
A Reflection on “An Exploratory Study on
Exception Handling Bugs in Java Programs”

Felipe Ebert∗, Fernando Castor∗, Alexander Serebrenik†
∗Federal University of Pernambuco, Brazil, {fe,castor}@cin.ufpe.br

†Eindhoven University of Technology, The Netherlands, a.serebrenik@tue.nl

Abstract—Exception handling is a feature provided by most
mainstream programming languages, and typically involves con-
structs to throw and handle error signals. On the one hand, early
work has argued extensively about the benefits of exception han-
dling, such as promoting modularity by defining how exception
handlers can be implemented and maintained independently of
the normal behavior of the system and easing but localization.
On the other hand, some studies argue that exception handling
can make the programming languages unnecessarily complex
and promote the introduction of subtle bugs in programs. In
2015 we published a paper describing a study investigating the
prevalence and nature of exception handling bugs in two large,
widely adopted Java systems. This study also confronted its
findings about real exception handling bugs with the perceptions
of developers about those bugs, also accounting for bugs not
related to exception handling. The goal of this reflection paper is
to investigate the state of the art in exception handling research,
with a particular emphasis on exception handling bugs, and how
our paper has influenced other studies in the area. We found
that our paper was cited by 33 articles, and all themes for future
work we raised in our paper have been tackled by other studies
in the short span of five years.

Index Terms—Exception handling, bugs, reflection study

I. INTRODUCTION

Most modern programming languages include specific con-
structs to signal the occurrence of an error and, when this
occurs, transfer control to another part of a program, re-
sponsible for handling it. These errors are expected to be
rare and are thusly called exceptions, since they represent
deviations to the normal behavior of the system. In a similar
vein, the parts of the code responsible for capturing errors
and bringing the system back to a consistent state are called
exception handlers. The combination of these constructs in a
programming language, together with the rules by which they
interact, is called exception handling mechanism.

Early work [1], [2], [3] advocates multiple benefits of excep-
tion handling. According to these papers, exception handling
promotes modularity because it makes it possible to define how
errors can be handled independently of the normal behavior of
the system. This is reinforced by the lexical separation created
by exception handling mechanisms. This separation should
also make it easier to locate the causes of bugs. In addition,
by leveraging exception handling, it should be possible to
incrementally implement the error recovery logic of a system.

As a counterpoint, many criticisms have been made against
exception handling throughout the years. Black [4] already
in 1982 argues that exception handling mechanisms make

programming languages unnecessarily complex. Cargill [5]
shows by means of a simple example how a combination of
manual memory allocation and exception handling can lead
to the introduction of subtle bugs in a program. Robillard and
Murphy [6] provide evidence that bugs stemming from the use
of exception handling can also happen as a consequence of
complex and unintended exception propagation paths. Adding
insult to injury, a number of papers show that developers do
not prioritize exception handling and that this part of the code
usually exhibits low quality [7], [8].

A couple of studies published around the turn of the decade
attempted to provide a better understanding of the impacts [9],
prevalence, and nature [10] of exception handling-related bugs.
Notwithstanding, they exhibit limitations in the methodology
they employ to identify exception handling bugs [10] and do
not study the characteristics of these bugs [9]. Additionally, we
were not aware at the time of any paper confronting the beliefs
of developers with actual problems reported during system
development. Hence, around that time we started working to
fill this gap, which culminated with the publication in 2015
of the paper “An Exploratory Study on Exception Handling
Bugs” [11].1 Hereafter, we will refer to it as “our paper”.

In this reflection paper, we examine the state of the art in
exception handling research and how our paper has influenced
work in the area. In particular, our investigation shows that all
the five themes for future work we raised in our paper have
actually been tackled by other researchers in subsequent years.

II. SUMMARY AND MAIN CONTRIBUTIONS OF OUR PAPER

In this section, we discuss the summary of our paper, its
main contributions, and the future work presented at that time.
Our paper [11] aimed to study exception handling bugs from
two different perspectives: (i) exception handling bugs that
occur in real software systems; and (ii) developers’ perceptions
of these bugs. To realize those goals we surveyed 154 de-
velopers, asking them questions about organizational policies
pertaining to exception handling and their perceptions on
exception handling bugs. At the time, this was the largest study
about exception handling directly involving software develop-
ers. We also manually analyzed 220 exception handling bugs
from ECLIPSE and TOMCAT. Less than 1/3 of the respondents
(27%) of the survey indicated that their organizations have
policies and standards for the implementation of exception

1This is an extended version of another paper [12].

978-1-7281-5143-4/20 c© 2020 IEEE SANER 2020, London, ON, Canada
ERA Track

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

552



TABLE I
COMPREHENSIVE CLASSIFICATION OF EXCEPTION HANDLING BUGS

(REPRODUCED FROM [11]).

Lack of a handler that should exist
Exception not thrown
Error in the handler
Error in the clean-up action
Exception caught at the wrong level
General catch block
Wrong exception thrown
Exception that should not have been thrown
Wrong encapsulation of exception cause
Lack of a finally block that should exist
Error in the exception assertion
Inconsistency between source code and API documentation
Empty catch block
Error in the definition of exception class
catch block where only a finally would be appropriate

handling. Similarly, 70% of the respondents claimed that in
their organizations there are no specific tests for exception
handling code. Moreover, most of the the respondents (61%)
mentioned that no to little importance is given to the docu-
mentation of exception handling in the design phase of the
project. Additionally, 40% of the respondents considered the
quality of exception handling code good or very good, while
only very few of them (14%) considered it bad or very bad.

Somewhat in contrast to the perceptions of the surveyed
developers, our study of exception handling bugs showed,
with statistical significance, that bugs in exception handling
are ignored by developers less often than other bugs. Another
interesting finding is that bugs stemming from overly general
catch blocks are rare, even though they are considered a bad
smell related to exceptions [6], [7]. In addition, we identified
few bug reports caused by empty catch blocks, although
developers often mention them as causes of bugs they have
fixed in the past. Furthermore, we observed that empty catch
blocks are used as part of the bug fixes, including exception
handling bug fixes. Finally, based on all the findings, we
presented a classification of exception handling bugs and their
causes. This classification is reproduced in Table I.

We discussed five different threads for future work, in no
particular order. Firstly, to extend the study by involving
richer data including interviews with developers and larger-
scale surveys. Secondly, to analyze empty catch blocks in
more depth, since their use is pervasive in the systems
we analyzed and they are used in unforeseen ways, e.g.,
to deal with exception handling bugs. Thirdly, to develop
recommendation approaches to assist developers in deciding
how to handle exceptions, since we identified multiple cases
where developers explicitly stated they did not know what to
do with an exception. Fourthly, to enrich analysis tools by
tracking the typical causes of exception handling bugs and
adherence to exception handling policies. This is motivated in
part by the observation that empty catch blocks are recognized
by developers as being useful if the implementation of the
system guarantees that the exception will not be thrown,
but such guarantee might be violated when the system is

evolving, which may lead to unexpected behavior. Lastly, to
study how the exception signaling and handling behavior of
a system evolves over time, specially looking at information
from version control systems.

III. IMPACTS

In this section, we position our paper in consideration of the
recent state of the art and practice. We do this by surveying
work that has cited it between 2015 (it was published online
in April 2015) and December 2019. According to GOOGLE
SCHOLAR2, our paper [11] has been cited 33 times, once
in a book, six times in journals, 25 times in conferences
and workshops, and once in a thesis.3 We could observe
that our article more directly influenced 28 of the 33 works,
i.e., in five of them our article was just quickly mentioned.
Among these 28, only one is a self-citation. Two of the citing
articles explicitly mentioned our article as an inspiration for
their study [13], [14]. The work of Coelho et al. [14] is a
comprehensive catalogue of exception handling bad smells
and associated refactorings for Java. Below we provide a brief
overview of the citing papers, followed by a more detailed
discussion of the most relevant ones.

Three papers and the thesis of Pádua et al. [15], [16],
[17], [18] cite our article when discussing the importance of
exception handling code. Similarly to our article, 19 different
papers focus on bugs in the exception handling code [19],
[20], [21], [22], [23], [24], [15], [25], [26], [27], [17], [14],
[28], [18], [29], [30], [31], [32], [13]. Our categorization of
exception handling bugs and their causes has been (partially)
used in five different studies [20], [15], [26], [33], [18] The
survey we conducted in our article also served as a basis for
surveys by de Sousa [13], [34]. Finally, we found 15 papers
addressing the five themes for future work that our paper
discussed [23], [25], [26], [27], [35], [17], [36], [33], [29],
[37], [30], [31], [32], [13], [38].

A. Have Other Papers Followed Up?

In this section, we discuss work which, we believe, has
followed up on the groundwork established by our paper. In
particular, we examine work that has tackled at least one of
the lines for future work mentioned in Section II.

Pádua and Shang [17] studied bugs related to exception
propagation and their relationship with exception handling
anti-patterns. Our work served as a rationale for three out
of the 15 exception flow-related metrics used in the study.
The occurrence of generic catch blocks was shown to have a
positive correlation with the probability of post-release bugs
in one of the analyzed systems; the use of dummy handlers,
i.e., handlers that only display or log information—in two.

Three studies involved interviews with developers, another
line for future work we discussed. Cassee et al. [26] focused
on the error handling mechanism of the Swift programming
language. The main goal of the interviews was to investigate
the adherence to guidelines and best practices about the

2shorturl.at/IMOS1
3Scholar shows 36, but two are duplicated entries and one is not in English.

553



development of the exception handling code. In our original
survey, we had a question related to this topic. They found
that exception handling guidelines usually exist, but such
guidelines are usually implicit and undocumented. Melo et
al. [37] conducted interviews with a similar goal, but focusing
on Java developers. Their results show analogous trends: ex-
ception handling guidelines usually exist and they are usually
implicit and undocumented. The work of deSousa et al. [13]
used interviews to aid in the investigation of the relationship
between the absence of exception handling policies and the
occurrence of exception handling anti-patterns. Their findings
converge to the same result: developers face development
problems, such as lack of documentation, lack of exception
handling policies, and the absence of tools to detect improper
exception handling practices.

Nogueira et al. [28] conducted a study focusing specifically
on gaining a better understanding about empty catch blocks.
They investigated how empty catch blocks evolve within the
software releases and also which types of exceptions these
blocks handle. Their results show that the number of empty
catch blocks decreased along the versions, and the most com-
mon exception handled is the most generic one: Exception.
In our previous article, we found diverging opinions about the
benefits and drawbacks of empty catch blocks, and few bugs
related to both empty catch blocks and general catch blocks.

Two lines for future work mentioned in our paper are tool-
related: tools to support developers in deciding what to do
in the presence of exceptions and tools to check violations
of (potentially implicitly defined) exception signaling and
handling policies. We found 11 papers presenting such tools,
however one of them is just about a high level idea of
extending Java’s exception type hierarchy to accommodate
“context-dependent exceptions” that can be either checked or
unchecked depending on the usage context [25].

Many papers present tools that verify conformance to ex-
ception handling policies and provide some recommendations
for handling exceptions. Violations to these policies are con-
sidered exception handling bugs. Barbosa and Garcia [23]
proposed a recommender heuristic strategy that recommends
repairs to exception policy violations. Kistner et al. [35] built
a tool that reveals possible sources of exceptions in the code.
This tool also provides project-specific recommendations and
detects common bad exception handling practices. Montene-
gro et al. [33] proposed an “exception policy expert” tool
which alerts developers about policy violations and can sug-
gest possible handlers for the exceptions. Nguyen et al. [29]
developed a tool to support developers by recommending code
to catch an exception that is likely to occur in a code snippet.
This tool also recommends code to fix the occurrence of such
exception, in case it stems from a bug. In a similar vein,
Li et al. [36] devised a method that automatically recommends
exception handling strategies, based on program context.

Three studies proposed a policy check for exception han-
dling code (without promoting recommendations on the ex-
ception handling code) [27], [30], [31]. Filho et al. [27]
implemented an architectural conformance checking solution

to help avoiding exception handling design erosion. Their
tool provides a declarative language for expressing design
constraints regarding exception handling, and a design rule
checker to verify the exception handling conformance auto-
matically. Chen et al. [30] provided a static analysis tool which
automatically detects inaccurate exceptions, i.e., exception
handling bugs or anti-patterns, by inspecting the inconsistency
between an exception’s class and its error message. Kechagia
and Spinellis [31] designed a type system to support the
identification of bugs that can lead to application crashes due
to malformed inputs. One of the more concrete effect of this
approach is the conversion of methods that thrown unchecked
exceptions into methods that throw checked exceptions.

The aforementioned approaches work at development time.
Additionally, we identified two papers presenting tools that
check exception handling policies and provide exception han-
dling support based on run time information [32], [38]. For
example, the work of Jia and colleagues [32] uses run time
information about expected behavior of a system to identify
actions that should be performed when the execution of a
system is inadvertently interrupted.

Finally, our article was cited in a book on Cooperative Soft-
ware Development [39]. More specifically, in the Functional
Specifications Chapter, the author used our study as evidence
that developers are not good at designing errors. In particular,
it highlights that overly general catch blocks hinder devel-
oper’s understanding of the exceptions these blocks capture.

B. Discussion of Exception Handling Bugs

Since the publication of our paper, a few more papers have
studied the prevalence of exception handling bugs in real-
world systems. In our study, we found that exception handling
bugs are rare. In the repository analysis of ECLIPSE and TOM-
CAT, we observed only 0.35% and 1.87% of the bugs are re-
lated to the exception handling code, respectively. Differently
from these findings, Chen et al. [30] found about 13% of ex-
ception handling bugs in six widely-deployed cloud-based sys-
tems (CASSANDRA, HBASE, HDFS, HADOOP MAPREDUCE,
YARN, and ZOOKEEPER). Sena et al. [19] found an even
higher percentage (about 20%) of bugs related to exception
handling in popular Java libraries (COMMONS-COLLECTIONS,
COMMONS-LANG, LOG4J, MAVEN-FILTERING, PLEXUS-
UTILS, EASYMOCK, and SLF4J-API).

We have analyzed a sample of exception handling bugs
from one stand alone and one server applications. Both exhibit
a minimal number of exception handling bugs (less that
2% each). The study of Chen et al. [30] analyzed cloud-
based applications such as databases and distributed resource
management systems. Sena et al. [19] focused on a different
kind of systems: Java API libraries. New studies are necessary
to identify what is the source of these differences in the
prevalence of exception handling bugs.

IV. NEW EMERGING IDEAS AND CURRENT VISION

In this section, we discuss the future work we envision from
the actual state of the art on exception handling studies.

554



While error handling practices in Java systems have been
studied in great depth, there is comparatively little work
targeting other languages. To the best of our knowledge, very
few papers studied exception handling practices, perceptions,
and bugs in popular4 languages such as JavaScript, Python,
PHP, Go, and Objective-C. Previous work targeting Swift [26]
and C++ [24], [40] has shown that, although the usage of
exception handling (called “error handling” in Swift) has
points in common with its usage in Java, in particular the
use of empty handlers, there are also significant differences,
e.g., generic handlers are more prevalent in Swift.

Following along the steps of the work by Pádua and
Shang[17], we think it is worth conducting a more in-depth
validation of existing best practices and anti-patterns. De-
velopers have been building intensively-used, mission-critical
systems that use exceptions for a long time. Some of the prac-
tices employed in the design and implementation of exception
handling code in these systems can be seen as anti-patterns.
However, in some circumstances developers see them as useful
solutions, as in the example of developers using empty catch
blocks as fixes for exception handling bugs (Section II).
Devising new approaches to mine these solutions from source
code and confronting them with the perceptions of developers
about their usefulness could be a valuable contribution. This is
a scenario where machine learning techniques, both supervised
and unsupervised, can be helpful.

We would like to extend the analysis of the prevalence of
exception handling bugs to different systems. The studies by
Chen et al. [30] and Sena et al. [19], focusing on cloud systems
and Java libraries, found a large number of exception handling
bugs, when compared to our work. These findings suggest
that the prevalence of exception handling bugs varies widely
across domains, possibly with other variables such as maturity
of the project and employed programming languages playing
important parts. These results highlight that there is more to
learn about the prevalence and maybe also about the nature
of exception handling bugs. One big obstacle in this case is
how to scale up the identification of exception handling bugs.
Simplistic automated approaches used in previous work [10]
yield unreliable results. This might be another avenue where
machine learning techniques can prove useful.

At a more basic level, we think that exception handling
mechanisms are treated as a second-class citizen in pro-
gramming languages. Code coverage approaches often do not
account for exception handling code. Complexity measures
typically do not include control flows that stem from exception
handling, neither implicit nor explicit, in the information
they collect. Even though a number of papers discuss the
complexity of implementing exception handling code and there
are some approaches to support program comprehension in the
presence of exceptions, to the best of our knowledge, no pre-
vious work has studied the readability of exception handling
code. For example, what is more readable for exception-safe
resource clean-up, Swift’s defer or Java’s try-finally?

4https://redmonk.com/sogrady/2019/07/18/language-rankings-6-19

Finally, there are many papers exploring the use of static
analysis to support comprehension of and bug detection in
exception handling code [41], [42], [21], [6], [43], [44].
Notwithstanding, perhaps surprisingly, there is comparatively
little work studying how exception handling code is tested
or debugged in practice. In a similar vein, there are few
proposals to improve testing and debugging of exception
handling code, with few exceptions [45], [46]. We hope to
see this scenario change in the coming years, considering the
many published studies targeting practical aspects of exception
handling published in the last decade.

V. CONCLUDING REMARKS

Most major programming languages in widespread use, both
old and new, implement an exception handling mechanism.
For example, the first version of Swift, released in 2014,
did not include specific features for signaling and handling
errors. However, due to requests from the community, Apple
ended up adding such features to the language one year
later. This is clear evidence of the relevance of exception
handling to the practice of software development. Researchers
acknowledge this. Even though exception handling cannot be
considered a popular research topic, there is a steady stream
of publications on the topic in major Software Engineering
research venues [40], [30], [47], [37], [48], [17]. In this
paper, we re-examined a paper that investigated the nature,
prevalence, and perceptions about bugs related to exception
handling usage. In particular, we analyzed its impact and how
it influenced other papers in the field.

We observed that a total of 33 articles cited our paper and
28 of them were directly influenced by it. Two of these studies
explicitly admit to being inspired by our previous work. We
have also shown that all the lines for future work raised by
our paper have been addressed to some extent by subsequent
research. At the same time, we presented several ideas
for future research that, we hope, can guide researchers
to continue further investigating exception handling.

ACKNOWLEDGMENTS

This research was partially funded by CNPq/Brazil
(304755/2014-1, 406308/2016-0, 465614/2014-0),
FACEPE/Brazil (APQ-0839-1.03/14, 0388-1.03/14,
0592-1.03/15, BCT-0229-1.03/19), and CAPES/Brazil
(88887.333966/2019-00).

REFERENCES

[1] F. Cristian, “A recovery mechanism for modular software,” in ICSE,
1979, pp. 42–51.

[2] P. M. Melliar-Smith and B. Randell, “Software reliability: The role of
programmed exception handling,” in Proceedings of an ACM Conference
on Language Design for Reliable Software (LDRS), Raleigh, USA,
March 1977, pp. 95–100.

[3] D. L. Parnas and H. Würges, “Response to undesired events in software
systems,” in ICSE, 1976, pp. 437–446.

[4] A. P. Black, “Exception handling : The case against,” Ph.D. dissertation,
University of Oxford, UK, October 1982.

[5] T. Cargill, “Exception handling: A false sense of security,” C++ Report,
vol. 6, no. 9, November-December 1994.

555



[6] M. Robillard and G. Murphy, “Static analysis to support the evolution of
exception structure in object-oriented systems,” TOSEM, vol. 12, no. 2,
pp. 191–221, April 2003.

[7] D. Reimer and H. Srinivasan, “Analysing exception usage in large
Java applications,” in Proceedings of ECOOP Workshop on Exception
Handling in Object-Oriented Systems, July 2003, pp. 10–19.

[8] H. B. Shah, C. Gorg, and M. J. Harrold, “Understanding exception
handling: Viewpoints of novices and experts,” TSE, vol. 36, no. 2, pp.
150–161, 2010.

[9] C. Marinescu, “Are the classes that use exceptions defect prone?”
in Proceedings of the 12th International Workshop on Principles of
Software Evolution, September 2011, pp. 56–60.

[10] P. Sawadpong, E. B. Allen, and B. J. Williams, “Exception handling
defects: An empirical study,” 9th IEEE International Symposium on
High-Assurance Systems Engineering, pp. 90–97, October 2012.

[11] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” Journal of Systems and
Software, vol. 106, pp. 82–101, 2015.

[12] F. Ebert and F. Castor, “A study on developers’ perceptions about
exception handling bugs,” in ICSM, September 2013.

[13] D. B. C. de Sousa, P. H. Maia, L. S. Rocha, and W. Viana, “Analysing
the evolution of exception handling anti-patterns in large-scale projects:
A case study,” in SBCARS. ACM, 2018, pp. 73–82.

[14] R. Coelho, J. Rocha, H. Melo, and B. SENA, “A catalogue of java
exception handling bad smells and refactorings,” in Conference on
Pattern Languages of Programs (PLoP), Portland, 2018.

[15] G. B. D. Pádua and W. Shang, “Studying the prevalence of exception
handling anti-patterns,” in ICPC, May 2017, pp. 328–331.

[16] G. B. d. Pádua and W. Shang, “Revisiting exception handling practices
with exception flow analysis,” in SCAM, Sep. 2017, pp. 11–20.

[17] G. B. de Pádua and W. Shang, “Studying the relationship between
exception handling practices and post-release defects,” in MSR, 2018,
pp. 564–575.

[18] G. B. de Pádua, “Studying and assisting the practice of java and c#
exception handling,” Master’s thesis, Concordia University, 2018.

[19] D. Sena, R. Coelho, U. Kulesza, and R. Bonifácio, “Understanding the
exception handling strategies of java libraries: An empirical study,” in
MSR. ACM, 2016, pp. 212–222.

[20] E. A. Barbosa, A. Garcia, M. P. Robillard, and B. Jakobus, “Enforcing
exception handling policies with a domain-specific language,” TSE,
vol. 42, no. 6, pp. 559–584, 2016.

[21] J. Oliveira, D. Borges, T. Silva, N. Cacho, and F. Castor, “Do android
developers neglect error handling? a maintenance-centric study on the
relationship between android abstractions and uncaught exceptions,” JSS,
vol. 136, pp. 1 – 18, 2018.

[22] J. Oliveira, N. Cacho, D. Borges, T. Silva, and F. Castor, “An exploratory
study of exception handling behavior in evolving android and java
applications,” in SBES, 2016, pp. 23–32.

[23] E. A. Barbosa and A. Garcia, “Global-aware recommendations for
repairing violations in exception handling,” TSE, vol. 44, no. 9, pp.
855–873, Sep. 2018.

[24] R. Bonifácio, F. Carvalho, G. N. Ramos, U. Kulesza, and R. Coelho,
“The use of c++ exception handling constructs: A comprehensive study,”
in SCAM, Sep. 2015, pp. 21–30.

[25] M. Kechagia, T. Sharma, and D. Spinellis, “Towards a context dependent
Java exceptions hierarchy,” in ICSE-Companion, May 2017, pp. 347–
349.

[26] N. Cassee, G. Pinto, F. Castor, and A. Serebrenik, “How swift developers
handle errors,” in MSR, May 2018, pp. 292–302.

[27] J. L. M. Filho, L. Rocha, R. Andrade, and R. Britto, “Preventing ero-
sion in exception handling design using static-architecture conformance

checking,” in Software Architecture, A. Lopes and R. de Lemos, Eds.
Cham: Springer International Publishing, 2017, pp. 67–83.

[28] A. F. Nogueira, J. C. B. Ribeiro, and M. A. Zenha-Rela, “Trends on
empty exception handlers for java open source libraries,” in SANER,
Feb 2017, pp. 412–416.

[29] T. T. Nguyen, P. M. Vu, and T. T. Nguyen, “Recommendation of
exception handling code in mobile app development,” 2019, arXiv,
1908.06567.

[30] H. Chen, W. Dou, Y. Jiang, and F. Qin, “Understanding exception-related
bugs in large-scale cloud systems,” in ASE, November 2019.

[31] M. Kechagia and D. Spinellis, “Type checking for reliable apis,” in 2017
IEEE/ACM 1st International Workshop on API Usage and Evolution
(WAPI), May 2017, pp. 15–18.

[32] Z. Jia, S. Li, T. Yu, X. Liao, and J. Wang, “Automatically detecting
missing cleanup for ungraceful exits,” in ESEC/FSE, 2019, pp. 751–
762.

[33] T. Montenegro, H. Melo, R. Coelho, and E. Barbosa, “Improving
developers awareness of the exception handling policy,” in SANER,
March 2018, pp. 413–422.

[34] D. B. C. de Sousa, W. V. de Carvalho, and L. S. Rocha, “Avaliando
o tratamento de exceção em um sistema web corporativo: Um estudo
de caso,” in Anais Estendidos do XXIII Simpósio Brasileiro de Sistemas
Multimı́dia e Web. Porto Alegre, RS, Brasil: SBC, 2017, pp. 23–28.

[35] F. Kistner, M. Beth Kery, M. Puskas, S. Moore, and B. A. Myers,
“Moonstone: Support for understanding and writing exception handling
code,” in VL/HCC, Oct 2017, pp. 63–71.

[36] Y. Li, S. Ying, X. Jia, Y. Xu, L. Zhao, G. Cheng, B. Wang, and J. Xuan,
“Eh-recommender: Recommending exception handling strategies based
on program context,” in 2018 23rd International Conference on Engi-
neering of Complex Computer Systems, Dec 2018, pp. 104–114.

[37] H. Melo, R. Coelho, and C. Treude, “Unveiling exception handling
guidelines adopted by java developers,” in SANER, Feb 2019, pp. 128–
139.

[38] L. Zhang and M. Monperrus, “Tripleagent: Monitoring, perturbation
and failure-obliviousness for automated resilience improvement in java
applications,” CoRR, vol. abs/1812.10706, 2018.

[39] A. J. Ko and B. Xie, “Cooperative software development.” [Online].
Available: https://andrewbegel.com/info461/readings/index.html

[40] K. Bradley and M. Godfrey, “A study on the effects of exception usage
in open-source C++ systems,” in SCAM, Sep. 2019.

[41] M. Bravenboer and Y. Smaragdakis, “Exception analysis and points-to
analysis: better together,” in Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, July 2009, pp. 1–12.

[42] C. Fu and B. G. Ryder, “Exception-chain analysis: Revealing exception
handling architecture in java server applications,” in ICSE, May 2007,
pp. 230–239.

[43] C. F. Schaefer and G. N. Bundy, “Static analysis of exception handling
in Ada,” Softw., Pract. Exper., vol. 23, no. 10, pp. 1157–1174, 1993.

[44] W. Weimer and G. C. Necula, “Exceptional situations and program
reliability,” TOPLAS, vol. 30, no. 2, pp. 1–51, 2008.

[45] P. Zhang and S. Elbaum, “Amplifying tests to validate exception
handling code,” in In Proceedings of 34th International Conference on
Software Engineering, june 2012, pp. 595 –605.

[46] E. S. F. Najumudheen, R. Mall, and D. Samanta, “Modeling and
coverage analysis of programs with exception handling,” in ISEC. New
York, NY, USA: ACM, 2019, pp. 15:1–15:11.

[47] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in android apps,”
in ICSE, 2018, pp. 408–419.

[48] T. Nguyen, P. Vu, and T. Nguyen, “Recommending exception handling
code,” in ICSME, September/October 2019.

556


