
A Bottom-Up Quality Model for QVTo
Christine M. Gerpheide∗ Ramon R.H. Schiffelers∗†

∗Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

The Netherlands
c.m.gerpheide@student.tue.nl, r.r.h.schiffelers@tue.nl, a.serebrenik@tue.nl

Alexander Serebrenik∗
†ASML N.V.

De Run 6501, 5504 DR Veldhoven
The Netherlands

ramon.schiffelers@asml.com

Abstract—We investigate the notion of quality in QVT Oper-
ational Mappings (QVTo), one of the languages defined in the
OMG standard on model-to-model transformations. We utilize
a bottom-up approach, starting with a broad exploratory study
including QVTo expert interviews, a review of existing material,
and introspection. We then formalize QVTo transformation
quality into a QVTo quality model, consisting of high-level
quality goals, quality properties, and evaluation procedures. We
validate the quality model by conducting a survey in which a
broader group of QVTo developers rate each property on its
importance to QVTo code quality. We find that although many
quality properties recognized as important for QVTo do have
counterparts in traditional languages, a number are specific
to QVTo or model transformation languages. Additionally, a
selection of QVTo best practices discovered are presented. The
primary contribution of this paper is a QVTo quality model
relevant to QVTo practitioners, while secondary contributions
are a bottom-up approach to building a quality model and a
validation approach leveraging developer perceptions to evaluate
individual quality properties.

I. INTRODUCTION

Model-driven engineering (MDE) can be used to develop
highly-reliable software, offering benefits from analysis to
code generation [1]. In MDE, models are created by domain
experts and then transformed into other models or code using
model transformations. One language for implementing model
transformations is QVT Operational Mappings, a.k.a. QVTo,
specified in the 2007 Object Management Group (OMG) stan-
dard for model-to-model transformation (MMT) languages [2].

As a standard, QVTo is used today in both academia and
industry. In particular, ASML [3], the leading provider of com-
plex lithography systems for the semiconductor industry, uses
QVTo as their primary language for implementing MMTs.
Currently ASML has tens of thousands of lines of QVTo code
supporting activities from real-time schedule analysis to servo
controller initialization during machine startup [4].

While for general purpose languages (GPLs) developers
have built up many common notions to judge whether a piece
of code is high- or low-quality, such shared best practices and
quality indicators do not yet exist for QVTo. Given the many
specific language features of QVTo, it is even unclear whether
quality properties for traditional languages apply to QVTo at
all. This lack of standardized and codified best practices has
already been identified as one of the largest current challenges
in assessing model transformation quality [5].

Therefore, in this research we investigate what code prop-
erties, best practices, and in general quality concerns currently
exist for QVTo. To maximize the relevance of our research to
industry, a focus on practitioners is maintained. We therefore
explicitly adopt a pragmatist stance [6], which states that
knowledge is judged by how useful it is for solving practical
problems. This stance drives many of our design decisions as
well as our validation strategy.

We begin with an introduction to QVTo and software quality
in Section II. To guarantee that the notions of quality we
identify are relevant for QVTo practitioners, we follow a
bottom-up approach, described in Section III, starting with a
broad exploratory study including expert interviews, a review
of existing material, and introspection. We then formalize
the exploratory study results into a quality model for QVTo
transformations, presented along with a selection of best
practices and difficulties in Section IV. The validation of our
quality model is presented in Section V. Finally, we discuss
additional related work in Section VI and conclusions and
future work in Section VII.

The primary contribution of this paper is a QVTo quality
model relevant to QVTo practitioners. Secondary contributions
are first our bottom-up approach to building a quality model,
and second, our validation approach, which we argue provides
more convincing evidence than approaches from literature
that the quality model is indeed useful for assessing QVTo
transformation quality.

II. PRELIMINARIES

A. QVT Operational Mappings

A QVTo transformation [2], [7] transforms models con-
forming to one or more metamodels. The primary constructs
of a QVTo transformation are mappings, functions that map
an input model element to an output element. Mappings

transformation UML2SysML(in source:UML, out target:SysML);
main() {

// main: entry point of transformation
source.rootObjects()[Class]->map Class2Block();

}
mapping UML::Class::Class2Block() : SysML::Block {

// implicit population section start
name := self.name;

}

Listing 1. Example QVTo transforming UML Classes to SysML Blocks



have three sections: an optional init section for object ini-
tialization, a population section for mapping input element
fields to the output, and an optional end section for post-
processing. In addition to mappings, there are also helpers and
queries, which take an arbitrary input and return an output.
To support more complex transformations, QVTo combines
declarative concepts (e.g. OCL [8] for model traversal) with
imperative concepts (e.g. forEach-loops). Furthermore, many
reuse mechanisms are supported, such as mapping inheritance
and storing oft-used mappings in libraries. A QVTo code
example is shown in Listing 1.

B. Software Quality

Software quality can be approached from many perspec-
tives [9], some of which we adopt a priori. First, we are
primarily interested in internal quality, which means mea-
suring quality by looking inside the software product (e.g.
analyzing source code), rather than measuring the software
during execution (e.g. testing) [10]. We also focus on direct
measurements of transformation quality, which measure the
transformation itself, rather than indirect measurements, which
measure other artifacts involved in model transformation (e.g.
models) to assess transformation quality [11]. We chose these
perspectives because they are most likely to provide insights
immediately useful to produce higher-quality transformations,
our goal with the pragmatist stance.

Internal quality is often formalized in a quality model.
According to ISO/IEC 25010 [12], the standard on system and
software quality, a quality model contains high-level quality
characteristics, quality attributes, and evaluation procedures.
The standard also presents a quality model for software prod-
ucts, containing all characteristics and attributes relevant to
software quality in general. The top-level quality characteris-
tics defined there are depicted in Figure 1. Evaluation methods,
however, are not provided in the standard product quality
model, so it cannot be used directly to assess code quality.
Furthermore, although the quality model is comprehensive, it
is not a priori clear given the unique range of features and
applications of QVTo that it is optimal for QVTo in practice.

Exploring quality in MDE, van Amstel, van den Brand,
and Nguyen [13] defined a set of metrics to evaluate model
transformation quality, including QVTo transformations. These
metrics included size metrics, function complexity metrics,
modularity metrics, inheritance metrics, dependency metrics,
consistency metrics, input/output metrics, and QVTo-specific
metrics. However, because these metrics were proposed based
on language features and prior research for GPLs, it is not
evident that this set of metrics is useful to assess QVTo
quality. Van Amstel [11] later provided an evaluation of
these metrics with respect to maintainability for ATL and
ASF+SDF. There, an average of three experts rated thirteen
code samples on seven quality characteristics. The expert
ratings were then correlated with metric measurements. For
ATL no significant correlations were found, and for ASF+SDF,
while some significant correlations were observed, the high
correlations between metrics made it difficult to assess the

Fig. 1. Quality characteristics for software products in ISO/IEC 25010

impact of individual metrics. Identifying individual metrics
is particularly important because having too many metrics
is one of the reasons metrics programs fail in practice [14],
[15]. Therefore, although quality models have been proposed
that are applicable at least in theory to QVTo, there is little
empirical evidence that these models represent a useful notion
of QVTo quality. We call these approaches starting exclusively
from theory top-down approaches.

III. APPROACH

To identify the most important aspects for QVTo quality, we
follow a bottom-up approach based in grounded theory [16].
This way, the most pressing concerns in QVTo quality are cap-
tured, which are most important according to our pragmatist
stance. Furthermore, utilizing a bottom-up approach already
provides high empirical validity [17], particularly valuable in
domains where validation is difficult. Our approach consists
of two phases. The first is a broad exploratory study to
gather substantial support for what affects quality in QVTo.
The second phase is formalizing the information gathered
into cohesive format which can be used to assess QVTo
transformation quality.

A. Exploratory Study

The exploratory study focuses on gathering qualitative
data. Since producing high-quality code heavily depends on
developer actions, namely, how developers write code, qual-
itative data can provide the richest insights into the complex
reasoning processes that developers use [16]. Since qualitative
methods are sometimes considered “fuzzier” than quantitative
methods in computer science [6], care was taken in selecting
methods and conducting the study, leveraging in particular
the extensive experience with qualitative methods from social
science research. To guarantee that the exploratory study
produces generalizable data and builds upon previous research
and experience, we utilize a triangulation approach: expert
interviews, a review of existing material, and introspection.

1) Expert interviews: Four semi-structured interviews of
QVTo experts at ASML were conducted. By gathering data
directly from developers, we gain access to potentially years of
best practices and learning involved with becoming an experi-
enced programmer. Additionally, by speaking with developers
directly, we can quickly obtain insights into which aspects
of QVTo are most important for quality today. As with all
interview research, the data gathered in this component of
the exploratory phase may be very specific to the individuals
interviewed. Mitigating this bias while still leveraging rich



developer experience is a primary motivation for our trian-
gulation approach.

State-of-the-art techniques for interviews were followed, in
particular recommendations from Seaman [16] and Hove and
Anda [18]. Each interview lasted 45-60 minutes and was audio
recorded and later transcribed. A one-page interview guide
(available in [19]) was used by the interviewer to help direct
the interview, containing questions about development pro-
cesses, typical bugs and refactorings, development guidelines,
differences in developing QVTo versus other languages, as
well as poor practices exhibited by those learning QVTo. To
assess the interview format, a mock interview was performed
with an independent developer before-hand.

Examples of information gathered during the interviews are
that common refactorings include converting imperative-style
programming to declarative (since the latter is more readable
as well as faster in execution), that a transformation is easiest
to work with if its structure mirrors the hierarchy of either the
input or output metamodel (but not both), and that unit testing
is used extensively by the team but there does not exist any
measure of test coverage.

2) Existing material review: To leverage the vast amount
of knowledge on code quality, an extensive review of exist-
ing materials was performed. This review included not only
literature, but also other sources such as online forums. The
latter are particularly important since the amount of scientific
literature on QVTo is still limited and much insight can instead
be gained from online sources.

For literature, a systematic literature review [20] was per-
formed with search terms (including synonyms thereof) “best
practices”, “quality”, “metrics”, “limitations”, “difficulties”,
“tools”, and “testing”, in combination with technology terms
“QVTo”, “QVT”, “ATL”, “model transformation”, “transfor-
mation language”, “Java”, and “code”. ATL and Java were
chosen since they are also prominently used for model trans-
formation. The technology terms also served as exclusion
criteria for literature found, where search queries already
returning a great deal of literature for technologies closest to
our focus terms (e.g. “QVTo” or “model transformation”) were
not pursued for the more distant technologies (e.g. “Java” and
“code”). Rich online sources reviewed were the forum for the
Eclipse QVTo implementation [21] and the publicly-available
comments from the Transformation Tool Contest [22].

Examples of data gathered during this review are that
mixing notations (e.g. text, graphical) can reduce understand-
ability, and that a number of metric sets have been proposed
in model transformation literature (e.g. [23], [24])

3) Introspection: The third component of the exploratory
study was learning QVTo by the first author. Here, a series
of QVTo tutorials and examples was followed (e.g. [1]).
During the learning process all aspects related to quality were
recorded, such as difficulties and realizations about better ways
to implement certain functionalities. Since it is important for
software engineer interviewers to be knowledgeable of the
domain at hand [18], this component was performed before
the interview component of the triangulation approach.

An example of data gathered during introspection is that a
novice tends to create large init sections inside mappings
to initialize the output elements, since that is similar to
GPL programming, as opposed to using the more concise
implementation with a population section.

B. Formalizing the Quality Model

With the qualitative data from exploratory study, we perform
what is known in classic theory generation as the constant
comparison method [16]. All key points related to transfor-
mation quality are extracted, approximately one sentence per
point. Each point is tagged (or coded [16]) with keywords
describing why it is relevant for quality, e.g., “conciseness”,
matching the wording used in the raw data as closely as
possible. Then an iterative approach is applied where similar
points are grouped together, while always maintaining trace-
ability links back to the original sources. The set of quality
tags are then reduced by combining closely related tags, e.g.,
“readability” was combined with “understandability”.

Until this point, to avoid researcher bias, it was not assumed
that a formal quality model would be the result of our
investigation of QVTo quality. It became clear however that
most of our key points and tags could be effectively formalized
within a quality model. The quality tags became the quality
goals of our model, representing the primary quality concerns
for QVTo transformations today. We then translated each
point into a short phrase. These phrases comprise the quality
properties of the QVTo quality model. To give an indication of
whether the property helps or hurts quality, we also assigned
a directionality to the property. Directions were chosen so that
every property generally increases transformation quality. To
accommodate for quality goal tradeoffs, however, each quality
goal associated with the property was also marked with a
direction. For example, “Using mappings instead of helpers
increases understandability, but can hurt performance due to
the additional tracing added by the engine” was converted
to property “More mappings than helpers” with goals “Un-
derstandability (+)” and “Performance (-)”. We use the term
property rather than attribute because attributes generally do
not have directionality [12].

Quality properties with insufficient support from our trian-
gulation approach were then discarded. Specifically, properties
with fewer than two original sources (for example being
mentioned by only a single paper) were removed from the
model. Properties which were only proposed in literature with
no validation were also removed. This latter step is required by
our pragmatist stance to avoid including properties for which
there is still no evidence of usefulness in practice. To complete
the model, evaluation procedures are added for each property.
An elaboration of our approach is given in [19].

IV. RESULTS

In Table I the QVTo quality model resulting from the ex-
ploratory study is presented. It consists of 37 quality properties
and 4 quality goals, namely Functionality, Understandability,



Performance, and Maintainability. Although the list of prop-
erties may seem large, our validation approach (Section V)
distinguishes their relative importance. The properties have
been classified as specific to QVTo, MMT, or neither, in which
case they are also applicable to GPLs. The proposed classifica-
tion is based on the traceability links from our quality model,
therefore reflecting why the property is in the model. For
example, “Deletion uses trashbin pattern” is classified QVTo-
specific because it relates to the QVTo implementation used
by the interviewed developers. According to our classification
scheme, 13 properties are QVTo-specific, 4 are MMT-specific,
and 20 are applicable to GPLs.

The quality properties have been further organized in Ta-
ble I according to their nature. Two of the properties are
presentation-related, since they focus on style and are un-
related to transformation behavior. Nine of the properties
concern the high-level architecture of a set of transformations
modules in a project. Four properties are related to the current
QVTo engine implementation, and therefore may differ be-
tween implementations. For example, “Few queries with side-
effects” is implementation-dependent because in the Eclipse
QVTo implementation queries are implemented as helpers,
therefore allowing side-effects, despite this not being allowed
by the QVTo specification. The remaining 22 properties can be
considered quality properties local to a transformation, since
they are specific to a how a single transformation has been
written. This categorization helps determine when and where
each property could be leveraged to improve transformation
quality. For example, if a developer has the opportunity to
modify a transformation but is not able to re-architecture
his or her project, then the transformation-local properties
may be most useful. As another example, if a new version
of the QVTo engine is released, it may be necessary to
reevaluate the implementation-dependent properties. The high
proportion of transformation-local properties is likely a result
of our approach, since existing quality models also have high
proportions of properties local to a single module or class
(e.g. [13], [23]) and the developers interviewed work also
most frequently on modifying single transformations. We do
not consider the effect of our approach on the properties a
threat to validity, however, since our approach was designed to
capture the most pertinent concerns in QVTo quality. Instead,
this suggests that the most useful model to assess QVTo
quality contains a variety of properties but with an emphasis
on transformation-local concerns.

It is clear from the quality model that understandability and
maintainability were the most ubiquitous (though not necessar-
ily most important) quality goals for QVTo practitioners. This
is expected, however, due to our focus on internal quality and
that understandability and maintainability are more complex
goals to describe than performance or functionality, therefore
requiring more properties. Furthermore, although performance
may be most related to external quality, it is still incorporated
in our model because it was clear from our exploratory study
that any description of QVTo quality without a consideration
for performance would be incomplete.

Some properties in the model are of particular interest. For
example, “Little imperative programming” may seem unintu-
itive, since QVTo was specifically designed to include imper-
ative constructs. However, our exploratory study suggests that
although these constructs are indeed useful for creating more
complex transformations, where the alternative would be using
a black-box containing Java code, they should be minimized
where possible. In the experience of one of the developers
interviewed, “eighty percent of transformations can be written
in a purely declarative fashion, making them much easier to
understand and work with later on”. Property “Mappings only
used when tracing needed” is also notable, since although
mappings are a core concept of QVTo and avoiding them
decreases understandability, it emerged as more important to
improve performance, therefore serving as an example where
a quality model not considering execution performance may
be less useful for developers.

That the model was built bottom-up can also be seen.
For example, the property “Small init sections” is included,
while for end sections, “Few end sections” is included. This
reflects that according to our exploratory study, the amount
of code inside init sections affects quality, whereas for end

sections it was only suggested that the frequency of use may
affect quality. Recall also that no direct attempt was made to
cover QVTo language features in the exploratory study, so the
QVTo-specific properties included the model are there because
they emerged as relevant to quality during the triangulation
approach.

A. Model Scope

Because our approach was not restricted to specific types
of QVTo transformations, we assert that our model is relevant
to all strata of the model transformation taxonomy proposed
by Mens and Van Gorp [26] that are applicable to QVTo.
Specifically, the quality model can be used to assess quality
of QVTo transformations with one or multiple source and/or
target models. Since QVTo supports source and target models
having different metamodels, the quality model can be used
on both endogenous and exogenous QVTo transformations.
Similarly, the model can be used to assess both horizontal
transformations (i.e. performing refinements or abstractions)
and vertical transformations (i.e. which do not change the level
of abstraction). The experts interviewed also worked regularly
with all of these transformation types. However, we do not
claim that the quality model is applicable to MMT languages
other than QVTo without further study.

We also place our model in the context of the transformation
intents proposed by Amrani et al. [27]. Since QVTo could be
theoretically used for each of the 17 most common intents
identified there, the quality model proposed here is also
applicable to transformations with those intents. Of the 17
intents, however, the experts interviewed had less experience in
working with transformations addressing the “approximation”
and “model generation” intents. Due to the importance of the
interview data in constructing our quality model, we therefore



Quality property1 Quality goals Evaluation procedure Applicability
Presentation

Detailed comments throughout code U+ Comment/LOC ratio GPL
Formatting conventions followed U+ # Violations of a coding standard GPL

High-level architecture
Few blackboxes U+, M+ # Blockboxes QVTo
Few configuration properties U+, P- # Configuration properties QVTo
Few dependencies on other modules U+, M+ Module fan-out GPL
Few input/output models U+, M+ # Input/output models and metamodels MMT
Few intermediate properties U+ # Intermediate properties QVTo
Low code duplication with other modules M+ # Instances where at least five lines repeated GPL
Pre- and post-conditions specified F+, M+ Presence of formal specification MMT
Small interfaces to other modules U+, M+ Function fan-out to other modules GPL
Small transformation size U+ Module LOC GPL

Transformation local
Confluence satisfied F+ Proof of confluence MMT
Few dependencies between functions U+, M+ Function fan-out within module GPL
Few end sections U+ # end sections QVTo
Few mapping arguments P+, U+ # Arguments per mapping GPL
Few nested if statements U+ Nesting depth GPL
Few when and where clauses U+ # when and where clauses QVTo
High test coverage F+, M+ Test code coverage GPL
High usage of design patterns U+ Comparison of patterns used to a pattern catalog GPL
Inheritance usage matches metamodel U+ # Abstract classes in common with metamodel MMT
Interdependent functions near each other U+, M+ Custom semantic similarity measure GPL
Little dead code U+, M+ # Unused LOC GPL
Little imperative programming U+, M+ # forEach loops QVTo
Little overloading U+ # Instances of overloaded functions GPL
Low code duplication within module U+, M+ # Instances where at least two lines repeated GPL
Low syntactic complexity U+ Syntactic complexity measure [25] GPL
Minimal reassignment of objects F+ # Instances when object assigned to multiple sets QVTo
More mappings than helpers U+, P- Ratio # mappings to # helpers QVTo
More queries than helpers U+, P+ Ratio # helpers to # queries QVTo
Short function chains U+ Length of chains GPL
Small function size U+ Function LOC GPL
Small init sections U+ LOC inside init sections QVTo
Termination checked F+ Proof of termination GPL

Implementation-dependent
Few queries with side-effects U+ # Queries with side-effects QVTo
Deletion uses trashbin pattern P+ # Instances where trashbin pattern not used QVTo
Low execution time P+ Execution speed with typical model GPL
Mappings only used when tracing needed U-, P+ # Instances when mapping used but not tracing QVTo

TABLE I
QVTO QUALITY MODEL RESULTING FROM THE EXPLORATORY STUDY. CONTAINS QUALITY PROPERTIES, QUALITY GOALS (F, U, P, M FOR

FUNCTIONALITY, UNDERSTANDABILITY, PERFORMANCE, AND MAINTAINABILITY, RESPECTIVELY), AND EVALUATION PROCEDURES.

we consider this a threat to validity when using our quality
model to describe QVTo transformations with those intents.

B. Similarities to other models

The model most closely related to our QVTo quality
model is the set of QVTo quality metrics proposed by [13],
introduced in Section II-B. Of our 37 quality properties,
approximately one third have corresponding metrics in their
metric set (which coincidentally also contained 37 entries).

1“Function” refers to a mapping, query, or helper. “LOC” is lines of code.
“Module” refers to a transformation or a library. “Function chain” refers to
a chain of function calls. “Confluence” is a property of declarative languages
where output is independent of execution order. Tracing internally links input
and output elements. Clauses with when and where specify pre- and post-
conditions on mappings. Intermediate properties store transient data during
execution, and configuration properties have global scope.

Some of the similar metrics are nearly identical (e.g. metric “#
Overloaded mappings” and our property “Little overloading”)
while others are similar but not equivalent (e.g. metric “#
Trace resolution calls” and property “Mappings only used
when tracing needed”). These similarities appear in each of
the metric categories identified by [13], suggesting that our
synthesis approach also succeeds in covering a similar range
of concerns as a top-down approach.

The similar metrics, however, comprise the more straight-
forward properties from our model (e.g. “Few input/output
models”). Our more complex properties (e.g. “Deletion uses
trashbin pattern”, “Interdependent functions near each other”),
on the other hand, do not have counterparts in the metric set.
In some cases, a metric may seem similar to a property, but
as a result of the bottom-up approach, the property is sub-



stantially more nuanced. For example, while the set from [13]
includes the metric “# Abstract mappings”, our model includes
the property “Inheritance usage matches metamodel” because
according to our study it was not simply the number of abstract
mappings that affected quality, but the extent to which they
represent the abstract classes in a metamodel. The properties
in our quality model are also in general more concise than the
metrics. For example, five individual metrics are proposed for
number of unused mappings, helpers, parameters, and local
variables, whereas our quality model simply includes “Little
dead code”, which in our model is evaluated by measuring
lines of unused code. Conciseness is valuable since it again
reduces the risk of overwhelming practitioners with too many
metrics, as mentioned in Section II-B.

Notably, a number of properties identified as important
during our exploratory study are not present in [13]. For
example, “Little imperative programming” was recognized in
each of our developer interviews in addition to some literature
as important for maintainability and understandability, but
has no counterpart in the metrics from [13]. Our model also
includes more QVTo-specific properties (e.g. “Few end sec-
tions”). These may be excluded from [13], however, because
there are simply too many language-specific constructs to add
a property for each construct. This difficulty to distinguish the
most important features of new domain is in our opinion a
fundamental problem with top-down approaches.

In Van Amstel’s quality model for MMT languages in gen-
eral [11] (cf. in Section II-B), a number of additional quality
attributes are present. Some are similar to our quality model,
e.g., “Depth of inheritance tree” proposed for ATL which is
closer to our “Inheritance usage matches a metamodel” prop-
erty. However, due to the top-down approach, Van Amstel’s
metrics [11] describe relatively shallow properties compared
to the rich data incorporated in our quality properties.

Kapová et al. [23] presented a set of maintainability metrics
for QVTr. There a combination of “automated” and “manual”
metrics were proposed. The automated metrics, like those
from [13] and [11], are simple, including “# Local variables”
and “# when predicates” (the latter of which corresponds
directly with our property “Few when and where clauses”).
The manual metrics, however, contained “Similarity of rela-
tions”,2 “# Relations that follow a design pattern”, and “Type
cut through source/target metamodel”. The last in particular
is similar in essence to our “Inheritance usage matches a
metamodel” property, since it measures the match between
metamodel elements and the elements addressed by relations.
The metric is presented however only in the context of in-
creasing metamodel coverage (chosen as a quality goal by the
the authors), rather than contributing to understandability like
our property. Because this property was voiced as important
by multiple interviewees for transformation readability and
understandability, its explicit link to understandability is a
valuable addition to our model.

Therefore, while there is some overlap between top-down

2QVTr relations are similar to QVTo mappings

models and our quality properties, we advocate the use of
bottom-up approaches in future quality research to obtain the
data most relevant in practice.

C. Conformance to ISO/IEC 25010

As an international standard, ISO/IEC 25010 represents
a broad consensus for how to describe software quality. It
is therefore valuable to show that our QVTo quality model
conforms to the software product quality model. According
to the standard conformance can be demonstrated either by
using the standard models directly or by showing traceability
links between the standard model and a tailored model. We
demonstrate conformance using the latter method, showing
the links from the software product quality model to our
QVTo quality model. First we map our quality goals to
the quality characteristics of the standard: Functionality is
mapped to Functional suitability, Performance to Performance
efficiency, Understandability to Usability, and Maintainability
to Maintainability. In each case the reason for using a different
name in our model is that these terms were more natural for
developers. Notably, our model excludes the characteristics
Compatibility, Reliability, and Security, and Portability. They
are excluded since, according to our exploratory study, they
are lesser concerns in QVTo development at this time. Finally,
our quality properties can each be mapped to a quality attribute
in the standard quality model by removing the directionality.

D. Best Practices

As a result of not restricting the exploratory study to
building a quality model from the beginning, some data from
the study can be formalized better as best practices than as
quantifiable quality properties. Here we present a selection of
best practices gleaned in particular from the expert interviews,
constructed by performing the constant comparison approach
using just the interview data. Although not validated in Sec-
tion V and highly specific to the experts’ experiences, these
can be used as a starting point for other QVTo practitioners
to formalize their own best practices. They also provide an
example of the rich data gathered using a bottom-up approach.

First, navigation over models should be separated from
mappings as much as possible, ideally by creating a query
library for each metamodel. Second, init sections are appro-
priate only when objects need to be explicitly constructed, e.g.,
selecting the concrete type of an object from the abstract type.
Third, when multiple objects must be generated and assigned
from one input object, a constructor should be used instead
of the assignment operator. Finally, if performing incremental
transformations with large input models, the traces can be
utilized to avoid unnecessary regeneration of the target model.

E. Difficulties

In addition to best practices, many current issues were
identified which can serve as areas for future work in QVTo
research. First, lack of documentation as well as lack of (non-
buggy) tooling were both identified as major problems. Eclipse



editor support could be improved, for instance preventing acci-
dental reassignment of objects. There are also many limitations
in the debugger, such as poor support for chains of transfor-
mations, so developers often default to using log statements
instead. Testing frameworks are still considered immature, and
in particular no measure of test coverage exists. Finally, there
are also inconsistencies between the QVTo specification and
Eclipse implementation used by many developers, for example
side-effects being allowed in queries, blackboxes not being
supported when running a transformation standalone, and not
supporting deep recursive calls.

V. VALIDATION

Although the bottom-up approach guarantees initial support
for each property, validation is still required for confirmation
and to show generalizability. Before introducing our validation
approach, however, we discuss the drawbacks of the approach
used in the most closely-related work (e.g. by [11] and [28]).
There, transformation quality models were validated by con-
ducting a survey where experts rated code samples on quality
goals, which were later correlated with the measured quality
metrics. In addition to the conclusions being drawn from this
validation approach being generally weak, it is clearest to see
its drawbacks by simulating it on our quality model.

We observe that in this method, experts are required to
make snap judgements based on a visual sample of the code.
This method therefore first strongly biases judgements towards
visual properties, such as properties related to readability.
Therefore properties related to other quality goals (e.g. “Termi-
nation checked”) could incorrectly receive lower correlations.
Second, properties which cannot be deduced visually at all
(e.g. “Low execution time”) or cannot be deduced quickly
(e.g. “Few dependencies to other modules”) would likely go
unnoticed by the reviewer. Furthermore, there are simply so
many properties that it is not possible to control for each
individually, making it impossible to evaluate the relative im-
portance of the properties; to do so would require preparation
of an extremely large set of code samples for experts to review,
which is infeasible within reasonable time constraints. This
effect would in particular lead to lower correlations for less-
common properties (e.g. “Small init sections”). Hence, a
large portion of our quality model would likely go unvalidated
if we were to use this method, regardless of whether the
properties are important for QVTo transformation quality.

We propose a different validation approach for our quality
model. With our assumption that developers themselves are
one of the best resources to determine what high-quality code
is, we validate our quality model by performing a survey of
developer perceptions of each quality property. Using percep-
tions is based on the pragmatist stance, directly leveraging
practitioner experience. By addressing each property individ-
ually, we assess the model on a very fine-grained level.

The validation survey consisted of an introduction to the
research, instructions, a field for the developer to describe
their experience with QVTo, definitions of each quality goal,
and finally, a question regarding each quality property. Each

Fig. 2. Example question from validation survey

property question was a compound Likert-style [29] question
asking about the relationship between the property and the
four quality goals. An example question is shown in Figure 2.
All property questions were worded similarly, since although
acquiescence bias (where respondents passively indicate re-
sponses which agree with the question) is a drawback of
Likert scales, it is more important to have this bias consistently
throughout the survey [30]. After each question was a field for
comments, and for less-known QVTo or programming terms
a short explanation was provided. The survey instructions
stressed that the developer should answer the questions in
terms of typical QVTo transformations and should reflect their
own experiences. A mock survey was carried out with an
independent developer to test the survey clarity and completion
time. The survey was distributed online by posting on the
QVTo forum and the QVTo developer mailing list and the
link was sent directly to the ASML QVTo developers.

Fifteen respondents filled out the survey, including the
original four experts interviewed during the exploratory study
and the two remaining ASML QVTo developers. The rest were
from the general public, including three from industry, five
graduate-level students, as well as one of the four primary
committers of the Eclipse QVTo implementation. Each respon-
dent had significant experience in QVTo.

The survey results are summarized in Table II. To mea-
sure overall agreement, we calculated Kendall’s coefficient
of concordance W [31], a measure of respondent agreement
where 1 implies perfect agreement. For our response set,
W = 0.42 (p-value<.01),3 which can represent weak overall
concordance [32], implying that at least some properties may
have high disagreement. To better interpret the coefficient, we
examined the interquartile ranges for each quality property/-
goal pair, where an interquartile range of one represents 50%
of developers having a responses which neighbor each other on
the Likert scale. We find that 80% of pairs had an interquartile
range of one or less, which we interpret as high agreement for
most properties.

In general, presentation-related properties had the highest
agreement. The GPL-applicable properties also had higher
agreement in general than the MMT- or QVTo- specific
properties. The pair which was least agreed-upon was “Few
dependencies on other modules”/Maintainability. By reading
the survey comments, we find that while some developers
consider dependencies bad for quality, others consider the
alternative to be higher code duplication, in which case more

3Calculated in R with correction for ties using the irr package command
kendall(df,correct=TRUE)



Validation
Quality property Functionality Understandability Performance Maintainability
Detailed comments throughout code 0 (0, .5) 2 (2, 3) 0 (0, 0) 2 (1, 2.5)
Formatting conventions followed 0 (0, 0) 2 (1.5, 2) 0 (0, 0) 2 (1, 2)
Few blackboxes 0 (-1, 0) 1 (.25, 2) 0 (-1, 0) 2 (1, 2)
Few configuration properties 0 (0, .75) 0 (0, 1) 0 (0, 0) 0 (0, 1)
Few dependencies on other modules 0 (0, .5) 1 (0, 1.5) 0 (0, 1) 0 (-2, 2)
Few input/output models 0 (-1, 0) 1 (1, 1.5) 0 (0, 1) 1 (1, 2)
Few intermediate properties -.5 (-1, 0) 0 (-1, .75) 0 (0, 0) 0 (-.75, 1)
Low code duplication with other modules 0 (0, .5) 1 (1, 2) 0 (0, 0) 2 (1.5, 2)
Pre- and post-conditions specified 0 (0, 1) 1 (1, 2) 0 (0, 0) 1 (.5, 2)
Small interfaces to other modules 0 (0, 0) 1 (.25, 2) 0 (0, 0) 1.5 (.25, 2)
Small transformation size 0 (0, 0) 2 (1, 2) 0 (-1, 1) 1 (1, 2)
Confluence satisfied 0 (0, 1.75) 0 (-.75, 0) 0 (0, 0) 0 (0, 1.75)
Few dependencies between functions 0 (0, 0) 1 (0, 1) 0 (0, 0) 1 (0, 1)
Few end sections 0 (0, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1)
Few mapping arguments 0 (0, 0) 1 (-.5, 2) 0 (0, 1) 0 (-1, 1.5)
Few nested if statements 0 (-.5, 0) 1 (1, 2) 0 (0, 0) 1 (1, 2)
Few when and where clauses 0 (-.75, 0) .5 (0, 1) 0 (-.75, .75) 0 (0, 1)
High test coverage 2 (0, 2) 0 (0, .5) 0 (0, 0) 1 (0, 1)
High usage of design patterns 1 (0, 1) 1 (1, 2) 0 (0, 1) 1 (1, 2)
Inheritance usage matches metamodel .5 (0, 1) .5 (0, 2) 0 (0, 0) 0 (-.75, 1.75)
Interdependent functions near each other 0 (0, 0) 2 (1, 2) 0 (0, 0) 1 (1, 2)
Little dead code 0 (0, 0) 2 (1.5, 2) 0 (0, 1) 2 (1.5, 2)
Little imperative programming 0 (-.5, 0) 1 (0, 1.5) 0 (-.5, .5) 1 (.5, 1.5)
Little overloading 0 (-1, 0) -1 (-1, 1) 0 (0, .5) -1 (-1, 1)
Low code duplication within module 0 (0, 0) 1 (1, 2) 0 (0, 0) 2 (2, 2)
Low syntactic complexity 0 (-1, 0) 1 (1, 1) 0 (0, 0) 1 (1, 1)
Minimal reassignment of objects 0 (-.5, 1) 0 (-1, 2) 1 (0, 1) 0 (-1, 2)
More mappings than helpers 0 (0, .5) 0 (0, 1) 0 (0, 0) 0 (0, .75)
More queries than helpers 0 (0, 0) 0 (0, 1) 0 (0, 0) 0 (0, 1)
Short function chains 0 (0, 0) 1 (0, 1.5) 0 (0, 1) 1 (0, 1.5)
Small function size 0 (-.5, .5) 2 (1.5, 2) 0 (-1, 0.5) 2 (1, 2)
Small init sections 0 (0, 0) 1 (0, 1) 0 (0, 0) 1 (0, 1)
Termination checked 0 (0, 2) 0 (0, 0) 0 (0, 0) 0 (0, 0)
Deletion uses trashbin pattern 0 (0, 0) -1 (-1, 0) 1.5 (0, 2.75) 0 (-.75, 0)
Few queries with side-effects 0 (-.1, 0) 2 (1, 2) 0 (0, 0) 1 (1, 2)
Low execution time 0 (0, 0) 0 (0, 0) 3 (2, 3) 0 (0, 0)
Mappings only used when tracing needed 0 (0, 0) 0 (-1, 0) 1 (0, 2) 0 (-1, 0)

TABLE II
VALIDATION RESULTS. CONTAINS EACH QUALITY PROPERTY WITH RESPECTIVE VALIDATION RESPONSES SHOWN IN THE FORMAT [MEDIAN] ([25TH

PERCENTILE], [75TH PERCENTILE]). RESPONSES FROM “STRONGLY DECREASES” TO “STRONGLY INCREASES” ARE ENCODED ON THE INTERVAL [-3,3].
PROPERTIES ARE ORGANIZED AS IN TABLE I.

dependencies are preferred.
Comparing the ASML team to the public, W = 0.44 and

W = 0.32 respectively, so there is more agreement within
the ASML team than amongst members of the public. This is
most likely because the general public do not have a common
context in which they use QVTo, and therefore their opinions
about the best way to write QVTo differ. The median answers
for “Termination checked” and “Confluence satisfied” were
also considerably higher for the ASML team than for the
public. This we explain by differences in academic background
(two ASML team members have PhDs in formal computer
science topics, whereas members of the public did not have
formal computer science backgrounds).

To see the relationship between individual survey respon-
dent answers, we calculated the pairwise correlations between
responses, shown in Figure 3. Respondents 1 through 6 were
the members of the ASML team. Correlations were calculated

using the parametric statistic Spearman’s ρ , but were similar
to Kendall’s τ . It is clear that some respondents had much
more similar responses than others, for example respondent
12 correlated highly with 14 and 15. Looking deeper, this
high correlation came largely from GPL-applicable properties,
and these three respondents in fact reported having the least
experience in QVTo. So, the correlation may be explained
because these respondents are answering the survey questions
based more on prior knowledge of code quality from GPLs
than QVTo experience.

Next, we consider which property/goal pairs are perceived
as having the strongest impact on quality by comparing median
responses. The pair with the highest median was “Low exe-
cution time”/Performance followed by properties “Little dead
code”, “High test coverage”, and “Few blackboxes”, among
others. Four pairs yielded negative medians, indicating that
developers perceive these to decrease quality rather than in-



Fig. 3. Pairwise correlations of responses between respondents

crease it. For one of these, “Deletion uses a trashbin pattern”,4

a tradeoff is clearly acknowledged by the respondents where
it decreases understandability but increases performance.

Finally, and arguably most importantly, we define two
criteria which must be met by a property/goal pair before
we consider it validated by the survey. First, the median
answer must be at least “Somewhat increases”. Second, at least
75% of the responses must have been at least “Has little/no
effect”. The results which satisfied these criteria are shaded
gray in Table II. Of our original 37 properties, 26 are therefore
validated for being important for at least one quality goal. Of
those validated, nine were considered MMT- or QVTo-specific.

A sensitivity analysis was also performed where each re-
spondent was removed one at a time and the two criteria were
rechecked. The three pairs which did not satisfy the criteria
in every round are struck through in Table I, suggesting that
these pairs in particular may benefit from additional validation.
There are also four pairs which satisfied the criteria only when
one respondent was removed. These pairs are displayed in
boxes. Since these pairs also appear highly sensitive to the
specific set of respondents used and because these pairs are all
MMT- or QVTo-specific, they also make interesting candidates
for additional validation techniques.

A. Threats to Validity

Our approach is not without limitations. First, the quality
model is not a complete picture of QVTo quality, since it
only contains the properties representing the most important
issues at the time of our research. Second, a large portion of
our approach is based on perceptions, which are inevitably
biased. So, even though we build our quality model with
no prior conception of what quality in QVTo should mean,
developer perceptions can nonetheless be based on previous
impressions of software quality. Third, the validation survey
format could be improved. It was noted by some respondents
that the strict question format makes some answers obvious
while others feel oversimplified. These feelings could hurt

4In the “trashbin pattern” objects are assigned to a parent object before
deletion.

response validity or cause others to opt not to take the survey.
Finally, although our validation method is more likely than
other methods to lead to fine-grained results already useful
to practitioners, both our quality model and validation results
are susceptible to overfitting due to small sample sizes. For
example, ASML may have a particular development style
which is not shared by other QVTo developers, providing non-
representative interview data. Also, because QVTo is still a
young language, many of the QVTo developers today are the
same as those creating the QVTo implementations and tooling,
and therefore may have different quality needs than future
QVTo developers. This overfitting, in fact a common conces-
sion in the pragmatist stance [6], is the primary motivation
of using a triangulation approach. Nonetheless, conducting
additional interviews with developers from other domains and
backgrounds is an important step for future validation.

VI. RELATED WORK

Since the amount of work published on software quality is
vast, we only mention the work most closely related to this
research. This work was also incorporated in the exploratory
study used to construct our quality model.

Ferenc, Hegedűs and Gyimóthy [10] provide an introduction
to software quality models with respect to maintainability.
Syriani and Gray [5] enumerate the challenges in model trans-
formation quality and propose two directions for research: 1)
cataloging transformation design patterns; and 2) identifying
quality criteria for transformations, including quantitative met-
rics. Therefore [5] serves as motivation for our research and
we directly build on the second research area they identified.

Like our research, other research has also addressed model
transformation quality. However, we classify these as top-
down approaches because the authors construct their notions of
quality exclusively from theory and related work. In addition
to the work described in Section II and MMT quality models
discussed in Section IV-B, Vignaga [24] proposed a set of
ATL metrics and Kapová et al. [23] defined metrics for the
declarative transformation language QVTr, though in neither
case was an empirical validation performed. These approaches
heavily influenced our research, first by showing that new
metrics can be defined for model transformations, and second,
these works motivated us to pursue a bottom-up approach to
build a quality model useful for practitioners. Using a bottom-
up approach is further motivated by Hall and Fenton’s [14]
recommendations for creating successful metrics programs:
Among their eleven recommendations were transparency, use-
fulness, developer participation, feedback, and a goal-oriented
approach; all of which were heavily incorporated in designing
our approach.

Moody [17] provides a rich overview of techniques to
evaluate quality models, pointing out that a surprisingly low
proportion of quality models proposed in literature are val-
idated. Each technique is related explicitly to philosophical
stances. A demonstration of one of these evaluation techniques
is provided by Moody in his assessment of data model
quality [15]. There, a set of data model metrics was proposed.



To evaluate the metrics, action research was performed where
the metric set was applied in multiple development projects
over the course of two years, refining the metrics iteratively. Of
the original 29, only 5 remained at the final iteration. Metrics
were removed primarily because it was unclear to practitioners
how they were useful for quality assessment. The result was
therefore a concise set of metrics which were validated to be
useful for assessing data model quality in practice. Although
action research has not been used to validate our quality model,
we consider it a promising direction for future research.

VII. CONCLUSION

In this paper, a quality model was presented for QVTo
transformations. Due to our bottom-up approach, the QVTo
quality model presented here captures the aspects most rel-
evant for QVTo quality in practice today. The model was
validated by conducting a survey of developer perceptions of
each property. Of the 37 quality properties included in our
model, 26 were considered validated, of which 9 are specific to
MMT or QVTo, showing that quality models created for other
languages will not cover some of the most important properties
to assess QVTo quality. Moreover, although the quality model
presented here can only but inform quality models targeting
other languages, our approach for constructing the model and
validation could be applied to any software quality model.
Future work includes performing additional validation of the
quality model, for example that used by [11], conducting
additional interviews, and assessing the appropriateness of
the quality evaluation procedures. Furthermore, while the
quality properties we have identified, have been formulated
to express directionality, e.g., “High test coverage” or “Small
function size”, we consider as another direction of future work
determining thresholds for those metrics [33] and developing
appropriate aggregation techniques, allowing one to lift the
quality assessment to larger units [34], [35]. Finally, future
work also includes developing tooling which leverages the
quality model to assist developers in creating higher-quality
QVTo transformations.

REFERENCES

[1] T. Stahl and M. Voelter, Model-driven software development. John
Wiley & Sons Chichester, 2006.

[2] OMG, “MOF 2.0 Query/View/Transformation Spec. V1.1,” 2011.
[3] ASML N.V. [Online]. Available: http://www.asml.com
[4] R. R. Schiffelers, W. Alberts, and J. P. Voeten, “Model-based specifi-

cation, analysis and synthesis of servo controllers for lithoscanners,” in
Int. Workshop on Multi-Paradigm Modeling. ACM, 2012, pp. 55–60.

[5] E. Syriani and J. Gray, “Challenges for addressing quality factors in
model transformation,” in ICST. IEEE, 2012, pp. 929–937.

[6] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical softw. eng. Springer, 2008, pp. 285–311.

[7] P. J. Barendrecht, “Modeling transformations using QVT Operational
Mappings,” Master’s thesis, Technische Universiteit Eindhoven, 2010,
accessed 2014/4/1. [Online]. Available: http://redpanda.nl/BEP P.J.
Barendrecht.pdf

[8] OMG, “Object Constraint Language,” 2012.
[9] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target,”

IEEE Software, vol. 13, no. 1, pp. 12–21, 1996.
[10] R. Ferenc, P. Hegedűs, and T. Gyimóthy, “Software product quality

models,” in Evolving Software Systems, T. Mens, A. Serebrenik, and
A. Cleve, Eds. Springer Berlin Heidelberg, 2014, pp. 65–100.

[11] M. F. van Amstel, “Assessing and improving the quality of model
transformations,” Ph.D. dissertation, Technische Universiteit Eindhoven,
2012.

[12] ISO/IEC 25010, “Systems and software quality requirements and eval-
uation (SQuaRE) – System and software quality models.” Geneva,
Switzerland: ISO, 2011.

[13] M. F. van Amstel, M. G. J. van den Brand, and P. H. Nguyen, “Metrics
for model transformations,” in BENEVOL, 2010.

[14] T. Hall and N. Fenton, “Implementing effective software metrics pro-
grams,” IEEE Software, vol. 14, no. 2, pp. 55–65, 1997.

[15] D. L. Moody, “Measuring the quality of data models: an empirical
evaluation of the use of quality metrics in practice.” in ECIS, 2003,
pp. 1337–1352.

[16] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE TSE, vol. 25, no. 4, pp. 557–572, 1999.

[17] D. L. Moody, “Theoretical and practical issues in evaluating the quality
of conceptual models: current state and future directions,” Data &
Knowledge Engineering, vol. 55, no. 3, pp. 243–276, 2005.

[18] S. E. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in METRICS.
IEEE, 2005, pp. 10–23.

[19] C. M. Gerpheide, “Assessing and improving quality in QVTo model
transformations,” Master’s thesis, Technische Universiteit Eindhoven,
2014 (forthcoming).

[20] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–
a systematic literature review,” Information and software technology,
vol. 51, no. 1, pp. 7–15, 2009.

[21] (2014, Jan.) Eclipse community forum QVT-OML. [Online]. Available:
http://www.eclipse.org/forums/index.php/f/244

[22] (2013, Dec.) Transformation tool contest. [Online]. Available: http:
//www.transformation-tool-contest.eu

[23] L. Kapová, T. Goldschmidt, S. Becker, and J. Henss, “Evaluating
maintainability with code metrics for model-to-model transformations,”
in QoSA, ser. LNCS, vol. 6093. Springer, 2010, pp. 151–166.

[24] A. Vignaga, “Metrics for measuring ATL model transformations,” Dept.
of Computer Science, Universidad de Chile, Tech. Report, 2009.

[25] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. Van Gorp,
“Evaluation of model transformation approaches for model refactoring,”
Sci. Comput. Program., vol. 85, pp. 5–40, Jun. 2014.

[26] T. Mens and P. Van Gorp, “A taxonomy of model transformation,”
Electronic Notes in Theoretical Computer Science, vol. 152, pp. 125–
142, 2006.

[27] M. Amrani, J. Dingel, L. Lambers, L. Lúcio, R. Salay, G. Selim,
E. Syriani, and M. Wimmer, “Towards a model transformation intent
catalog,” in Proceedings of the First Workshop on the Analysis of Model
Transformations. ACM, 2012, pp. 3–8.

[28] S. Lehrig, “Assessing the quality of model-to-model transformations
based on scenarios,” Ph.D. dissertation, MSc Thesis, University of
Paderborn, Zukunftsmeile 1, 2012.

[29] R. Johns, “Likert items and scales,” Survey Question Bank: Methods
Fact Sheet, vol. 1, 2010.

[30] J. J. Barnette, “Effects of stem and likert response option reversals
on survey internal consistency: If you feel the need, there is a better
alternative to using those negatively worded stems,” Educational and
Psychological Measurement, vol. 60, no. 3, pp. 361–370, 2000.

[31] A. P. Field, “Kendall’s coefficient of concordance,” Encyclopedia of
Statistics in Behavioral Science, 2005.

[32] G. Vidmar and N. Rode, “Visualising concordance,” Computational
Statistics, vol. 22, no. 4, pp. 499–509, 2007.

[33] P. Oliveira, M. T. Valente, and F. P. Lima, “Extracting relative thresholds
for source code metrics,” in CSMR-WCRE, S. Demeyer, D. Binkley, and
F. Ricca, Eds. IEEE, 2014, pp. 254–263.

[34] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “By no means:
A study on aggregating software metrics,” in 2nd International Workshop
on Emerging Trends in Software Metrics, ser. WETSoM. ACM, 2011,
pp. 23–26.

[35] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and
S. Ducasse, “Software quality metrics aggregation in industry,” Journal
of Software: Evolution and Process, vol. 25, no. 10, pp. 1117–1135,
2013.


