
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Exploring the Effect of Multiple Natural Languages on Code
Suggestion Using GitHub Copilot

Kei Koyanagi
Dong Wang

Kotaro Noguchi
Masanari Kondo

koyanagi@posl.ait.kyushu-u.ac.jp
d.wang@ait.kyushu-u.ac.jp

noguchi@posl.ait.kyushu-u.ac.jp
kondo@ait.kyushu-u.ac.jp

Kyushu University
Japan

Alexander Serebrenik
a.serebrenik@tue.nl

Eindhoven University of Technology
The Netherlands

Yasutaka Kamei
Naoyasu Ubayashi

kamei@ait.kyushu-u.ac.jp
ubayashi@ait.kyushu-u.ac.jp

Kyushu University
Japan

ABSTRACT
GitHub Copilot is an AI-enabled tool that automates program syn-
thesis. It has gained significant attention since its launch in 2021.
Recent studies have extensively examined Copilot’s capabilities in
various programming tasks, as well as its security issues. However,
little is known about the effect of different natural languages on
code suggestion. Natural language is considered a social bias in the
field of NLP, and this bias could impact the diversity of software
engineering. To address this gap, we conducted an empirical study
to investigate the effect of three popular natural languages (Eng-
lish, Japanese, and Chinese) on Copilot. We used 756 questions of
varying difficulty levels from AtCoder contests for evaluation pur-
poses. The results highlight that the capability varies across natural
languages, with Chinese achieving the worst performance. Further-
more, regardless of the type of natural language, the performance
decreases significantly as the difficulty of questions increases. Our
work represents the initial step in comprehending the significance
of natural languages in Copilot’s capability and introduces promis-
ing opportunities for future endeavors.

KEYWORDS
Code Suggestion, GitHub Copilot, Empirical Study

ACM Reference Format:
Kei Koyanagi, Dong Wang, Kotaro Noguchi, Masanari Kondo, Alexander
Serebrenik, Yasutaka Kamei, and Naoyasu Ubayashi. 2024. Exploring the
Effect of Multiple Natural Languages on Code Suggestion Using GitHub
Copilot. In Proceedings of 21st International Conference on Mining Software
Repositories (MSR 2024). ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR 2024, April 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, the expansion of IT demand has led to the use of
various support tools, such as task management tools and project
management tools, to improve development efficiency. One of these
tools is GitHub Copilot, which was introduced by GitHub and
OpenAI in June 2022 [8]. Copilot is a code suggestion tool powered
by a large-scale language model. It suggests code snippets and
libraries in different programming languages to developers based on
comments that describe specifications and the code being written.
As a result, developers could save time by not starting from scratch
and further reduce development costs.

It is well-known that the output of large language models can
vary significantly depending on the input [16]. Several studies have
been conducted to empirically examine the impact of input on the
accuracy of suggested code in terms of Copilot. For example, Yetis-
tiren et al. [28] reported that the utilization of proper explanations
of the given problem is important in terms of acquiring correct and
valid code. Nguyen and Nadi [19] evaluated Copilot’s performance
by running LeetCode’s provided tests. The results showed that
Copilot’s performance varies across different languages, with Java
having the highest correctness. Mastropaolo et al. [17] revealed
that paraphrasing the input description results in different code
suggestions with substantial variations, indicating the central role
played by the model’s input.

To reduce barriers for non-native English speakers and assist
developers of all backgrounds, Copilot supports not only English but
also other languages such as Chinese and Japanese. In addition to
languages of specific domains, the performance of large language
models can also be influenced by the characteristics of natural
languages [12, 25]. Recent studies have proposed a benchmark that
spans multiple natural languages in order to address the technology
gap in code suggestion. For example, Wang et al. [25] developed
a multilingual dataset namely MCoNala, annotating a total of 896
NL-Code pairs in Spanish, Japanese, and Russian. However, little is
known about the effect of diverse natural languages on the Copilot
tool. We hypothesize that variations in natural language input could
also substantially affect the performance of Copilot.

To minimize the potential bias caused by natural languages in
the future, we conduct an empirical study on Copilot to explore the
effect of multiple natural languages on code suggestion. Specifically,

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR 2024, April 2024, Lisbon, Portugal Kei Koyanagi, Dong Wang, Kotaro Noguchi, Masanari Kondo, Alexander Serebrenik, Yasutaka Kamei, and Naoyasu Ubayashi

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

we use 756 AtCoder (a programming contest) questions from 189
contests to create queries for Copilot in English, Japanese, and
Chinese. We then evaluate the correctness of the corresponding
Copilot suggestions against the test cases provided by AtCoder.

The preliminary results reveal that natural languages do have
an effect on the correctness of the code suggestions when using
Copilot. We find that in the context of AtCoder questions, Japanese
has the highest level of correctness, followed by English, while
Chinese performs the worst. More specifically, there is a difference
ranging from 2.6% to 11.5% observed between Chinese and English
across four levels of question difficulty. In addition, the correctness
tends to decrease dramatically with the increase of difficulty for all
studied natural languages.

In summary, the contributions of this work are as follows: (1)
we are the first work to investigate the ability of Copilot to suggest
code, taking into account the distinction of natural languages; (2)
the results emphasize the significance of addressing bias in natural
languages when using generative AI techniques for programming
tasks, in addition to efforts aimed at addressing political [15], senti-
ment [10], and gender [23] aspects; (3) Our work opens up several
future research directions.

2 RELATEDWORK

Studies on GitHub Copilot. Several studies have focused on the
securities of Copilot. Pearce et al. [21] examined the security issues
in code suggested based on queries created from the 25 top CWE
vulnerabilities with a total of 89 scenarios, with approximately 40%
of them being vulnerable. Asare et al. [4] demonstrated that Copilot,
despite performing differently across various vulnerability types, is
not as bad as human developers at introducing vulnerabilities. At
the same time, another group of studies have been conducted to
evaluate the various capabilities of Copilot. To name a few, Nguyen
and Nadi [19] validated the correctness of 132 LeetCode questions
across four different programming languages. Mastropaolo et al.
[17] analyzed whether different but semantically equivalent natural
language descriptions result in the same recommended function.
Dakhel et al. [6] investigated the quality of the code by Copilot
and suggested that Copilot can become an asset for experts, but
a liability for novice developers. Sobania et al. [22] compared the
Copilot and Genetic Programming on standard program synthesis
benchmark problems. Al Madi [3] reported that the suggested code
is comparable in complexity and readability to code written by
human pair programmers.

Studies on Software Engineering Techniques forMultilingual
Projects. Several studies have been conducted to investigate the
impact of natural languages on software engineering techniques,
such as traceability link recovery, bug localization, and question
retrieval [5, 9, 14, 20, 26, 27]. For instance, Lin et al. [14] evalu-
ated different approaches for traceability link recovery in bilin-
gual projects, including traditional IR-based, language-model based,
and deep learning model-based approaches. They conducted their
evaluation on 14 English-Chinese projects and three projects in
other languages, such as Japanese. The results showed that the deep
learning model-based approach outperformed the other approaches,
particularly in large-scale projects in this bilingual setting.

Studies on Social Bias in LanguageModels. Several studies have
been carried out toward understanding and mitigating social biases
in language models [10, 13, 24]. Regarding gender bias, Treude and
Hata [23] examined the extent to which 56 tasks related to soft-
ware development are affected by implicit gender bias embedded
in large language models. Their findings revealed a clear pattern of
gender bias. Regarding religion bias, Abid et al. [1] investigated the
anti-Muslim bias, demonstrating that it appears consistently and
creatively in different uses of the model and that it is severe even
compared to biases about other religious groups. Regarding politi-
cal bias, Liu et al. [15] described metrics for measuring political bias
and proposed a reinforcement learning framework for mitigating
such biases in the generated text. Regarding sentiment bias, Huang
et al. [10] quantified sentiment bias by adopting individual and
group fairness metrics from the fair machine learning literature.

In contrast to previous work, we present a novel perspective to
examine the Copilot capability within the context of diverse natural
languages on code suggestion. This would offer valuable insights into
optimizing the usage of Copilot and complement the knowledge of
social bias in large language models.

3 STUDY DESIGN
In this section, we describe the study design, including the research
question, data collection, and code suggestion and its evaluation.

3.1 Research Question
RQ - How does the input of different natural languages affect
the performance of Copilot?We aim to study the effectiveness of
natural languages (i.e., English, Japanese, and Chinese) in the code
suggestions synthesized by the Copilot. Answering this research
question will shed light on the usage of Copilot for developers from
different backgrounds in practice.

3.2 Data Collection
To answer our research question, we collected the programming
questions from the AtCoder. AtCoder is one of the largest program-
ming contest sites, catering to individuals ranging from beginners
to experts. It has been extensively studied in previous works ana-
lyzing programming [2, 18]. Hence, it is a suitable starting point
for examining the impact on code suggestion.

We used the dataset that was publicly available at the end of
March 2023, consisting of 1,624 questions from 287 contests. Each
contest has up to eight levels of difficulty, labeled A, B, C, D, E, F,
G, and Ex (H). The higher the letter’s position in the alphabet, the
more difficult the question. Some contests did not contain all eight
levels. To minimize potential bias in our validation, we established
the following two criteria for selecting the questions:

• We focus on levels A to D since questions E and higher re-
quire complex processing that involves multiple algorithms.

• We excluded the contests where the test cases were not
provided.

After applying the criteria above, we collected a total of 756 ques-
tions (189 per level) from 189 contests (from the 99th contest to the
287th contest). We chose the 99th because the following contests
consistently feature four levels of difficulty. Note that AtCoder only
offers questions in English and Japanese. Therefore, we need to

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Exploring the Effect of Multiple Natural Languages on Code Suggestion Using GitHub Copilot MSR 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

translate the questions into Chinese. Chinese is a representative
language in this context study [5, 14, 26, 27] and serves as the
comparative language for our goal. To ensure accuracy, the second
author, a native Chinese speaker with over five years of experience
in software engineering research inspected all 756 questions trans-
lated by DeepL API1 and made significant modifications. A similar
method has also been adopted by Wan et al. [24]. Below we present
four examples of question descriptions with levels A to D from the
212th contest2 for a better understanding of code suggestion tasks.
The question with A level:

Takahashi melted and mixed 𝐴 grams of gold and 𝐵 grams of
silver (0 ≤ 𝐴, 𝐵, 0 < 𝐴 + 𝐵) to produce new metal. What metal
did he produce: pure gold, pure silver, or an alloy? Formally,
the product is called as follows. Pure gold, if 0 < 𝐴 and 𝐵 = 0.
Pure silver, if 𝐴 = 0 and 0 < 𝐵. An alloy, if 0 < 𝐴 and 0 < 𝐵.

The question with B level:

You are given a 4-digit PIN:𝑋1𝑋2𝑋3𝑋4, which may begin with
a 0. The PIN is said to be weak when it satisfies one of the
following conditions: All of the four digits are the same. For
each integer 𝑖 such that 1 ≤ 𝑖 ≤ 3, 𝑋𝑖+1 follows 𝑋𝑖 . Here, 𝑗 + 1
follows 𝑗 for each 0 ≤ 𝑗 ≤ 8, and 0 follows 9. If the given PIN
is weak, print Weak; otherwise, print Strong.

The question with C level:

You are given two sequences: 𝐴 = (𝐴1, 𝐴2, ..., 𝐴𝑁) consisting
of 𝑁 positive integers, and 𝐵 = (𝐵1, ..., 𝐵𝑀) consisting of 𝑀
positive integers. Find the minimum difference of an element
of 𝐴 and an element of 𝐵, that is, min

1≤𝑖≤𝑁
min

1≤ 𝑗≤𝑀
|𝐴𝑖 − 𝐵 𝑗 |.

The question with D level:

Takahashi has many balls, on which nothing is written, and
one bag. Initially, the bag is empty. Takahashi will do 𝑄 oper-
ations, each of which is of one of the following three types.
Type 1: Write an integer 𝑋𝑖 on a blank ball and put it in the
bag. Type 2: For each ball in the bag, replace the integer writ-
ten on it with that integer plus 𝑋𝑖 . Type 3: Pick up the ball
with the smallest integer in the bag (if there are multiple such
balls, pick up one of them). Record the integer written on this
ball and throw it away. For each 1 ≤ 𝑖 ≤ 𝑄 , you are given
the type 𝑃𝑖 of the 𝑖-th operation and the value of 𝑋𝑖 if the
operation is of Type 1 or 2. Print the integers recorded in the
operations of Type 3 in order.

3.3 Code Suggestion and Evaluation
Code Suggestion.We invoked Copilot to suggest the code using
a dataset of 756 questions from three different natural languages.
In this study, our focus is on code written in Python, which is
currently a widely used programming language. During the input,

1https://www.deepl.com/docs-api
2https://atcoder.jp/contests/abc212/tasks

in addition to the question description, we provided complementary
information to make the query more precise. This included question
constraints, the format of input and output, as well as examples of
input and output. For example, given the aforementioned question
with A level, the complementary information is:

[Constraint] 0 <= A , B <= 100 and 1 <= A+B
and A , B are integers

[Input] A B
[Output] Gold or Silver or Alloy
[Input Example] 50 50
[Output Example] Alloy

Based on the input, Copilot suggested x code snippets, 0≤x≤10.
Unlike the prior work [19] where they manually invoked Copilot
for each query, to mitigate the human bias, we established an en-
vironment using Keyboard Maestro3 to automatically manipulate
the input/suggestion. Note that the process from input to output
is executed five times for every queried question. The suggested
code by Copilot may vary each time, hence we take into account
the potential randomness bias in our subsequent evaluation.
Evaluation. We evaluated the suggested code using the corre-
sponding test cases provided for each question. Specifically, we
examined whether the output of the suggested code matches the
expected output of the test case. We used Accuracy to measure
the correctness of the suggested code, which indicates the percent-
age of code that passed all test cases out of all suggested code. To
statistically confirm the significant differences among the studied
natural languages at each difficulty level of questions, we perform
the one-way ANOVA test [7].

4 RESULTS
Tables 1, 2 and 3 show the accuracy of suggested code for five
rounds under the setting of English, Japanese, and Chinese, respec-
tively. Each row displays the proportion of suggested code snippets
that passed all test cases in each round. Note that the number of
suggested snippets varies depending on the questions.

When the query is written in Chinese, Copilot is less likely to suggest
the correct code. As shown in Table 3, we observe that the accuracy
of Chinese is relatively lower than that of English and Japanese for
all levels of questions, which indicates that the suggested code has
a lower chance of passing the provided test cases. For example, the
accuracy of theA, B, C,D level, varies from 51.5% to 52.7%, 39.7% to
43.1, 21.9% to 23.2%, and 7.6% to 8.4%. However, as shown in Table
1, when the query is written in English, the accuracy for the four
levels, ranges from 60.4% to 65.4%, 50.5% to 51.6%, 26.6% to 31.3%,
and 9.3% to 12.0%, respectively. On the other hand, we find that the
Japanese achieved the best performance comparatively. Specifically,
the accuracy of theA,B,C,D level varies from 67.4% to 68.7%, 52.8%
to 57.6%, 28.4% to 33.1%, and 10.0% to 12.8%. Moreover, the statistical
tests indicate that there are significant differences among the three
languages at each difficulty level. The p-values of the statistical
tests for the A, B, C, and D levels among the three languages are
9.924e-10, 1.258e-10, 7.661e-10, and 0.000256, respectively.

The accuracy varies as the number of execution rounds changes.
Our repetitive experiment suggests that to some extent there is

3https://www.keyboardmaestro.com/main/

3

https://www.deepl.com/docs-api
https://atcoder.jp/contests/abc212/tasks
https://www.keyboardmaestro.com/main/

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR 2024, April 2024, Lisbon, Portugal Kei Koyanagi, Dong Wang, Kotaro Noguchi, Masanari Kondo, Alexander Serebrenik, Yasutaka Kamei, and Naoyasu Ubayashi

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Accuracy of Suggested Code–English

A B C D

1st 63.7% 864/1357 51.0% 860/1686 28.3% 482/1702 10.4% 172/1657

2nd 65.4% 878/1343 50.5% 858/1698 26.7% 471/1761 10.0% 182/1813

3rd 63.6% 856/1346 50.9% 811/1594 26.6% 438/1648 9.3% 151/1622

4th 60.4% 819/1355 51.6% 842/1631 31.3% 499/1596 11.0% 167/1524

5th 60.4% 831/1375 50.5% 857/1698 31.1% 552/1774 12.0% 217/1812

Median 63.6% 50.9% 28.3% 10.4%

Table 2: Accuracy of Suggested Code–Japanese

A B C D

1st 68.7% 857/1248 52.8% 872/1651 28.9% 482/1668 10.0% 170/1697

2nd 67.4% 840/1246 52.9% 824/1559 28.4% 454/1597 10.2% 155/1526

3rd 68.1% 842/1237 54.3% 879/1619 28.5% 449/1577 11.0% 153/1391

4th 68.4% 860/1258 57.6% 872/1515 33.1% 439/1328 12.8% 125/974

5th 68.0% 849/1249 54.5% 922/1693 32.7% 592/1813 11.4% 208/1832

Median 68.1% 54.3% 28.9% 11.0%

Table 3: Accuracy of Suggested Code–Chinese

A B C D

1st 52.7% 739/1402 40.1% 705/1757 22.7% 405/1787 7.7% 136/1766

2nd 52.5% 728/1386 43.1% 734/1703 21.9% 376/1718 7.8% 134/1715

3rd 52.1% 737/1415 39.7% 687/1730 22.7% 405/1788 8.1% 143/1764

4th 51.8% 732/1412 41.5% 717/1728 23.2% 413/1783 8.4% 146/1748

5th 51.5% 739/1436 41.9% 728/1738 22.0% 395/1798 7.6% 132/1744

Median 52.1% 41.5% 22.7% 7.8%

a bias towards randomness in Copilot for all studied natural lan-
guages. For instance, as we can see from Table 1, for English, there
are performance differences of up to 5.0% for A level, 1.1% for B
level, 4.7% for C level, and 2.7% for D level. Similarly, in the context
of Japanese, the performance differences are 1.3%, 4.8%, 4.7%, and
2.8% for the four levels, separately (Table 2).

In addition, regardless of the type of natural language, the per-
formance of Copilot decreases significantly as the difficulty of ques-
tions increases. As shown in the three tables, the accuracy contin-
uously decreases to approximately 10% or less from A level to D
level (e.g., within Japanese, 68.7% for A while 10.0 for D).

5 DISCUSSION
(I) Low performance when input is Chinese. The results reveal that
Copilot performed the worst in the Chinese setting compared to the
other two languages. This finding is not surprising, considering that
AtCoder only offers questions in Japanese and English. Hence, the
number of codes with Chinese comments used during the training
of the large language models is likely to be limited. One potential
future direction is to investigate the effectiveness of Copilot using a
dataset from a Chinese-based programming contest as the baseline.

To shed light on the reasons for the low accuracy, we manually
inspected some instances where the suggested code passed all the
test cases for English and Japanese but failed for Chinese. Based
on our inspection, we have found that Copilot has a tendency to

suggest incorrect code in situations where the correct code should
handle multiple conditions, complex conditions, or string outputs.
The below example displays one of the suggested incorrect code
snippets for Chinese in question 212-A.

def main () :
A , B = map (int , input () . split ())
if A == 0 :

print ("Silver")
elif B == 0 :

print ("Gold")

The correct code should handle three conditions: Gold, Silver, and
Alloy, based on the combination of variables A and B. However,
this code only has two conditions. This tendency may be because
the output format of AtCoder strings uses Roman characters or
English words, and the Chinese dataset used as input included
Roman characters or English words. These characters may not have
been recognized as symbols.

(II) Relationship between the number of suggested code and the
correctness. When analyzing Tables 1, 2, and 3 and focusing on maxi-
mum accuracy, if there is a difference of 3% or more from the lowest
accuracy across five rounds within the same language and difficulty
level, the total number of suggested code snippets will be the low-
est. This result suggests that increasing the maximum number of
suggested code snippets may decrease accuracy in comparison to
suggesting a smaller number.

In terms of the number of code snippets suggested for each
difficulty level, as shown in the tables, we notice that level A had
the lowest number of code snippets suggested compared to levels B,
C, andD. This might be because Copilot does not output duplicated
code snippets in the maximum of 10 suggested code snippets. We
deduce that, compared to higher-level questions, level A questions,
which typically involve basic grammar that is simple to process,
may result in a higher number of duplicated code snippets.

Comparing the average number of suggested code snippets
across the three languages, we found that Japanese had the lowest
number. As observed in Section 4, Japanese also leads to the high-
est accuracy. Therefore, there might be a relationship between the
number of suggested code snippets and the accuracy. The possible
reason for this is that AtCoder is primarily operated in Japan and
is widely used by Japanese people. Consequently, there is a larger
pool of Japanese-coded responses with accompanying comments
that were utilized during the training of the large language models.

6 THREATS TO VALIDITY
External Validity The evaluation results may not be generalized
to other contest questions, programming languages other than
Python, and natural languages other than English, Japanese, and
Chinese. However, we believe that the representativeness of our
study is highlighted by the dominance of Python and the popularity
of the natural languages chosen. Furthermore, the questions in
AtCoder are designed for learners. Therefore, future studies should
investigate the impact of code suggestions on professional tasks.
Construct Validity During the data preparation, the questions
may not be translated precisely from English to Chinese [14]. To
address this threat, we have included a native Chinese researcher
with a strong research background in this work tomanually validate
the Chinese translation generated by DeepL.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Exploring the Effect of Multiple Natural Languages on Code Suggestion Using GitHub Copilot MSR 2024, April 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Internal Validity We relied on the suggestion tool Copilot. It uti-
lizes the provided information in the file and project to construct its
own internal context, but the exact details are not publicly disclosed.

7 CONCLUSION AND FUTUREWORK
This study explores the effectiveness of GitHub Copilot in the set-
ting of different natural languages (i.e., English, Japanese, and Chi-
nese). Specifically, we evaluate the accuracy of the suggested code
by Copilot using a total of 756 questions sourced from 189 AtCoder
contests, with each contest providing four difficulty levels of prob-
lems. Our results highlight that the capability varies across natural
languages, with Chinese achieving the worst performance. Addi-
tionally, regardless of the type of natural language, the performance
decreases significantly as the difficulty of questions increases.

Our preliminary study has identified several anticipated future
works, including: (i) Investigating the possibility that the appro-
priate natural language for each programming task may differ. (ii)
Comparing the questions from other programming contests, such
as Chinese-based contests. (iii) Conducting a deeper analysis of
the quality and understandability of the suggested code across lan-
guages. and (iv) explore the impact of natural languages in other
state-of-the-art large-language models (such as ChatGPT).

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of: (1) JSPS for the
KAKENHI grants (JP21H04877, JP22K17874, JP22K18630, JP23K16864),
and Bilateral Program grant JPJSBP120239929; and (2) the Inamori
Research Institute for Science for supporting Yasutaka Kamei via
the InaRIS Fellowship.

DATA AVAILABILITY
To encourage the replication study in the future, we have made our
replication package available [11], including the experiment scripts
and the complementary results.

REFERENCES
[1] Abubakar Abid, Maheen Farooqi, and James Zou. 2021. Persistent Anti-Muslim

Bias in Large Language Models. In Proceedings of the Conference on AI, Ethics,
and Society. 298–306.

[2] Wasi Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei
Chang. 2021. AVATAR: A Parallel Corpus for Java-Python Program Translation.
arXiv:2108.11590 (2021).

[3] Naser Al Madi. 2022. How Readable is Model-generated Code? Examining
Readability and Visual Inspection of GitHub Copilot. In Proceedings of the 37th
International Conference on Automated Software Engineering. 1–5.

[4] Owura Asare, Meiyappan Nagappan, and N Asokan. 2023. Is github’s copilot
as bad as humans at introducing vulnerabilities in code? Empirical Software
Engineering 28, 6 (2023), 1–24.

[5] Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning
a dual-language vector space for domain-specific cross-lingual question retrieval.
In Proceedings of the 31st International Conference on Automated Software Engi-
neering. 744–755.

[6] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, and Zhen Ming Jack Jiang. 2023. GitHub Copilot AI pair
programmer: Asset or Liability? Journal of Systems and Software 203 (2023),
111734.

[7] Ronald Aylmer Fisher. 1970. Statistical methods for research workers. In Break-
throughs in statistics: Methodology and distribution. Springer, 66–70.

[8] GitHub. 2021. GitHub Copilot: Your AI pair programmer. https://copilot.github.
com/

[9] Jane Huffman Hayes, Hakim Sultanov, Wei-Keat Kong, and Wenbin Li. 2011.
Software verification and validation research laboratory (svvrl) of the university
of kentucky: traceability challenge 2011: language translation. In Proceedings
of the 6th International Workshop on Traceability in Emerging Forms of Software
Engineering. 50–53.

[10] Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stanforth, Johannes Welbl, Jack
Rae, VishalMaini, Dani Yogatama, and Pushmeet Kohli. 2019. Reducing sentiment
bias in language models via counterfactual evaluation. arXiv:1911.03064 (2019).

[11] Kei Koyanagi. 2024. Replication package for MSR2024: Exploring the Effect of
Multiple Natural Languages on Code Suggestion Using GitHub Copilot. https:
//doi.org/10.5281/zenodo.10141739.

[12] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. 2019. Natural questions: a benchmark for question answering research.
Transactions of the Association for Computational Linguistics 7 (2019), 453–466.

[13] Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov.
2021. Towards understanding and mitigating social biases in language models.
In Proceedinds of the International Conference on Machine Learning. 6565–6576.

[14] Jinfeng Lin, Yalin Liu, and Jane Cleland-Huang. 2022. Information retrieval
versus deep learning approaches for generating traceability links in bilingual
projects. Empirical Software Engineering 27 (2022), 1–33.

[15] Ruibo Liu, Chenyan Jia, Jason Wei, Guangxuan Xu, Lili Wang, and Soroush
Vosoughi. 2021. Mitigating political bias in language models through reinforced
calibration. In Proceedings of the AAAI Conference on Artificial Intelligence. 14857–
14866.

[16] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
2022. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics. 8086–8098.

[17] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli,
Simone Scalabrino, Rocco Oliveto, and Gabriele Bavota. 2023. On the Robustness
of Code Generation Techniques: An Empirical Study on GitHub Copilot. In
Proceedings of the 45th International Conference on Software Engineering. 2149–
2160.

[18] George Mathew and Kathryn T Stolee. 2021. Cross-language code search using
static and dynamic analyses. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 205–217.

[19] Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s
code suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories. 1–5.

[20] Timo Pawelka and Elmar Juergens. 2015. Is this code written in English? A study
of the natural language of comments and identifiers in practice. In Proceedings
of the International Conference on Software Maintenance and Evolution. 401–410.

[21] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In Proceedings of the Symposium on Security and
Privacy. 754–768.

[22] Dominik Sobania, Martin Briesch, and Franz Rothlauf. 2022. Choose your pro-
gramming copilot: A comparison of the program synthesis performance of github
copilot and genetic programming. In Proceedings of the Genetic and Evolutionary
Computation Conference. 1019–1027.

5

https://copilot.github. com/
https://copilot.github. com/
https://doi.org/10.5281/zenodo.10141739
https://doi.org/10.5281/zenodo.10141739

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MSR 2024, April 2024, Lisbon, Portugal Kei Koyanagi, Dong Wang, Kotaro Noguchi, Masanari Kondo, Alexander Serebrenik, Yasutaka Kamei, and Naoyasu Ubayashi

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

[23] Christoph Treude and Hideaki Hata. 2023. She Elicits Requirements and He Tests:
Software Engineering Gender Bias in Large Language Models. In Proceedinds of
the 20th International Conference on Mining Software Repositories. 624–629.

[24] Yuxuan Wan, Wenxuan Wang, Pinjia He, Jiazhen Gu, Haonan Bai, and Michael
Lyu. 2023. BiasAsker: Measuring the Bias in Conversational AI System. In
Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 515–527.

[25] Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F. Xu, and Graham Neubig.
2023. MCoNaLa: A Benchmark for Code Generation from Multiple Natural
Languages. Findings of the Association for Computational Linguistics: EACL,

265–273.
[26] Xin Xia, David Lo, Xingen Wang, Chenyi Zhang, and Xinyu Wang. 2014. Cross-

language bug localization. In Proceedings of the 22nd International Conference on
Program Comprehension. 275–278.

[27] Bowen Xu, Zhenchang Xing, Xin Xia, David Lo, Qingye Wang, and Shanping Li.
2016. Domain-specific cross-language relevant question retrieval. In Proceedings
of the 13th International Conference on Mining Software Repositories. 413–424.

[28] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the quality of
GitHub copilot’s code generation. In Proceedings of the 18th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering. 62–71.

6

	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Research Question
	3.2 Data Collection
	3.3 Code Suggestion and Evaluation

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion and Future Work
	References

