our dataset.

We divided the comments in our sample, excluding the
ones already labeled in our pilot study (1006), over the six
authors of the paper, such that each author labeled an equal
number of comments per SATD category, and each comment
was labeled by at least two authors, to mitigate the presence of
any biases between authors and over SATD categories. Finally,
to ensure reliability and consistency of our labeled dataset,
we resolved all disagreements in plenary sessions involving
all raters. The agreement between the raters for the sentiment
labeling is moderate, with a Krippendorf’s α of 0.455 [24],
which is in line with agreement reported by previous studies
on developers’ sentiment annotation in short comments from
software development platforms [25]. Lastly, to understand for
what SATD categories negative sentiment is more likely to
occur, and how this differs over the SATD categories of the
taxonomy constructed in RQ1, we use a pairwise proportion
test [26] with Benjamini-Hochberg p-value adjustment [27].

D. Addressing RQ3: Identifying Additional Details in SATD

While looking at task annotations, Storey et al. [14] have no-
ticed that when adding task annotations developers frequently
include: (i) references to another class, method, plug-in, or
module, (ii) developers’ names or initials, (iii) references to
bugs, (iv) URLs, (v) dates, and (vi) “memorable keywords”.

To understand how often these additional details occur in
SATD we use a combination of manual labeling and automated



detection to extract fields (i) through (vi) from the 1038
SATD comments. Due to the heterogeneity (as well as our
unfamiliarity) with the practices of the projects that make up
the dataset, and considering that in SATD comments keywords
are mainly related to tags, e.g., TODO, FIXME, XXX etc. we
have chosen to not identify “memorable keywords”.

Firstly, we identify the following fields automatically:
• for class names, we search for all possible class names of

a project, obtained from its git repository (all file versions
from all branches), onto comments, using a case insen-
sitive, word boundary match, and for methods references
we use a simple regular expression (“\\w + \\(”);

• for bug references, we use the Fischer et al. ap-
proach [28], e.g., matching JIRA-style references (e.g.,
“jruby-1234”) or GitHub-style reference (e.g., “#1234”);

• for URLs we match the following two regular expres-
sions onto the SATD comments, i.e., http:// and
https://.

We initially automated the identification of author names
(based on names from the versioning systems), but this turned
out to be non-trivial and imprecise, therefore we decided
to check them manually, following a process similar to that
outlined in Section II-C. Also, while we initially detected
issue-IDs and dates (in this case matching various formats
as “12 Jan 2002”, or “20020112”) automatically, we double-
checked them manually because of the presence of several
formats.

Based on a manual inspection of the dataset, we combine
the results of the automatic detection with the manual labeling.
Specifically:

(i) automatically identified for class/method names and
URLs we use the automated detection;

(ii) for developers names/initials and dates we rely on the
manual labeling;

(iii) for bugs we combine the manual analysis with the auto-
matic detection.

We report the occurrences of each field per macro-category
of the taxonomy, and evaluate how the perceptions of develop-
ers, as found by Storey et al. [14], compare to the occurrences
of these fields in the 1038 SATD comments.

III. STUDY RESULTS

This section reports and discusses the study results, address-
ing the research questions formulated in the introduction.

A. What kind of problems do SATD annotations describe?

Fig. 1 depicts the taxonomy of SATD comments’ content,
obtained as described in Section II-B. Below we describe our
taxonomy, and then explain why SATD comments from source
code do not naturally fit the categories from Maldonado et al.

The small red boxes of Fig. 1 indicate the number of SATD
comments (out of 1038) belonging to each category. Table II
reports the distribution of our taxonomy top-level categories.
For some comments we were able to identify the higher-level
category but not any sub-categories: e.g., “TODO: implement

the entity for the annotation” in JFREECHART is an indication
that the functionality is only partially implemented but does
not contain any other information aimed at justifying why that
happened.

Although data originated from a curated dataset [4], we still
found 40 instances that, according to our manual analysis,
were not related to SATD. For example, “Required otherwise
it gets too wide” in SQL explains the design decision without
indicating that it is suboptimal in any sense. We classified
them as false positives and excluded from Fig. 1.

While (not surprisingly) most SATD comments highlight
poor implementation choices (429 over 1038) mainly related
to maintainability issues, as well as partially/not implemented
functionality (229), we notice that functional issues (135)
are not so frequent in our sample. Furthermore, we found
89 SATD comments classified as “Wait”, meaning that a
developer cannot improve the code or complete a functionality
since they are waiting for a different event that has to occur in
the same project or in a third-party component (e.g., “this is the
temporary solution for issue 1011” in JFREECHART). As also
reported in previous work [7], [8], developers tend to admit
TD also in artifacts that are different from the production code:
indeed, we found 54 SATD comments dealing with issues in
the documentation, and 36—with the test code. Finally, we
found 21 SATD comments describing misalignment between
requirements and design or implementation, as well as prob-
lems with deployment (2) and SATD comments that are left
in the code while not describing a TD anymore (3).

Next, we elaborate on each of the nine high-level categories
of our taxonomy.

Poor implementation choice. This category includes (i)
maintainability issues, (ii) poor implementation solutions, (iii)
asking for code review, i.e., the developer is not sure of the
actual design, (iv) performance issues, (v) poor API usages,
i.e., reliance on a third-party component without actually
understanding the proper way to use it, (vi) lack of intention
to improve the code despite the awareness that it is not in the
right shape, and (vii) usability issues.

Maintainability issues constitute the category with the high-
est number of samples, not merely within “Poor implementa-
tion choices” but overall, covering 20% of the comments. Un-
surprisingly, many maintainability issues require a refactoring
activity such as a better distribution of responsibilities among
software components (e.g., “TODO: We should have all the
information that is required in the NotationSettings object” in
ARGOUML), or proper reuse of features (e.g., “TODO: Reuse
the offender List” in ARGOUML).

Furthermore, we found 79 SATD comments reporting that
the implemented solution has to be improved, e.g., “EATM
This might be better written as a single loop for the EObject
case” in EMF highlighting the need for simplifying the actual
implementation removing a control structure. In other cases,
the authors criticize the implementation choices and ask for
a code review, e.g., “FIXME: Is “No Namespace is Empty
Namespace” really OK?” in APACHE-ANT or “TODO: this
assumes ranges are sorted. Is this true?” in ARGOUML. This



Fig. 1. Discussions contents in SATD comments

TABLE II
DISTRIBUTION OF OUR TAXONOMY TOP-LEVEL CATEGORIES AND HOW

THEY MAP ONTO MALDONADO ET AL. [2] CATEGORIES.

Macro-category Defect Design Doc. Impl. Test Total
Functional issues 48 68 0 18 1 135
Poor implementation choices 22 361 2 43 1 429
Wait 6 76 0 6 1 89
Deployment issues 1 0 0 1 0 2
SATD comments outdated 2 1 0 0 0 3
Partially implemented 27 94 5 100 3 229
Testing issues 0 1 0 0 35 36
Documentation issues 0 19 30 4 1 54
Misalignment 1 13 2 5 0 21
False positive 9 24 0 6 1 40
TOTAL 116 657 39 183 43 1038

result confirms the findings by Ebert et al. [29] who highlight
that 8% of questions during code reviews express attitudes
and emotions. Specifically, their manual coding shows that
developers express doubts through criticisms (' 5%) inducing
critical reflection in the interlocutor.

Moreover, concerns related to the use of APIs and perfor-
mance are reflected in the SATD comments: e.g., “FIXME:
don’t use RubyIO for this” in JRUBY alerts developers to
replace the existing API for a specific task, while “TODO
replace repeated substr() above and below with more
efficient method” in JMETER indicates performance issues.

Partially/Not implemented functionality groups the SATD
comments reporting that a feature is not ready yet. While, on
the one hand, we found many cases (105) in which the SATD
comment simply reports that the implementation is missing
without adding any further details, on the other hand, we
found comments indicating what is specifically missing from
the implementation: e.g., a precondition (“TODO: delete the
file if it is not a valid file” in ANT), or a postcondition check
(“FIXME: Make bodyNode non-null in parser” in JRUBY).

We found comments clarifying that the feature works only
under specific conditions (61) as “If c2 is empty, then we’re
done. If c2 has more than one element, then the model is
crappy, but we’ll just use one of them anyway” in ARGOUML.

Some comments indicate that the implementation is absent
due to problems elsewhere: e.g., “Predecessors used to be not
implemented, because it caused some problems that I’ve not
found an easy way to handle yet. The specific problem is that

the notation currently is ambiguous on second message after
a thread split.” in COLUMBA.

Functional issue includes all cases directly or indirectly
related to the presence of a bug in the system and constitutes
the third-largest category of SATD comments. Unsurprisingly,
most of them (56) highlight the presence of a bug that should
be fixed immediately: e.g., “FIXME: If NativeException
is expected to be used from Ruby code, it should provide a
real allocator to be used. Otherwise Class.new will fail, as
will marshaling. JRUBY-415” in JRUBY. 11 SATD comments
indicate misbehavior that is acceptable even though a better
solution has to be found: e.g., “this will generate false positives
but we can live with that” in ANT.

The most interesting sub-category groups compatibility
and dependency issues that are also not very easy to ad-
dress. For instance, we found comments indicating that the
code is not able to work properly in specific environments,
e.g., “waitFor() hangs on some Java implementations” in
JEDIT, or cases where the actual implementation inherits a
bug from an external API being used, e.g., “Workaround for
JDK bug 4071281 [...] in JDK 1.2” in JEDIT.

Wait includes all SATD comments in which the author
reports that the code has to be improved and/or completed once
a different event occurs. In many cases (51) the comments
report that the code is a temporary patch that needs to be
removed later on, e.g., “TODO: temporary initial step towards
HHH-1907” in HIBERNATE. Furthermore, 16 comments state
that the code is not in the right shape since it requires a
different feature to be ready first, e.g., “todo : remove this
once ComponentMetamodel is complete and merged” in
HIBERNATE. An interesting phenomenon related to waiting is
an SATD comment requiring other SATD comments to be
fixed, e.g., “TODO: simply remove this override if we fix
the above todos” in HIBERNATE. We found four comments
in which developers need to wait for a proper API to be
found, e.g., “This really should be Long.decode, but there
isn’t one. As a result, hex and octal literals ending in ’l’
or ’L’ don’t work.” in JEDIT. Recently Maipradit et al. [30]
have looked at “on-hold” SATD, i.e., debt which contains a
condition to indicate that a developer is waiting for a certain
event or an updated functionality having been implemented



elsewhere, that maps onto our “Wait” category. Our results
confirm what found by Maipradit et al. [30], since around 8%
of the SATD comments contains a waiting condition, however,
our taxonomy enlarges the set of possible events a developer
is waiting for, indeed Maipradit et al. [30] only considered
bugs to be fixed, or new releases/versions of libraries.

Documentation issues (54 over 1038). Many cases are re-
lated to the need for documenting a specific method/class such
as “FIXME This function needs documentation” in COLUMBA.
However, we also found three cases describing inconsisten-
cies in the related documentation, e.g., “UML 1.4 spec is
ambiguous - English says no Association or Generalization,
but OCL only includes Association” in ARGOUML, and one
case in which the author is reporting that the documentation
cannot be modified even if it is required to modify it, i.e.,
“TODO: Currently a no-op, doc is read only” in ARGOUML.

Testing issues. Multiple SATD comments refer to test code,
including (i) untested features, e.g., “TODO add tests to check
for: - name clash - long option abbreviations/” in JMETER, (ii)
bugs in the current test suite, e.g., “this is the wrong test if the
remote OS is OpenVMS, but there doesn’t seem to be a way
to detect it” in ANT, or (iii) misalignment of the test code
with the production code, e.g., “TODO: [...] An added test
of isAModel(obj) or isAProfile(obj) would clarify
what is going on here” in ARGOUML.

Misalignment groups the SATD comments in which the au-
thors report that there is a mismatch between (i) requirements
and implementation (12) such as “TODO: The Quickguide
also mentions [...] Why are these gone?” in ARGOUML, in
which the author asks whether the current implementation
deviates from what reported in the specification, or (ii) design
and implementation (9) such as “TODO: This shouldn’t be
public. Components desiring to inform the Explorer of changes
should send events” in ARGOUML, clearly stating that there is
a deviation from what reported in the design document.

We also found three instances belonging to outdated SATD
comments in which the SATD comment no longer reflects the
source code evolution e.g., “todo: is this comment still relevant
??” in ANT. This category generally belongs to the problem
of comments being outdated with respect to source code.
For simple cases, especially related to comments explaining
statements’ behavior, detection approaches have been proposed
[31] and empirical studies have been carried out. As regards
SATD, it is still possible that in many circumstances SATD
comments remain in the system even after the mentioned
problem has been addressed.

We found two SATD comments reporting Deployment is-
sues. One comment in ARGOUML states: “As a future enhance-
ment to this task, we may determine the name of the EJB JAR
file using this display-name, but this has not be implemented
yet.”. The latter highlights the need for improvements to the
overall deployment phase while constructing the application
jar. The other comment in ANT states “the generated classes
must not be added in the generic JAR! is that buggy on old
JOnAS (2.4)”, meaning that there is a problem while selecting
the components to involve in the jar.

To understand the difference between our categories and
those by Maldonado et al., Table II shows of SATD comments
belonging to different categories of their taxonomy are mapped
to our top-level ones. The categories of Maldonado et al. cut
across several of our categories. For instance, although 41%
(48 items) of SATD comments in the “Defect” category are
mapped onto our “Functional issues”, the remaining SATD
comments are scattered onto the “Partially/not implemented
functionality” and “Poor implementation choices”. As an ex-
ample of the former, the comment stating: “TODO: we didn’t
check the height yet” in JFREECHART originally considered
as a defect SATD has been categorized as a “Partially/not im-
plemented functionality” since the comment body has nothing
reporting the presence of a bug in the system due to the lack of
a pre-condition check. As regards the latter, instead, “TODO:
This method doesn’t appear to be used.” in JMETER mostly
highlights possible maintainability issues, therefore it has been
categorized as a “Poor implementation choice”.

Similarly, while “Design” SATD comments mainly belong
to our “Poor Implementation Choices” category, some refer
to waiting, e.g., “Remember to change this when the class
changes” in JMETER, partially implemented functionality, e.g.,
“TODO: complete this” in JFREECHART or functional issues,
e.g., “TODO - is this the correct default?” in JMETER.

The “Implementation” SATD comments were originally
labeled as “Requirement debt” by Maldonado and Shihab [7]
and then renamed in their follow-up dataset. While unsurpris-
ingly almost half of them belong to our “Partially/Not im-
plemented Functionality” (which is indeed requirement debt,
because the requirement has not been fully implemented), 43
cases are related to tox poor implementation choices, hence not
related to requirements, and better fitting our specific category.
For example, there are comments in ARGOUML asking for
code review, e.g., “TODO: Why is this disabled always?”,
or pointing out the presence of maintainability issues, e.g.,
“TODO: Reuse the offender List.”

The categories of our taxonomy having a good fit with
the ones of Maldonado et al. are “Documentation issues” and
“Testing Issues”. Still, in JMETER we found a documentation
debt, e.g., “TODO Can’t see anything in SPEC”, we cate-
gorized as “Misalignment” since it relates to a discrepancy
between specification and implementation, and either of the
two can be wrong. As already reported in the introduction,
the Maldonado et al. taxonomy classifies as “testing issues”
cases of failed assertions, which we classified as “Functional
issues” instead.

RQ1 Summary: We categorized the sample of 1038 SATD
comments into nine top-level categories, separating func-
tional errors from partially implemented functionality and
poor implementation choices. We also considered on-hold
TD (“Wait”) as a specific category with 89 instances, while
Documentation and Testing issues were almost mapped
onto Maldonado et al. categories. We noticed how our
content-based SATD categorization does not have a one-
to-one mapping to lifecycle-based categories.



TABLE III
DISTRIBUTION OF SENTIMENT LABELS.

Category Negative (%) Non-negative Mixed Total
Macro-categories in our taxonomy

Functional issues 66 (49%) 67 2 135
Poor implementation choices 125 (29%) 294 7 426
Wait 41 (46%) 45 3 89
Deployment issues 1 (50%) 1 0 2
SATD comments outdated 1 (33%) 2 0 3
Partially implemented 29 (13%) 197 2 228
Testing issues 12 (33%) 24 0 36
Documentation issues 18 (33%) 36 0 54
Misalignment 6 (29%) 15 0 21

Categories of Maldonado et al. [2]
Defect 42 (40%) 60 4 106
Design 214 (34%) 407 9 630
Documentation 16 (41%) 23 0 39
Implementation 13 (7%) 163 1 177
Test 14 (33%) 28 0 42
TOTAL 299 (30%) 681 14 994

B. How is the sentiment polarity distributed across different
kinds of SATD annotations?

Following the methodology described in Section II-C, we
label 998 SATD comments (= 1038 − 40, where 40 comments
have been excluded as false positives, i.e., SATD comments
that are not real SATD). Four comments have been further ex-
cluded as the authors could not reach an agreement regarding
their sentiment polarity. Hence, for this question, we looked at
994 SATD comments out of 1038 in the original dataset. We
report the resulting distribution of sentiment labels in Table III.

We observe that 299 of the 994 comments (30%) convey
negative sentiment polarity and only 14 items are labeled
as mixed. Developers mostly complain about “Functional
issues,” with 49% of comments (66 out of 135) conveying
negative sentiment, e.g., “TODO: include the rowids!!!!” in
HIBERNATE or “something is very wrong here” in COLUMBA.
Similarly, developers appear annoyed by required changes
being on hold: 46% of comments (41 out of 89) belonging
to the “Wait” category contains negative sentiment, such as
“turn of focus stealing (workaround should be removed in the
future!)” in COLUMBA. Similarly to self-directed anger studied
by Gachechiladze et al. [10] we also found cases in which
developers blame themselves, e.g., “this is retarded. excuse
me while I drool and make stupid noises” in JEDIT.

Negative sentiment is also found in 33% of “Documentation
issues” (e.g., “TODO: are we intentionally eating all events?
- tfm 20060203 document!” in ARGOUML) and “Testing
issues” (e.g., “TODO enable some proper tests!!” in JMETER).

TABLE IV
STATISTICAL COMPARISON OF NEGATIVE POLARITY (OR> 1 MEANS

THAT THE PROPORTION IS SIGNIFICANTLY GREATER FOR THE LEFT-SIDE
CATEGORY). NON-SIGNIFICANT PAIRS ARE OMITTED IN THE TABLE.)

Category 1 Category 2 p-value OR
Functional issues Partially implemented <0.01 6.52
Functional issues Documentation issues 0.04 2.43
Functional issues Poor implementation choices <0.01 2.30
Poor implementation choices Partially implemented <0.01 2.85
Wait Partially implemented <0.01 5.82
Wait Poor implementation choices 0.02 2.05
Testing issues Partially implemented 0.02 3.41
Documentation issues Partially implemented 0.03 2.67

As for “Poor implementation choices”, which is the most
frequently observed macro-category in our taxonomy with 426
comments, we observe 29% of negative sentiment comments
(e.g., “TODO: terrible implementation!” in HIBERNATE).

When reporting a partial or non-implemented functionality
developers are least likely to be negative (29 out of 228), e.g.,
“calculate the adjusted data area taking into account the 3D
effect... this assumes that there is a 3D renderer, all this 3D
effect is a bit of an ugly hack” in JFREECHART.

As for the remaining categories, they contain a very small
number of comments so the results might bring anecdotal
evidence and need to be further verified with a larger study.

The pairwise comparison of negative polarity in the macro-
categories (see Table IV) confirms that negative sentiment
mostly occurs in presence of bugs or the need to wait to see an
issue resolved. Specifically, comments in “Functional issues”
and “Wait” appear significantly more negative than comments
labeled as “Partially implemented” (Odds Ratio equal to 6.25
and 5.82, respectively) and more than twice as negative than
“Poor implementation choice.” Moreover, statistical analysis
confirms that comments reporting partial implementation are
the least negative, compared to the other categories.

Table III also reports the sentiment polarity with respect to
the original classification of Maldonado et al. [2]. We note that
implementation debt is the only category with the percentage
of comments having a sentiment polarity < 30%. Moreover,
in line with our results, developers are negative about both
documentation and test debt (41% and 33% respectively).
Surprisingly, in the defect category we found 42 over 106
(33%) comments expressing a negative sentiment, less than
the one observed in our “Functional Issues” category (49%),
probably due to the presence of comments highlighting that
a piece of functionality is only partially implemented in the
defect debt category by Maldonado et al. [2].

RQ2 summary: SATD about functional issues conveys
more negative sentiment. Also, being “on-hold” for various
reasons that do not depend on themselves, make devel-
opers communicating negative sentiment. Developers are,
instead, more neutral when reporting poor implementation
choices, misalignment, or documentation/testing issues.

C. To what extent do SATD annotations belonging to different
categories contain additional details?

TABLE V
DISTRIBUTION OF DIMENSIONS USED BY DEVELOPERS TO ANNOTATE

TECHNICAL DEBT OVER MACRO-CATEGORIES.

Category Component Name Bug id URL Date
Functional issues 47 (35%) 12 (9%) 11 (8%) 1 (1%) 9 (7%)
Poor implementation choices 152 (35%) 48 (11%) 5 (1%) 0 16 (4%)
Wait 21 (24%) 4 (5%) 9 (10%) 2 (2%) 1 (1%)
Deployment issues 0 0 0 0 0
SATD comments outdated 1 (33%) 0 1 (33%) 0 0
Partially implemented 50 (22%) 22 (10%) 0 0 1 (¡ 1%)
Testing issues 7 (19%) 3 (8%) 0 0 0
Documentation issues 19 (35%) 11 (20%) 0 0 1 (2%)
Misalignment 7 (33%) 4 (19%) 0 0 0
TOT. (UNIQUE) 304 (30%) 104 (10%) 26 (3%) 3 (0.3%) 28 (3%)



Following the methodology described in Section II-D, we
leverage our dataset to perform a conceptual replication of the
work on task annotations by Storey et al. [14]. This analysis
results are presented in Table V. While Storey et al. surveyed
developers, we analyze SATD comments: while frequently
mentioned by the developers surveyed by Storey et al., addi-
tional details rarely appear in our dataset. Specifically, 64% of
developers from Storey et al. study declared to add references
to classes/methods/plug-ins/modules, in our study we found
this happening in 304 SATD comments (30%) which, although
not as high as 60%, is a conspicuous fraction of the total.
As for the authors’ names, instead, only 10% of the SATD
comments in our sample contain them, even if around 50% of
developers explicitly added their name in the annotations.

This may be confirmed considering that only 12 out of 135
SATD comments in the “Functional issues” category clearly
report the name. However, about half of the SATD comments
referring to a name fall into the “Poor implementation choices”
category. One possibility is that during code reviewing pro-
cesses, reviewers may identify the presence of wrong decisions
and highlight them as source code comments.

Moving our attention to the inclusion of bug identifiers, 42%
of the comments containing them belong to the “Functional
issues” category, however, a non-negligible percentage (33%)
concerns the “Wait” category. This is not surprising since de-
velopers may introduce a workaround due to a bug that needs
to be fixed in the same project or in a third-party library being
used. As regards the former, consider the SATD comment:
“// TODO : YUCK!!! fix after HHH-1907 is complete” in
HIBERNATE, while for the latter in ARGOUML we found a
comment stating: “[...] NOTE: This is temporary and will go
away [...] http://bugs.sun.com/bugdatabase/view bug.do?bug
id=4714232” in which the bug is in java.awt library.

Finally, looking both at dates and URLs, percentages in the
dataset are very low compared to those reported in a survey by
Storey et al. [14] (3% and 0.3% vs 19%, and 30%). A possible
interpretation is that unlikely as stated in the survey, developers
assume redundant introducing signature and date (as such
information is available in the versioning system anyway).
Nevertheless, having them explicitly stated in the source code
makes the accountability and tracing more evident.

RQ3 summary: The addition of details such as bug
identifiers and names is not so frequent when reporting
TD in source code comments. However, developers tend
to mention classes and methods more frequently, possibly
to improve traceability and supporting themselves/others in
addressing the SATD.

IV. DISCUSSION

Sentiment in SATD: a proxy for priority? Negative sen-
timent is most frequently associated with reporting functional
issues but also with developers waiting for issue resolution that
does not depend on themselves. In other words, developers
perceive both the presence of bugs and being “on-hold” as

more annoying than other problems, such as partial implemen-
tations, testing, and documentation issues. While we acknowl-
edge the need for further investigation of sentiment in SATD,
e.g., on a larger dataset, we believe these findings already have
actionable implications. Specifically, the amount of negativity
observed in the “Functional issues” category suggests that
developers should prioritize bug fixing over other issues, such
as the implementation of missing functionality. This is also in
line with previous findings by Mäntylä et al. [11] reporting
more negativity for bugs and more positive sentiment for
feature implementation requests. i.e., if a SATD comment
reflects a functional issue, then we need to report it in an
issue tracker or invoke automatic program repair.

As for waiting, the high negative sentiment associated with
being “on-hold” might be interpreted as an indication of a
blocking issue urgently requiring attention. This is in line
with previous findings by Ortu et al. [32] reporting a positive
correlation between negative sentiment and issue fixing time.
Along the same line, Mäntylä et al. [11] reported higher
emotional activation as the issue resolution time increases,
as well as higher arousal in high priority bug reports, thus
indicating a presence of emotions with high activation and
negative polarity, such as stress. As such, the presence of
negative sentiment can be used as a proxy for automatic
identification and prioritization of critical, blocking issues,
which might require the interventions of peers. Secondly, the
information in the classification can be used to assist in the
fine-grained problem of SATD prioritization.

Supporting developers in effective SATD comment writ-
ing: the role of sentiment. Based on the results of the
sentiment analysis study, we believe that providing immediate
feedback on the negative tone during comment-writing could
support developers in more effective collaboration. Specifi-
cally, early detection of harsh or hostile sentiment could not
only enable discovering code of conduct violations [33] but
also support developers towards effective communication. A
SATD sentiment analyzer could prompt developers warnings
to highlight toxicity conveyed by their comments and possibly
suggest re-tuning their writing, to avoid irritating their peers.

Our vision is also supported by previous findings. Motivated
by developers reporting stress due to aggressive communica-
tive behavior in open source communities, Raman et al. [34]
investigated the possibility to automatically detect and mitigate
such unhealthy interactions. Steinmacher et al. [35], instead,
showed the impact of social barriers in attracting new con-
tributors to open-source projects. Further studies investigated
the impact of sentiment in collective knowledge-building:
Calefato et al. [36] found a higher probability of fulfilling
information-seeking goals on Stack Overflow when questions
are formulated using a neutral style, while Choi et al. [37]
found that positive, welcoming tone and constructive criticism
is beneficial for online collaboration in Wikipedia.

The evaluation of the SE-specific publicly available sen-
timent analysis tools we performed (see Section II) indicated
that a fine-tuning is needed before existing tools can be reliably
used. Our gold standard for sentiment annotation in SATD



represents the first step towards this goal. Furthermore, being
able to reliably identify and distinguish hostile comments from
non-toxic negative sentiment, as in reporting concerns due to
a bug, is a crucial aspect to take into account in performing
such fine-tuning to avoid marking non-toxic comments for
moderation. By releasing our gold standard and guidelines for
annotation, we hope to stimulate further research on negativity
detection in SATD.

References perceived as important in comments [14], but
not widely used in SATD comments. Based on the results
of our study we envision the emergence of tools supporting
and guiding the authors towards adding proper references and
information while adding SATD. While previous work by
Storey et al. [14] stressed the perceived importance of various
forms of references in task annotations, they occur much less
frequently than one would expect. Depending on the category
of our taxonomy, developers should have clear guidelines to
properly document SATD, such as:

• for “Functional issues” SATD: open bug reports in the
issue tracker and reference them in the comment;

• for “Wait”, whenever possible, reference the origin of the
on-hold, i.e., either an issue to be fixed or artifacts (other
classes or methods) to be updated

Tool support could be developed to automatically detect
introduction/change of SATD comments, and generate a date
and signature for it, since half of developers in the study by
Storey et al. include both their names and dates during task
annotations. Similarly, automated support could be provided to
reference/open an issue every time a Functional SATD is de-
tected. Also, when “on-hold” SATD comment is automatically
detected [30], developers may be guided to add a reference to a
proper source. By helping to achieve properly structured SATD
comments (depending on their type) with suitable references,
not only those comments may become more traceable and
understandable, but the available information will also help to
better drive their manual (or semi-automated) resolution.

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. One threat is how the comments
are classified in RQ1. Our knowledge of the analyzed systems
may not be as deep as those of the original developers. To
mitigate this threat, we looked not only at the comments
but also at the corresponding source code when this was
needed. A relevant threat for RQ2 is related to how “sentiment”
is perceived by annotators but may not match the actual
sentiment of developers. For what possible, subjectiveness in
RQ1 and RQ2 has been mitigated by establishing clear coding
guidelines, and by doing initial joint sessions. Furthermore, we
resolved all disagreements through a discussion during plenary
meetings involving all the annotators. For sentiment labeling,
we also measured the extent to which we could have reached
an agreement by chance using inter-rater agreement metrics.

Threats to internal validity are related to factors internal to
our study that can affect our results. Although we created a
relatively large and statistically significant sample, we cannot

exclude that our sampling strategy is weakly representative
of the studied dataset. In particular, we sampled our dataset
starting from the data and categories of Maldonado et al., so
we might have inherited representativeness threats from the
original study. Finally, measurement imprecision in RQ3 has
been mitigated, where it matters, through manual analysis.

Threats to external validity concern the generalizability of
our findings. The qualitative nature of the study (especially
RQ1) and the need for manual inspection for all three research
questions do not make a large-scale analysis feasible. There-
fore, although the sample is statistically significant, it may
not generalize to further projects and programming languages
different from Java. For RQ1, although we reached saturation
when identifying categories, we cannot exclude that new
categories would emerge when looking at further datasets.

VI. RELATED WORK

In the following, we discuss relevant literature related to (i)
studies about TD and SATD, and (ii) sentiment analysis in
software development.

A. Technical Debt and Self-Admitted Technical Debt

In the past years, the research community empirically stud-
ied TD and SATD. Seaman and Guo [38], Kruchten et al. [39],
Brown et al. [40], and Alves et al. [41] made different
considerations about “technical debt” highlighting that TDs
are a communication media among developers and managers
to discuss and address development issues. Furthermore, Lim
et al. [42] highlighted that TD introduction is mostly inten-
tional, and Ernst et al. [43] pointed out how TD awareness is a
cornerstone for TD management. Zazworka et al. [44], instead,
highlighted the need for proper handling and identification of
TD to reduce their negative impact on software quality.

By looking at source code comments in open source projects
Potdar and Shihab [1] found that developers tend to “self-
admit” TD. In a follow-up study, Maldonado and Shihab [7]
developed an approach that by using 62 patterns identifies
whether or not a comment is an SATD along with such cate-
gories as defect, design, documentation, requirement, and test
debts. Bavota and Russo [8], instead, have refined the above
classification providing a taxonomy featuring 6 higher-level
TD categories properly specialized into 11 sub-categories. Our
work differs from that by Potdar and Shihab [1] and Bavota
and Russo [8] in that we focus on the content reported in
the SATD without considering the development life-cycle in
which the SATD may be mapped.

Concerning the SATD classification, Maipradit et al. [30],
introduced the concept of “on-hold” SATD i.e., comments
expressing a condition indicating that a developer is waiting
for an event internal or external to the project under devel-
opment. As a follow-up study, Maipradit et al. [45], built a
classifier aimed at detecting on-hold SATD with an average
AUC of 0.97. Finally, Fucci et al. [46], conjectured that “self-
admission” may not necessarily mean that the comment has
been introduced by whoever has written or changed the source
code. Their results highlight that SATD comments are mainly



introduced by developers having a high level of ownership on
the SATD-affected source code.

As regards the impact of SATD and its management, We-
haibi et al. [47] found that SATD leads to complex changes
in the future, while Kamei et al. [48], highlighted that ' 42%
of TD incurs positive interest. From a different perspective,
Zampetti et al. [49] developed an approach for recommending
when a design TD has to be admitted.

Differently from previous work, we focused our attention
on the SATD content, i.e., what developers usually annotate
about TD, as well as how they communicate the presence of
this temporary solution, i.e., sentiment and external references.

The research community has also focused on SATD re-
moval. Maldonado et al. [4] found that there is a high
percentage of SATD being removed even if their survivability
varies by project. Zampetti et al. [5], instead, studied the re-
lationship between comment removals and changes applied to
the affected source code. They found how SATD can be either
removed through focused changes (e.g., to conditional state-
ments), but also by rewriting/replacing substantial portions of
source code. In a follow-up study, Zampetti et al. [6] proposed
SARDELE, a multi-level classifier able to recommend six
SATD removal strategies using a deep learning approach. We
believe that a more focused analysis of the SATD content like
the one done in our work could help to refine such approaches,
allowing for more actionable suggestions.

B. Sentiment Analysis in Software Development

Recently, a trend has emerged and consolidated to lever-
age sentiment analysis in empirical software engineering re-
search [50]. Murgia et al. [25] presented an early exploratory
study of emotions in software artifacts. By manually labeling
issues from the Apache Software Foundation, they found that
developers feel and report a variety of emotions, including
gratitude, joy, and sadness. Ortu et al. [32], instead, inves-
tigated the correlation between sentiment in issues and their
fixing time showing how issues with negative polarity, e.g.,
sadness, have a longer fixing time. On the same line, Mäntylä
et al. [11] performed a correlation study between emotions
and bug priority to derive symptoms of productivity loss and
burnout. By looking at issue tracking comments they mined
emotions and used them to compute Valence (i.e., sentiment
polarity), Arousal (i.e., sentiment intensity), and Dominance
(the sensation of being in control of a situation). Their findings
highlight that bug reports are associated with a more negative
Valence, and issue priority positively correlates with the emo-
tional activation, with higher priority correlating with higher
arousal. Differently from the previous correlation studies, our
study investigates how developers communicate the presence
of technical debt by manually labeling the sentiment inside
SATD comments. Our results confirm previous findings in
terms of using sentiment as a proxy for problems and priority
in the software development process.

Furthermore, researchers in requirements engineering use
sentiment analysis as a source of information for requirements
classification towards supporting software maintenance and

evolution. Panichella et al. [51] applied sentiment analysis
for classifying user reviews in Google Play and Apple Store,
while Maalej et al. [52] leveraged several text-based features,
including sentiment, for automatically classifying app reviews
into four categories, namely bug reports, feature requests, user
experiences, and text ratings.

As far as negative emotions are concerned, Gachechiladze
et al. [10] looked at the anger and its direction in collaborative
software development, envisioning the tools detecting the
anger target in developers’ communication, by distinguishing
between anger towards self, others, and object. As a prelimi-
nary step towards this goal, they created a manually annotated
dataset of 723 sentences from the Apache issue reports and
used it to train a supervised classifier for anger detection. Sim-
ilarly to this study, we focus on negative emotion confirming
that their detection and modeling can serve as a proxy for
problems occurring in the software development process.

A complementary line of research considers biometric mea-
surements to assess software developers’ emotional states
rather than texts authored by them [53], [54].

VII. CONCLUSION

In this paper, we have studied Self-Admitted Technical
Debt (SATD) comments: what kind of information is being
exchanged and how is this being done. We have manually ana-
lyzed 1038 SATD comments and constructed a taxonomy of 41
categories with 9 top-level categories: functional issues, poor
implementation choices, waiting, deployment issues, outdated
SATD comments, partially/not implemented functionality, test-
ing issues, documentation issues, and misalignment-related
problems. Not surprisingly, most SATD comments pertain to
poor implementation choices and partially/not implemented
functionality. Compared to a previous classification of Mal-
donado et al. [2] we observe that while some categories, e.g.,
Testing, can be mapped to the corresponding categories of
Maldonado et al. [2], other categories, e.g., functional issues,
poor implementation choices, and partially/not implemented
functionality, are spread over multiple categories in Maldonado
et al., i.e., defects, design, and implementation.

We then analyzed to what extent is negative sentiment
expressed in SATD comments of different categories. We
observed that SATD about functional issues conveys more neg-
ative sentiment, but also being “on-hold” for various reasons
that do not depend on themselves make developers expressing
themselves in a negative way. Developers are, instead, more
neutral for poor implementation choices, misalignment, or
partially/not implemented functionality. In the title parlance
“waiting around” is perceived as more problematic or more
important than “job half-done” (partial implementation). This
calls for further research targeting bugs and on-hold TD
expressed in SATD comments.

Finally, we found how, despite previous work showed how
developers perceive as important adding external references
to comments, we found them only in a minority of the
analyzed cases. This calls for recommenders aimed at helping
developers to better annotating source code in presence of TD.



REFERENCES

[1] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada, September 29 -
October 3, 2014, 2014, pp. 91–100.

[2] E. da S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural lan-
guage processing to automatically detect self-admitted technical debt,”
IEEE Trans. Software Eng., vol. 43, no. 11, pp. 1044–1062, 2017.

[3] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: From perfor-
mance to explainability,” ACM Trans. Softw. Eng. Methodol., vol. 28,
no. 3, p. 15, 2019.

[4] E. da S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical debt,” in
ICSME, 2017, pp. 238–248.

[5] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted
technical debt removal a real removal?: an in-depth perspective,” in
Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, 2018,
pp. 526–536.

[6] F. Zampetti, A. Serebrenik, and M. Di Penta, “Automatically learning
patterns for self-admitted technical debt removal,” in 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2020, pp. 355–366.

[7] E. da S. Maldonado and E. Shihab, “Detecting and quantifying differ-
ent types of self-admitted technical debt,” in 7th IEEE International
Workshop on Managing Technical Debt, MTD@ICSME 2015, Bremen,
Germany, October 2, 2015, 2015, pp. 9–15.

[8] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in MSR, 2016, pp. 315–326.

[9] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
Sentiment analysis of security discussions on github,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser. MSR
2014. New York, NY, USA: Association for Computing Machinery,
2014, p. 348351.

[10] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger
and its direction in collaborative software development,” in Proceedings
of the 39th International Conference on Software Engineering: New
Ideas and Emerging Results Track, ser. ICSE-NIER ’17. IEEE Press,
2017, p. 1114.

[11] M. Mäntylä, B. Adams, G. Destefanis, D. Graziotin, and M. Ortu,
“Mining valence, arousal, and dominance: Possibilities for detecting
burnout and productivity?” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 247258.

[12] G. Uddin and F. Khomh, “Opiner: An opinion search and summarization
engine for apis,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2017. IEEE
Press, 2017, p. 978983.

[13] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Pattern-
based mining of opinions in q a websites,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 2019, pp.
548–559.

[14] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or to
bug: Exploring how task annotations play a role in the work practices
of software developers,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE ’08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 251260.
[Online]. Available: https://doi.org/10.1145/1368088.1368123

[15] F. Shull, J. C. Carver, S. Vegas, and N. Juristo Juzgado, “The
role of replications in empirical software engineering,” Empir. Softw.
Eng., vol. 13, no. 2, pp. 211–218, 2008. [Online]. Available:
https://doi.org/10.1007/s10664-008-9060-1

[16] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[17] K. R. Scherer, T. Wranik, J. Sangsue, V. Tran, and U. Scherer,
“Emotions in everyday life: probability of occurrence, risk factors,
appraisal and reaction patterns,” Social Science Information, vol. 43,
no. 4, pp. 499–570, 2004. [Online]. Available: https://doi.org/10.1177/
0539018404047701

[18] N. Novielli, D. Girardi, and F. Lanubile, “A benchmark study on
sentiment analysis for software engineering research,” in Proceedings
of the 15th International Conference on Mining Software Repositories,

ser. MSR ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 364375. [Online]. Available: https://doi.org/10.
1145/3196398.3196403

[19] M. R. Islam and M. F. Zibran, “Sentistrength-se: Exploiting domain
specificity for improved sentiment analysis in software engineering
text,” Journal of Systems and Software, vol. 145, pp. 125 – 146,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0164121218301675

[20] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment
Polarity Detection for Software Development,” Empirical Software En-
gineering, vol. 23, no. 3, pp. 1352–1382, 2018.

[21] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “SentiCR: A customized
sentiment analysis tool for code review interactions,” ASE 2017 - Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pp. 106–111, 2017.

[22] N. Novielli, F. Calefato, F. Lanubile, and A. Serebrenik, “Assessment
of off-the-shelf SE-specific sentiment analysis tools: An extended repli-
cation study,” Empir. Softw. Eng., vol. 26, 2021.

[23] N. Novielli, F. Calefato, D. Dongiovanni, D. Girardi, and F. Lanubile,
“Can We Use SE-specific Sentiment Analysis Tools in a Cross-Platform
Setting?” Proceedings - 2020 IEEE/ACM 17th International Conference
on Mining Software Repositories, MSR 2020, pp. 158–168, 2020.

[24] K. Krippendorff, Content analysis: An introduction to its methodology.
Sage, 2012.

[25] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel
emotions? an exploratory analysis of emotions in software artifacts,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 262271. [Online]. Available:
https://doi.org/10.1145/2597073.2597086

[26] R. G. Newcombe, “Interval estimation for the difference
between independent proportions: comparison of eleven methods,”
Statistics in Medicine, vol. 17, no. 8, pp. 873–890, 1998.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
%28SICI%291097-0258%2819980430%2917%3A8%3C873%3A%
3AAID-SIM779%3E3.0.CO%3B2-I

[27] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[28] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on. IEEE, 2003.

[29] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative
intention in code review questions,” in 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE, 2018,
pp. 519–523.

[30] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for it:
identifying on-hold self-admitted technical debt,” Empirical Software
Engineering, vol. 25, no. 5, pp. 3770–3798, 2020.

[31] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE 2007). IEEE,
2007, pp. 70–79.

[32] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and
R. Tonelli, “Are bullies more productive? empirical study of affective-
ness vs. issue fixing time,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, 2015, pp. 303–313.

[33] P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open
source projects,” in 2017 IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), 2017, pp. 24–33.

[34] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu,
“Stress and burnout in open source: Toward finding, understanding, and
mitigating unhealthy interactions,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas
and Emerging Results, ser. ICSE-NIER ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 5760. [Online].
Available: https://doi.org/10.1145/3377816.3381732

[35] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in open
source software projects,” in CSCW 2015, ser. CSCW ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 13791392.
[Online]. Available: https://doi.org/10.1145/2675133.2675215



[36] F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical help?
evidence-based guidelines for writing questions on stack overflow,” Inf.
Softw. Technol., vol. 94, no. C, p. 186207, Feb. 2018.

[37] B. Choi, K. Alexander, R. E. Kraut, and J. M. Levine, “Socialization
tactics in wikipedia and their effects,” in Proceedings of the 2010 ACM
Conference on Computer Supported Cooperative Work, ser. CSCW ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
107116. [Online]. Available: https://doi.org/10.1145/1718918.1718940

[38] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Advances in Computers, 2011.

[39] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt:
towards a crisper definition report on the 4th international workshop on
managing technical debt,” ACM SIGSOFT Software Engineering Notes,
2013.

[40] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. L. Nord, I. Ozkaya, R. S. Sangwan, C. B. Seaman,
K. J. Sullivan, and N. Zazworka, “Managing technical debt in software-
reliant systems,” in Proceedings of the Workshop on Future of Software
Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2010, Santa
Fe, NM, USA, November 7-11, 2010, G. Roman and K. J. Sullivan, Eds.
ACM, 2010, pp. 47–52.

[41] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spı́nola,
“Towards an ontology of terms on technical debt,” in MTD, 2014, pp.
1–7.

[42] E. Lim, N. Taksande, and C. Seaman, “A balancing act: what software
practitioners have to say about technical debt,” IEEE software, 2012.

[43] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? manage it? ignore it? software practitioners and technical debt,” in
Foundations of Software Engineering. ACM, 2015, pp. 50–60.

[44] N. Zazworka, M. A. Shaw, F. Shull, and C. B. Seaman, “Investigating
the impact of design debt on software quality,” in Proceedings of the 2nd
Workshop on Managing Technical Debt, MTD 2011, Waikiki, Honolulu,
HI, USA, May 23, 2011, 2011, pp. 17–23.

[45] R. Maipradit, B. Lin, C. Nagy, G. Bavota, M. Lanza, H. Hata, and
K. Matsumoto, “Automated identification of on-hold self-admitted tech-
nical debt,” in 2020 IEEE 20th International Working Conference on

Source Code Analysis and Manipulation (SCAM). IEEE, 2020, pp.
54–64.

[46] G. Fucci, F. Zampetti, A. Serebrenik, and M. Di Penta, “Who (self)
admits technical debt?” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2020, pp. 672–
676.

[47] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of self-
admitted technical debt on software quality,” in IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, 2016, pp.
179–188.

[48] Y. Kamei, E. d. S. Maldonado, E. Shihab, and N. Ubayashi, “Using
analytics to quantify interest of self-admitted technical debt.” in QuA-
SoQ/TDA@ APSEC, 2016, pp. 68–71.

[49] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta,
“Recommending when design technical debt should be self-admitted,”
in ICSME, 2017.

[50] N. Novielli and A. Serebrenik, “Sentiment and emotion in software
engineering,” IEEE Softw., vol. 36, no. 5, pp. 6–9, 2019. [Online].
Available: https://doi.org/10.1109/MS.2019.2924013

[51] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2015,
pp. 281–290.

[52] W. Maalej, Z. Kurtanovic, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Engineering, vol. 21, pp.
311–331, 2016.

[53] S. C. Müller and T. Fritz, “Stuck and frustrated or in flow
and happy: Sensing developers’ emotions and progress,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1, A. Bertolino,
G. Canfora, and S. G. Elbaum, Eds. IEEE Computer Society, 2015, pp.
688–699. [Online]. Available: https://doi.org/10.1109/ICSE.2015.334

[54] D. Girardi, N. Novielli, D. Fucci, and F. Lanubile, “Recognizing
developers’ emotions while programming,” in ICSE, 2020, p. 666677.


