Simulink Models Are Also Software: Modularity
Assessment

Yanja Dajsuren, Mark G. J. van den Brand, Alexander Serebrenik, Serguei Roubtsov
Eindhoven University of Technology
_ 5612 AZ Eindhoven, The Netherlands
{y.dajsuren | m.g.j.v.d.brand | a.serebrenik | s.roubtsov}@tue.nl

ABSTRACT

In automotive industry, more and more complex electronics
and software systems are being developed to enable the inno-
vation and to decrease costs. Besides the complex multime-
dia, comfort, and safety systems of conventional vehicles, au-
tomotive companies are required to develop more and more
complex engine, aftertreatment, and energy management
systems for their (hybrid) electric vehicles to reduce fuel
consumption and harmful emissions. MATLAB/Simulink
is one of the most popular graphical modeling languages
and a simulation tool for validating and testing control soft-
ware systems. Due to the increasing complexity and size
of Simulink models of automotive software systems, it has
become a necessity to maintain the Simulink models.

In this paper, we defined metrics for assessing the modu-
larity of Simulink models. A Java tool developed to measure
the defined metrics on Simulink models interfaces with a vi-
sualization tool to facilitate the maintenance tasks of the
Simulink models. The modularity metrics is furthermore
validated in two phases. In the first phase, the modularity
measurement is validated against the experts evaluation of a
system. In the second phase, we studied the relationship be-
tween metric values and number of faults. We have observed
that high coupling metric values frequently correspond to
number of faults. Modularity metrics will be extended to
architectural quality metrics for automotive systems.
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1. INTRODUCTION

Automotive companies face strict fuel consumption de-
mands from the market and emission limits from legislations.
Particularly, CO2 emission reduction is considered as the
biggest challenge for the automotive industry for the years
to come [16]. This requirement necessitates major innova-
tions, particularly in powertrain efficiency. The powertrain
of an automotive vehicle is a set of components (e.g. the en-
gine, transmission, drive shafts, differentials, and the drive
wheels) that generates power and delivers it to the road sur-
face. Increasing efficiency of the powertrain calls for develop-
ment of new and more efficient energy managers, software
components determining the optimal use of the available
power resources [49]. The fact that energy management,
functionality so crucial for the modern vehicles, is delegated
to software is an indication of the immanence of software
in the automotive world. Indeed, since the introduction of
software in vehicles thirty years ago, the amount of software
has grown exponentially and nowadays is responsible for 50-
70% of the total development costs of the electronics and
software systems[10]. Furthermore, given that the lifetime
of a vehicle is more than two or three decades [10], addition
of the new functionality or fixing defects necessitate main-
tainable and evolvable software.

Modularity is one of the key maintainability characteris-
tics of the ISO/IEC SQuaRe quality standard [1]. According
to this standard, modularity is defined as a degree to which a
system or computer program is composed of discrete compo-
nents such that a change to one component has minimal im-
pact on other components [1]. For automotive software mod-
ularity is recognized as being paramount [38] as changing or
reusing non-modular software is very costly. Automotive
software is commonly being developed using model-based
design tools like Simulink and Stateflow' together with au-
tomatic code generation tools. Assessing quality of Simulink
models has become more important for automotive manu-
facturers due to the increasing complexity of the models and
stricter safety-related requirements [25]. Large automotive
Simulink models can consist of up to 15,000 building blocks,
700 subsystems and 16 hierarchical levels [47]. Current qual-
ity assessment techniques such as the Mathworks Automo-
tive Advisory Board (MAAB) guidelines and Model Advisor
from Mathworks focus mainly on configuration settings and
guideline conformance rather than model quality [25]. Al-
though there are plethora of source code quality analysis
tools available, methods for assessing quality of Simulink
models are still limited.

"http://www.mathworks . com/



In this paper, we study modularity of Simulink models
by refining the Simulink metamodel and introducing modu-
larity metrics. Furthermore, to facilitate application of the
approach by industry practitioners, we suggest visualisation
of Simulink structure, dependency, and quality metrics using
the SQuAVisiT tool [48].

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the modularity metrics for Simulink mod-
els. Section 3 discusses the two phases of modularity met-
rics evaluation. Section 4 elaborates the interfacing between
our modularity tool and SQuAVisiT toolset to facilitate the
maintenance task. Related work is addressed in Section 5.
The final section concludes the paper and lists further steps
of our research.

2. SIMULINK MODULARITY METRICS

Simulink is a visual modeling language and tool for devel-
oping, simulating and analyzing multidomain dynamic sys-
tems.? The metamodel of Simulink is presented in Figure 1.
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Figure 1: Simulink metamodel (revised from [8]).

A Simulink model contains a Simulink diagram, which
consists of different kinds of blocks (e.g. Transmission model
in Figure 2). Subsystems are blocks that contain again a
Simulink diagram (e.g. TransmissionRatio subsystem marked
by the circle). The subsystem concept enables hierarchi-
cal modeling, i.e., subsystems can contain other subsystems.
We defined a special kind of subsystem as a BasicSubsystem,
if it does not contain other subsystems (e.g. Transmission-
Ratio is also a basic subsystem). Another special kind of
subsystem is an Atomic Subsystem, which is a subsystem
that can contain a contract [8], which means blocks within
an atomic subsystem are grouped together in the execution
order. Blocks, basic elements of a Simulink diagram, com-
municate via input (InPort) and output (OutPort) ports:
e.g. Tin is an input port and Tout is an output port of
TransmissionRatio. A block can be connected to another
block by a Signal via its ports. For the sake of diagram
readability signals are frequently grouped in buses.

To define Simulink modularity metrics we have followed
the Goal-Question-Metrics (GQM) approach [6]. Our goal
was to measure modularity of Simulink models, and the
general question we asked was “What modularity aspects
hinder quality of Simulink models as perceived by practi-
tioners?”. Posing this question to practitioners could, how-

’http://www.mathworks . com/products/simulink/
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Figure 2: Simulink example model.

ever, bias their answers as they might have been tempted
to give answers that might be perceived as desirable by the
researcher. Therefore, we have analysed general quality re-
views of third-party Simulink models carried out by control
system architects and engineers of an automotive company.
For every subsystem architects and engineers identify archi-
tectural problems and provide modeling comments. Thirty
out of 97 problems in the review report are directly or in-
directly related to modularity. Table 1 lists the modularity-
relevant quality issues identified by the experts, as well as
the corresponding metrics.

Issue

Too many hierarchical
levels of subsystems
Extensive use of the in-
put bus with large num-

Derived metrics
Depth of a subsystem

Number of input bus sig-
nals

ber of signals
Subsystems (blocks) that
should be combined into
larger subsystems

Coupling between sub-
systems

Similar or duplicated | Considered as a future
functionality work
Table 1: Modularity-related quality review issues

and the corresponding metrics.

Next we elaborate on the metrics identified in Table 1:

e Depth of a subsystem (DoS) is the maximum level the
subsystem has till its basic subsystems.

e Number of input bus signals is the difference between
the number of input signals (NiS) and the number
of input ports (NiP). Indeed, since every input port
should have a corresponding input signal and every in-
put signal can have but one corresponding input port,
the difference between the number of input signals and
the number of input ports corresponds to the number
of input signals that have to enter a port, which is al-
ready associated with another signal. This situation
is possible only if an input bus is used. For the sake



Coupling metrics

CBS | Coupling Between Subsystems
DSC | Degree of Subsystem Coupling
NiP | Number of input Ports

NoP | Number of output Ports

NiS | Number of input Signals

NoS | Number of output Signals

Cohesion metrics

DoS | Depth of a Subsystem
NCS | Number of Contained Subsystems
NBS | Number of Basic Subsystems

Table 2: Modularity metrics for Simulink model.

of symmetry, we also measure the number of output
signals (NoS) and the number of output ports (NoP).

e To measure coupling between subsystems (CBS) for a
given subsystem we count the number of subsystems
coupled to the subsystem, i.e., receiving input signals
from the subsystem or sending output signals to the
subsystem. CBS is close in spirit to Coupling Between
Object classes [12], an object-oriented metrics refer-
ring to total number of methods of a class, which uses
methods or instance variables of another class.

e In addition to CBS, we define Degree of Subsystem
Coupling (DSC) to give additional weight to the out-
put which imply more complexity: DSC = W;N;s +
WoNos, where W; = 1, is weight of input dependen-
cies, W, = 2, is weight of output dependencies.

Furthermore, building on the long-standing tradition of
modularity research in software engineering [36, 12, 43],
we have decided to augment the metrics list in Table 1
with those reflecting common software engineering guide-
lines such as the number of connections between subsystems
should be low (low coupling), system should contain similar
or related functionalities (high cohesion) and communication
between subsystems should be limited (narrow interfaces).
While coupling and interface granularity have already been
explicitly addressed by the metrics in Table 1, to evaluate
cohesion we include the Number of Contained Subsystems
(NCS) at all hierarchical levels and the Number of Basic
Subsystems (NBS). In Table 2, the summary of modular-
ity metrics for Simulink models is provided. The interface
granularity metrics are integrated into the coupling metrics.

3. METRICS TOOL AND EVALUATION

We developed a Java tool to measure the defined met-
rics on Simulink models, since to our knowledge there is no
other tool available. The tool uses a Java parser for Simulink
MDL files of the ConQAT open-source tool®, which is an in-
tegrated toolkit for continuously monitoring quality charac-
teristics of software systems. Our tool reads Simulink MDL
files with the standard structural format and generates the
metrics files with the list of subsystems and the respective
modularity metrics. In the following sub-sections, we dis-
cuss the results of the evaluations that were carried out in
two main phases.

3http://www.congat.org/
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3.1 Expert evaluation

The first part of the validation effort was based on the
expert evaluation. To this end we have randomly selected
a number subsystems of an industrial application and got
them evaluated by the domain experts using a scale of 1 to
10, 1 meaning worst and 10 meaning best modularity. We
have opted for the 1-10 scale rather than more customary
five- or seven-point Likert scales, since the 1-10 scale is the
one used in Dutch schools and universities, and, hence, is
familiar to the domain experts. The experts also provide
the reasoning for the scores they give to the subsystems.

Results of the expert evaluation are summarized in Table 3
(left). For confidentiality reasons we abbreviate the names
of the subsystems. Similarly, for privacy reasons we do not
disclose the names of the experts.

FExperts

Subsystem ABC | DEF

EH 337 | 557 @@ TScA
ED 797 | 868

SM 775 | 358

IDA 987 | 778

GS 767 | 768

TP 987 | 888

TS 371 | 777

BTL 987 | 887 ! !
CcC 781 | 876

TSCA 987 | 888 e TS
TRC 785 | 783

Table 3: Expert review of selected subsystems of
the industrial application and the corresponding T-
graph. Components missing from the 'f‘-graph are
incomparable.

We start by comparing the evaluation of different sub-
systems. Traditionally, comparison of multiple groups fol-
lows a two-step approach: first, a global null hypothesis
is tested, and then multiple comparisons are used to test
sub-hypotheses pertaining to each pair of groups. The first
step is commonly carried out by means of analysis of vari-
ance (ANOVA) [21] or its non-parametric counterpart, the
Kruskal-Wallis one-way analysis of variance by ranks [22].
The second step uses pairwise t-tests or their nonparametric
counterparts, Wilcoxon-Mann-Whitney tests [53], with Bon-
ferroni correction [15, 46]. Unfortunately, the global test null
hypothesis may be rejected while none of the sub-hypotheses
are rejected, or vice versa [20]. Moreover, simulation studies
suggest that the Wilcoxon-Mann-Whitney test is not robust
to unequal population variances, especially in the unequal
sample size case [54]. Therefore, one-step approaches are
required: such an approach should produce confidence in-
tervals which always lead to the same test decisions as the
multiple comparisons. We have used the recently proposed
multiple contrast test procedure T [27] in combination with
a ’i‘—graph [50]. Using the 'T—procedure for the “all pairs”
(Tukey-type) contrast and 95% confidence level and inspect-
ing the corresponding rFIV‘-grauph (Table 3 right) we can con-
clude that the experts prefer BTL, TP and TSCA over EH
and TP and TSCA over TS. The ’f‘—procedure does not re-
veal consistent differences between the expert evaluations,
i.e., one cannot argue that one of the experts consistently



gives higher/lower rankings than another one. Therefore,
we do not exclude any of the evaluations.

We observe, however, that for individual subsystems the
expert ratings are not always consistent with each other: e.g.
EH is ranked 3 by experts A and B and 7 by experts C and
F. To get better insights in the reasons for this discrepancy,
we have discussed it with the experts. Discussion revealed
that experts A, B and C interpreted modularity as coupling,
while experts D, E and F interpreted modularity in terms of
cohesion. Thus as shown in Table 3, we grouped the experts
evaluation by coupling (A to C) and cohesion (D to F).

Before determining the relation between the coupling met-
rics and expert evaluation, we carried out the Kendall’s
7 correlation test [17] on the coupling-related metrics and
identified DSC as the statistically independent metric for
measuring coupling attribute. In Figure 3, a scatter plot
of DSC values and an average experts’ evaluation based on
coupling (Exp) shows that there is a negative correlation
between DSC and the expert evaluation. We calculated the
Kendall’s 7 correlation coefficient to determine the strength
of the correlation and it is r = —0.641, which suggests a
strong negative correlation. Therefore, high values of DSC
indicate poor modularity according to experts evaluation
based on coupling. The subsystems BTL, TP and TSCA
have low DSC values and EH and TS have high DSC values.
In the review comments of the domain experts, the list of
subsystems with high coupling metrics values (high values
of DSC) indeed identified as subsystems that are difficult
to maintain due to big dependencies. There are, however,
subsystems with the purpose of input processing thus score
high on coupling. Therefore, it is not necessary to take the
metrics as absolute indicators of poor modularity but rather
an facilitator of the maintenance process.
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Figure 3: Relation between expert evaluation and
coupling measurement.

We made the Kendall’s 7 correlation analysis on the cohe-
sion-related metrics to identify the statistically independent
cohesion metrics. According to the analysis, NCS and NBS
have positive correlation, r = 0.952. Therefore, we exclude
the NBS metric. Regarding the correlation between NCS,
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DSC | NCS | DoS | NF
DSC | 1.000 | 0.597 | 0.569 | 0.549
NCS 1.000 | 0.907 | 0.683
DoS 1.000 | 0.705
NF 1.000

Table 4: Kendall’s 7 correlation analysis.

DoS and expert evaluation, there is no correlation between
NCS and expert evaluation (r = —0.238). However, the
Kendall’s 7 correlation coefficient, r —0.279, suggests
a very weak negative correlation between DoS and expert
evaluation — subsystems with lower depth of a subsystem
values are evaluated good by the cohesion-related experts.
In the review comments of the domain experts, the list of
subsystems with high hierarchal level (more than 4 hierar-
chal depths) identified as subsystems that are difficult to
understand.

3.2 Metrics evaluation

In this evaluation phase, we carried out a correlation anal-
ysis to detect if there is a relation between modularity met-
rics and the number of faults. A fault is an incorrect program
step, process, or data definition in a computer program [18].
In this paper, we use the term fault, which exclude incorrect
step and process, but refers to an error in modeling or logic
that cause the system to malfunction or to produce incor-
rect results. It is important to measure model defects to
keep control over the maintenance [7]. As stated earlier our
main goal was to identify modularity aspects that hinder
quality of Simulink models. By obtaining fault information
and analysing the relation of faults to modularity metrics,
we aim to determine quality and furthermore predict a fault-
proneness or a presence of faults.

We used the data collected from the second industrial ap-
plication consisting of 41 subsystems, from which 20 sub-
systems contain faults. Since there are a number of tied
values and establishing whether any modularity metric and
the number of faults are statistically dependent rather than
measuring the degree of the relationship between linear re-
lated variables, we use the Kendall’s 7 correlation test as
used in Section 3.1. Table 4 shows the correlations between
the selected metrics and number of faults (NF).

The correlation coefficient infers the strength and direc-
tion of the correlation meaning a positive correlation coef-
ficient indicates a positive relation between the metrics and
defects and a negative correlation coefficient indicates a neg-
ative relation. The significance points to a probability for a
coincidence. We accept a common significance level of 0.05.
As presented in Table 4, the all the metrics are positively
correlated with the number of faults. Based on this pre-
liminary analysis, we can conclude that the high value of
higher hierarchal levels may imply a more fault-prone sys-
tem. This is in line with the studies from other programming
paradigms, which show that there is a strong correlation be-
tween software maintenance effort and software metrics in
the procedural and object-oriented paradigms e.g. [29] [41].

4. VISUALIZATION TOOL

As the preliminary analyses concluded that the degree of a
subsystem coupling (DSC), number of contained subsystems
(NCS), and depth of a subsystem (DoS) are key to assess



modularity of Simulink models, it is important to visual-
ize these metrics in an efficient manner. For this purpose,
we selected SQuAVisiT (Software Quality Assessment and
Visualization Toolset) [48] as it is a flexible tool for visual
software analytics of multiple programming languages. The
SQuAVisiT is intended to support a software development
team (including developers and maintainers) for carrying out
quality assurance and maintenance tasks in an efficient way.

Figure 4: SQuAVisiT extended quality radial view
of SolidSX tool®

In Figure 4, it visualizes the modularity and dependency
of the industrial application that we studied. (The subsys-
tem names here and elsewhere are blurred up due to confi-
dentiality reasons.) The radial view was first introduced by
Holten [23] and extended in SolidSX [40] and the SQuAVisiT
toolset [42]. Subsystems of a Simulink model are illustrated
as nested rectangles in the outer rings of the radial view. The
relations between (basic) subsystems, such as input and out-
put signals, are shown as curved arrows in blue color. The
tool allows for zooming into the subsystems for more de-
tailed views. The colors on subsystems are used to visualize
values of modularity metrics. The green subsystems show
the modular and red ones show subsystems which require
attention for improving their modularity.

The modularity metrics are supported in the SQuAVisiT
tool. Figure 4 demonstrates the visualization of software
with CBS (Coupling Between Subsystems) metric, where
CBS is selected in the right panel and CBS values for the
subsystems are shown in numbers and respective coloring.
The grey rectangles represent Bus Selectors (forking bus sig-
nals) and Bus Creators (merging signals into a bus signal).
Figure 4 highlights not only subsystems with high coupling,
but also shows subsystems which they depend upon, so that
the developer can easily navigate and zoom into the depen-
dencies of a particular outlier. This facilitates the signal

®http://www.solidsourceit.com/

103

tracing activity in Simulink and decreases the analysis time
to detect coupled subsystems.

Figure 5: SQuAVisiT quality treemap view.

An example treemap view of our industrial application as
illustrated in Figure 5, it shows its structural nesting high-
lighted with modularity measurements (green — modular,
red — nonmodular). The advantage of this view is all the
subsystems and their sub-components are shown simultane-
ously and it is easy for the architect to identify easily the
subsystems, which may require further inspection [40].
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Figure 6: SQuAVisiT quality table view.

In Figure 6, we illustrate all the metric values of the
subsystems including the excluded metrics (NiP, NoP, NIS,
NOS, and NBS). The table contains cells as pixel bars scaled
and colored by metric values as first introduced by Rao et al.
[39]. The first column displays the list of subsystems and the
rest of the columns list all the metric values and last column
lists the number of faults of the subsystems. Subsystems
are sorted by descending number of fault value. This can
help the domain experts locate easily the most problematic
subsystems and their respective metric values.



S. RELATED WORK

A quality model based on ISO/IEC 9126 standard for as-
sessing internal quality of Simulink models is introduced
by W. Hu et al. [25]. Six quality sub-characteristics like
analysability, changeability, stability, testability, understand-
ability, and adaptability are selected for the quality model
together with respective metrics. However, modularity sub-
characteristic and respective metrics are not explicitly ad-
dressed by this quality model. A metric suite to identify
the most complex and instable parts of the system is intro-
duced by Menkhaus and Andrich [32]. It measures McCabe
cyclomatic complexity, instability of blocks inspired by Mar-
tin’s afferent and efferent connections between blocks (CBB)
(based on the interaction of blocks with other blocks), and
instability of system accounting influences of the complete
system on a block. Although afferent and efferent connec-
tions between blocks are used in the metrics of instability of
blocks, it is not directly related to modularity. The objective
of this metric suite is to guide analysis team during the risk
assessment of failure modes rather than providing insight
into improving modularity of the system or subsystem.

The Mathworks provide quality related tools like Model-
ing Metric Tool [2] [24] and sldiagnostics [3] to quantitatively
measure the content of a Simulink model (Stateflow model as
well) to improve the productivity and quality of model devel-
opment (e.g. model size, complexity, and defect densities).
Quality analysis metrics for measuring instability, abstract-
ness, and complexity of Simulink models are introduced by
Olszewska (Plaska) in [35] [34]. However, the modularity
metrics are not explicitly addressed by the MathWorks tools
and Olszewska’s metrics. Modularity metrics as part of soft-
ware architecture metrics are introduced by Ahrens et al. [4].
However, validation of the metrics is not provided.

Existing methods for measuring modularity are mostly in-
tended for imperative and object-oriented (OO) software e.g.
Li and Henry’s OO metrics that predict maintainability (i.e.
the number of methods invocation s in a class’s implementa-
tion, the number of abstract data types used in the measured
class and defined in another class of the system) [29], Mar-
tin’s OO design quality metrics [31, 44], Chidamber and Ke-
merer’s metrics suite for OO design (i.e. weighted methods
per class, depth of inheritance, number of children, coupling
between objects, response for a class, lack of cohesion of
methods) [12], Lorenz and Kidd’s OO software metrics [30],
and design quality metrics of OO software systems of Abreu
et al. [9].

In our work we have proposed a series of modularity met-
rics for Simulink subsystems. Since subsystems can be com-
posed into larger ones, rather than evaluating the larger
ones directly, one could have inferred the metrics values
of the larger subsystems by aggregating the corresponding
metric values of the subsystems composing them. This ap-
proach would be related to the metrics aggregation problem
as known in software maintenance. While the most com-
mon aggregation technique, the mean, represents a central
tendency and as such is unreliable for heavily skewed dis-
tributions, typical for software metrics [51], recently applied
to metrics aggregation econometric inequality indices [52,
45] and threshold-based approaches [33] provide a promis-
ing way to address this challenge. More profound study of
metrics aggregation for Simulink models is considered as a
future work.
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6. CONCLUSION AND FUTURE WORK

Due to the increasing complexity and size of Simulink
models [19], it is important to assess its quality. In this
paper, we focused on the modularity aspects of Simulink
models and defined modularity metrics for Simulink mod-
els following the Goal-Question-Metrics (GQM) approach.
We defined a modularity metrics suit consisting of 9 cou-
pling and cohesion-related metrics and validated it with ex-
perts’ evaluation and preliminary statistical analysis. We
identified three independent metrics (degree of subsystem
coupling, number of contained subsystems, and depth of
a subsystem) based on the statistical analysis and identi-
fied a correlation between modularity metrics and number
of errors. We developed a tool to measure modularity of
the Simulink models and visualized the quality aspects with
SQuAVisiT toolset.

Although we did a preliminary analysis on defining a re-
lation between modularity metrics and number of faults, it
needs to be explored further if the moderate correlation is
satisfactory. This investigation can be compared to source
code or other graphical modeling languages. The benefit of
visualizing using SQuAVisit needs to be investigated further.
As identified in our previous research that connectors (sig-
nals or dependencies) are not modeled as first-class objects
in automotive architecture description languages (ADLSs) [13]
it holds for MATLAB/Simulink modeling as well. Therefore,
we will refine the modularity metrics related to connectors
e.g. number of subsystems using a signal, unused signals of a
bus. The increasing complexity of Simulink models requires
a need of higher abstraction levels. Therefore, we believe
that the metrics we defined here can be applied or extended
to architectural quality metrics for automotive systems [14].
In addition, the modularity metrics should take into account
the increasing number of subsystems and dependencies when
the system evolves. This issue has been identified in the
analysis of high-cohesion/low-coupling metrics [5].

Modularity is one of the new quality sub-characteristics
of ISO/IEC SQuaRE quality standard and it is related to
other quality (sub-)characteristics e.g. reusability, modifia-
bility, and stability. In the expert evaluation, understand-
ability is considered as one of the key related quality charac-
teristic as well due to the Simulink visual modeling. There-
fore, we plan to extend the proposed modularity metrics
with the related quality (sub-)characteristics for Simulink
models. Once the quality metrics for the Simulink models
for the automotive domain is thoroughly validated, it can be
modified or extended further for other embedded domains.

As stated in Section 5, we also consider as future work in-
vestigation of metrics aggregation techniques for Simulink
models. Finally, while in the current paper we have fo-
cussed on one Simulink model, we intend to study changes in
modularity metrics during the system evolution, and inves-
tigate the applicability of Lehman’s general software evo-
lution laws [28] to evolution of Simulink models (cf. [11,
26]). Should model repositories become available, we can
augment the evolutionary studies by repository mining tech-
niques [37].
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