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Abstract—Utility functions are general purpose functions,
which are useful in many parts of a system. To facilitate reuse,
they are usually implemented in specific libraries. However,
developers frequently miss opportunities to implement general-
purpose functions in utility libraries, which decreases the chances
of reuse. In this paper, we describe our ongoing investigation on
using Random Forest classifiers to automatically identify utility
functions. Using a list of static source code metrics we train
a classifier to identify such functions, both in Java (using 84
projects from the Qualitas Corpus) and in JavaScript (using 22
popular projects from GitHub). We achieve the following median
results for Java: 0.90 (AUC), 0.83 (precision), 0.88 (recall), and
0.84 (F-measure). For JavaScript, the median results are 0.80
(AUC), 0.75 (precision), 0.89 (recall), and 0.76 (F-measure).

I. INTRODUCTION

Utility functions are general purpose functions, which are
useful in many parts of a system. As examples, we have
functions for date and time manipulation, string manipulation,
and accessing data structures. They are usually implemented in
specific libraries, to facilitate reuse. However, developers often
miss opportunities to implement general-purpose functions in
such libraries. For example, when describing an experience of
remodularizing a large banking system (with more than 100
installations, across 50 countries), Sarkar et al. report that often
“lower-granularity functions, such as date validation, existed
in the same library—and sometimes in the same source-
code file—as complex domain functions, such as interest
calculation” [1].

Figure 1 shows examples of utility functions, extracted from
three popular JavaScript systems: ACE (a source code edi-
tor), BRACKETS (another source code editor), and BOWER (a
package manager). These functions implement low-level and
general-purpose tasks, like simple tests (isRegExp, from ACE,
and isWhitespace, from BRACKETS) and array processing
tasks (toArray, from BOWER). However, they are imple-
mented in domain-specific files, instead of utility libraries. We
also found that utility libraries are common in many systems.
For example, files with util in their path name are found in
95 out of 106 Java systems, which are part of the Qualitas
Corpus [2]. For JavaScript, util files are less common than
in Java, but they are still frequent. For example, we found such
files in 42 out of 100 popular JavaScript systems.

In this paper, we propose the use of machine learning
classifiers to identify utility functions, including the ones
not implemented in utility libraries. Identifying and alerting
developers about these functions is important because a Move
Method refactoring is recommended in such cases, to move the

/* ace/lib/ace/incremental_search.js */
function isRegExp(obj) {
return obj instanceof RegExp;

}

/* brackets/src/language/HTMLTokenizer.js */
function isWhitespace(c) {
return c === " " || c === "\t" || c === "\r" || ...";

}

/* bower/lib/commands/init.js */
function toArray(value, splitter) {
var arr = value.split(splitter || /[\s,]/);
arr = arr.map(function (item) {

return item.trim();
});
arr = arr.filter(function (item) {

return !!item;
});
return arr.length ? arr : null;

}

Fig. 1. Utility functions not implemented in util libraries

functions to their correct module [1], [3]–[5]. Implementing
utility functions in utility libraries is important to increase
their visibility and chances of reuse and by consequence to
reduce the chances of reimplementation.

Specifically, we report our ongoing effort on building
utility functions classifiers, using the Random Forest ma-
chine learning algorithm [6]. To build these classifiers, we
assume two facts: (a) most functions implemented in utility
libraries are indeed utility functions; (b) however, there are
some utility functions which are not implemented in utility
libraries. We first describe an exploratory study conducted
to check these assumptions (Section II). We then describe
the algorithms, datasets, and evaluation strategies used in the
work (Section III). Our preliminary results (Section IV) show
that Random Forest classifiers can identify utility functions
with very high accuracy (median precision of 83% and 75%,
for Java and JavaScript systems; and median recall of 88%
and 89%, again for Java and JavaScript). We conclude by
presenting related work (Section V), by discussing practical
applications of our results (Section VI) and by proposing a
future research agenda (Section VII).

II. PRELIMINARY EXPLORATORY STUDY

We conducted a first study to check two central assumptions
in our research:

• Assumption #1 (Research Problem): There are utility
functions that are not implemented in util libraries.

• Assumption #2 (Availability of Training Data): Most
functions in util libraries are indeed utility functions.



TABLE I
SYSTEMS USED IN THE EXPLORATORY STUDY

System Description Language # Devs.

A Rocket Location Visualization JavaScript 7
B Rocket Location Data Analysis Java 17

TABLE II
EXPLORATORY STUDY RESULTS

System LOC NOF NOUF FP FN

System A 12,212 1,334 199 11 16
System B 60,184 6,905 388 17 14

The first assumption is central to convince that our research
problem indeed happens in practice, i.e., that developers
sometimes implement util functions in modules that are not
util libraries. By contrast, the second assumption is central to
show that we have chances to solve this research problem, by
training a classifier on the util functions implemented in util
libraries and then testing its ability to identify similar functions
that are implemented in other modules.

To check these assumptions the first author of this pa-
per manually inspected all functions from two proprietary
aerospace systems implemented in JavaScript and Java, as
described in Table I.1 This author is an expert developer on
these systems (three years of experience). Therefore, she has
the required expertise to classify their functions, as util and
non-util functions. Moreover, she has five years of professional
experience in Java and three years in JavaScript.

Table II reports the results of this manual validation. For
each system, the table shows (a) the number of lines of code
(LOC); (b) the total number of functions (NOF);2 (c) the total
number of functions implemented in util libraries (NOUF);
(d) the number of false positives, i.e., functions implemented
in util libraries that are not utility functions; (e) the number
of false negatives, i.e., utility functions not implemented in
util libraries. We can see that both assumptions hold in these
systems. First, System A and System B have 16 (8% of the
total number of utility functions) and 14 (3%) utility func-
tions that are not implemented in util libraries, respectively
(Assumption #1). Second, most functions in util libraries are
indeed utility functions, i.e., 188 functions (199 − 11; 94%)
and 371 functions (95%), respectively (Assumption #2).
Limitations and Threats to Validity: This study is a first step
towards convincing that the problem we tackle happens in
practice and that at the same time we have reliable data to train
a classifier of utility functions. However, we plan to extend this
study, by considering more systems. We also acknowledge that
our manual classification of utility functions is subjected to
failures, although it was performed by an expert developer on
both systems considered in this first exploratory study.

1The real systems’ names are omitted due to a non-disclosure agreement.
2To unify the terms for Java and JavaScript, we use the term function to

denote Java’s method, throughout this paper.

III. STUDY DESIGN

A. Machine Learning Algorithm

We use a Random Forest classifier [6] because it is known
to have several advantages, such as being robust to noise and
outliers [7], [8]. In addition, Random Forest is widely used in
software engineering research, with promising results [8]–[13].
In future work, we plain to test other algorithms.

B. Predictors

For Java, as input to Random Forest we use 23 predictors
calculated for methods (the type of the predictor’s value is
showed between parenthesis): cyclomatic complexity (int),
LOC (int), number of formal parameters (int), returns a non-
void type (boolean), is static (boolean), method’s modifier
(private/protected/public/default), is final (boolean), is abstract
(boolean), number of references to this (int), is a get/set
method (boolean), is implemented in a subclass (boolean),
overwrites a method of the superclass (boolean), throws an
exception (boolean), number of references to static variables
(int), number of references to final variables (int), number of
references to field variables (int), number of calls to project’s
methods (int), number of calls to Java API or other library
methods (int), number of references to project’s classes (int),
number of references to Java API or library classes (int), is
implemented in an inner class (boolean), number of outcoming
calls (int), number of other classes calling the method (int).
Basically, these predictors were selected to (a) include basic
metrics (such as LOC and cyclomatic complexity); (b) data
directly provided by Java ASTs (such as, is static and number
of parameters); (c) simple coupling metrics to the Java API or
other external libraries, since utility functions usually do not
depend on a project’s type but depend on other libraries types.

For JavaScript, we essentially select predictors following
the same criteria used for Java. We use the following 20
predictors: cyclomatic complexity (int), LOC (int), number
of parameters (int), includes a return statement (boolean),
uses prototype (boolean), number of DOM uses (int), uses
arguments variable (boolean), is nested in anonymous function
(boolean), has an empty body (boolean), only returns a boolean
constant (boolean), number of references to this (int), number
of getById calls using a constant string as argument (int),
number of references to global variables (int), number of
references to native variables (e.g., Math) (int), number of
function calls (int), number of nested function definitions (int),
number of qualified function calls (e.g., o.f()) (int), number
of local function calls (int), number of native function calls
(e.g., Math.sin()) (int), number of function calls that are not
covered by the previous three predictors values (int).

C. Dataset

For Java, we initially consider 106 systems from the Qual-
itas.class Corpus [14]. We assume that utility libraries are
implemented in files that contain the word util in their path.
In 95 systems, we found utility libraries, according to this
criterion. We then select 84 systems for our study, which are
the ones that contain at least 25 methods in the detected utility
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Fig. 2. Accuracy measures

libraries. This dataset includes well-known Java systems, such
as JHOTDRAW, SPRING FRAMEWORK, and HIBERNATE.

For JavaScript, we initially considered the top-100 GitHub
projects, ordered by number of stars. Using the same criterion
to detect utility libraries in Java, we found such libraries in
42 systems. We then select 22 systems with more than 25
utility functions. We used GitHub’s Linguist tool to remove
third-partly libraries, which are often included in JavaScript
repositories [15].3 The final dataset includes systems such as
BRACKETS, PDF.JS, and LEAFLET.

Figure 3 shows violin plots with the number of functions
and the ratio of util functions in the datasets. The systems
in Java have more functions than in JavaScript (5,687 and
1,049 functions, median values). However, in relative terms,
JavaScript systems have more utility functions (6.25% and
7.19%, median values, respectively).
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D. Training and Steps

For each system s with us utility functions, we compute
the defined predictors for: set (a) with us utility functions;
and set (b) with us randomly selected non-utility functions. It
is important to highlight that we usually have noisy data in
both sets. On one hand, in set (a) we might have functions that
are not utility functions; on the other hand, in set (b) we might
have have functions that are indeed utility functions. However,
as evidenced in the exploratory study (Section II), both kinds

3https://github.com/github/linguist

of functions do not dominate the respective sets. Moreover,
random forests classifiers are known to tolerate some level of
noisy data [6].

Using this data, we then rely on 10-fold cross validation
to train and test a Random Forest classifier for each system
separately.4 We build scripts that randomly divide a given
system’s data in ten folds and perform ten training/testing
cycles. In each cycle, nine folds are used for training and the
remaining one for testing. After ten cycles, the accuracy results
are aggregated under four measures: AUC (area under the
curve), precision, recall, and F-measure. AUC is a commonly
used measure for binary classification problems and it refers
to the area under the Receiver Operating Characteristic (ROC)
curve. AUC ≥ 0.70 is considered reasonably good [8], [16].
In fact, in the Software Engineering domain, many accepted
classifiers have AUC values between 0.70–0.80 [8], [9], [12].

IV. RESULTS

A. Accuracy

Figure 2 shows the values of the accuracy measures, for
each classifier (one classifier per system and programming
language). The results are summarized as follows:

• AUC: For Java, AUC results for 1st, 2nd, and 3rd
quartiles are 0.87, 0.90, and 0.94, respectively. APACHE
COMMONS COLLECTIONS is the system with the highest
AUC measure (0.99) and FREEMIND is the system with
the lowest measure (0.72). For JavaScript, AUC results
for 1st, 2nd, and 3rd quartiles are 0.75, 0.80, and 0.86,
respectively. TYPEAHEAD.JS is the system with the high-
est AUC measure (0.95) and MOCHA is the system with
the lowest measure (0.60).

• Precision: For Java, precision results for 1st, 2nd, and 3rd
quartiles are 0.76, 0.83, and 0.89, respectively. CHECK-
STYLE is the system with the highest precision measure
(1.0) and FREEMIND is the system with the lowest mea-
sure (0.61). For JavaScript, precision results for 1st, 2nd,
and 3rd quartiles are 0.61, 0.75, and 0.83, respectively.
REACT NATIVE is the system with the highest precision

4We decide to generate a classifier per project, instead of evaluating cross-
project predictors, because we presume that the main properties of utility
functions may change significantly from a project to another. For example,
they depend on different libraries, depending on the project.
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measure (0.9) and REACT is the system with the lowest
measure (0.52).

• Recall: For Java, recall results for 1st, 2nd, and 3rd
quartiles are 0.83, 0.88, and 0.91, respectively. APACHE
COMMONS COLLECTIONS is the system with the highest
recall measure (0.99) and AZUREUS is the system with
the lowest measure (0.72). For JavaScript, recall results
for 1st, 2nd, and 3rd quartiles are 0.82, 0.89, and 0.95,
respectively. REACT and TYPEAHEAD.JS are the system
with the highest recall measure (1.0) and REACT NATIVE
is the system with the lowest measure (0.66).

• F-Measure: For Java, F-Measure results for 1st, 2nd,
and 3rd quartiles are 0.80, 0.84, and 0.88, respectively.
APACHE COMMONS COLLECTIONS is the system with
the highest F-Measure measure (0.98) and FREEMIND is
the system with the lowest measure (0.71). For JavaScript,
F-Measure results for 1st, 2nd, and 3rd quartiles are
0.71, 0.76, and 0.84, respectively. TYPEAHEAD.JS is the
system with the highest F-Measure measure (0.94) and
MATERIAL is the system with the lowest measure (0.68).

Therefore, random Forest classifiers can identify utility
functions with very high accuracy. However, results for
JavaScript are slightly lower than for Java (median F-measure
equals to 0.84 and 0.76, for Java and JavaScript, respectively).

B. Most Influential Predictors

For each run of the 10-fold cross validation, we collect
a measure of the importance of each predictor. Using this
measure, we generate a rank of the most important predictors
(on each run). For each predictor, we then calculate its average
rank position, by averaging its position in the fold ranks.
Figure 4 shows the five best predictors, for Java and JavaScript.
The violin plots show the distribution of the rank positions of
a given predictor, considering all systems in our dataset. By
considering the median rank positions, the best predictors for
Java are: LOC, is static, number of references to field variables,
is implemented in a subclass, and number of references to
Java API or library classes. For JavaScript, the best predictors
are: LOC, number of references to this, number of references
to global variables, number of parameters, and number of
function calls.

Figure 4 also presents a relevant dispersion in the rank
positions of the best predictors, depending of the system the
classifiers refer to. For example, the rank positions of is static
for Java ranges from 1 (for 22 systems in our dataset) to 22
(which is found for a single system, APACHE JAMES). LOC is
the predictor with the smallest dispersion, both in Java and in
JavaScript. These results somehow suggest that classifiers for
utility function should be generated for each system and that
cross-project predictors probably will present a much lower
accuracy than the classifiers we evaluate in this section. In
Section VI we discuss how in-project predictors can be used
to build recommenders of Move Utility Function refactorings.

C. Threats to Validity

Both for Java and JavaScript, we assume that utility libraries
have util in their names or in their paths. However, we
might have utility libraries that do not match this criteria. For
example, in BRACKETS we found one utility library called
src/LiveDevelopment/Agents/DOMHelpers.js. However,
by considering a more precise criteria to select utility libraries
probably will improve our results.

V. RELATED WORK

To some extent, utility functions implemented in incorrect
modules can be seen as instances of the Feature Envy bad
smell. JDeodorant is a well-known system to detect this kind
of code smell [17]. The system defines an Entity Placement
metric to evaluate the quality of a possible Move Method
recommendation. This metric is used to evaluate whether a rec-
ommendation reduces a system-wide measurement of coupling
and at the same time improves a system-wide measurement
of cohesion. MethodBook is another system to recommend
Move Methods, which considers both structural (e.g., method
calls) and conceptual relationships (e.g., comments) with other
methods [18]. Finally, JMove recommends Move Method
refactorings using structural dependencies [19]. In future work,
we plain to compare our results with the ones produced by
these systems. However, we can already mention that all
of them are implemented to Java and heavily depend on
static types. Therefore, it is not straightforward to adapt these
systems to dynamic languages, like JavaScript. By contrast, we
showed in this paper that Random Forest classifiers provide



high accuracy even for JavaScript. Finally, the precision and
recall results of these systems are usually much lower than the
ones we reported in this paper.

Random Forest has been used to support several tasks in
Software Engineering. For example, some studies are con-
cerned with software defects or fault prediction [9]–[11].
Other studies focus on the support of software development
practices, for instance, by using Random Forest to predict
delays in issue integration [12] or to help untangling fine-
grained code changes (e.g., by separating commits related to
bug fix and refactoring) [13]. Finally, another usage example
is to support the detection of application characteristics, for
instance, the difference between high-rated and low-rated
applications in Android [8]. Notice that the list of related
work using Random Forest is not exhaustive, but it shows
the diversity of its application.

VI. PRACTICAL APPLICATIONS

Tool Support: Utility functions represent less than 10% of
the functions in a system (at least, in our dataset of 84
Java systems and 22 JavaScript systems). Therefore, we
propose to train machine learning classifiers by considering
all utility functions in a system and a sample of the same
size of non-utility functions. Typically, this training data
will include at most 20% of the functions from a system.
Therefore, by relying on the produced classifiers, we can
build recommenders of Move Utility Function refactorings
for the remaining 80% of the system functions.

Application on Other Types of Functions: In theory, the
proposed technique can work on any kind of functions that are
implemented in well-known modules. As examples, we have
database-related functions (normally implemented in Data
Access Objects (DAOs) [3], [4]), user-interface functions (nor-
mally implemented in View components) or even functions
related to a domain concept (e.g., functions that manipulate
Loan related concepts are usually confined in a well-defined
component, in banking applications [1]).

VII. CONCLUSION

In this paper, we showed that Random Forest classifiers can
identify with high accuracy utility functions not implemented
in correct modules. We achieved with these classifiers median
F-measures equal to 0.84 and 0.76, for Java and JavaScript
systems, respectively. Implementing utility functions in utility
libraries is important to promote their visibility to other
developers and therefore increase their chances of reuse. As
further work, we first plan to extend the exploratory study,
by considering other systems. We also plan to investigate the
use of machine learning classifiers to identify other kinds of
functions, such as database access functions.
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