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Abstract—Technical Debt (TD) expresses the need for im-
provements in a software system, e.g., to its source code or
architecture. In certain circumstances, developers “self-admit”
technical debt (SATD) in their source code comments. Previous
studies investigate when SATD is admitted, and what changes
developers perform to remove it. Building on these studies, we
present a first step towards the automated recommendation of
SATD removal strategies. By leveraging a curated dataset of
SATD removal patterns, we build a multi-level classifier capable
of recommending six SATD removal strategies, e.g., changing API
calls, conditionals, method signatures, exception handling, return
statements, or telling that a more complex change is needed.
SARDELE (SAtd Removal using DEep LEarning) combines a
convolutional neural network trained on embeddings extracted
from the SATD comments with a recurrent neural network
trained on embeddings extracted from the SATD-affected source
code. Our evaluation reveals that SARDELE is able to predict
the type of change to be applied with an average precision of
' 55%, recall of ' 57%, and AUC of 0.73, reaching up to 73%
precision, 63% recall, and 0.74 AUC for certain categories such
as changes to method calls. Overall, results suggest that SATD
removal follows recurrent patterns and indicate the feasibility of
supporting developers in this task with automated recommenders.

Index Terms—Self-Admitted Technical Debt; Recommender
Systems; Deep Learning; Neural Networks

I. INTRODUCTION

Technical Debt (TD) refers, according to a definition
provided by Cunningham [8], to “not quite right code which
we postpone making it right”. The reasons why TD occurs in
software projects are many-fold: deadline pressure, e.g., the
need for releasing a new feature or a bug fix, incapability to
produce a suitable solution for a given development problem
or, lack of a suitable component that solves a given task.

Keeping track of TD has, for developers, paramount im-
portance for its management and removal [13]. To this aim,
developers specify or “admit” the presence of TD by adding a
comment near the TD-affected source code [40]. In such cases,
the TD is considered as a “self-admitted” TD (SATD).

As SATD represents an admitted manifestation of a negative
phenomenon (TD), it is of particular interest to understand
whether this admission leads to appropriate corrective action,
i.e., SATD removal. Bavota and Russo [5] found that over half
(57%) of the SATD is actually being removed. While 63% of
the removals are done by the same developer who admitted
the SATD, in the remaining cases the SATD is addressed by

somebody else. This may be especially true in projects with a
very high turnover [25], [42], [50], and may make the removal
quite challenging.

Concerning “how" SATD is being removed, Wehaibi
et al. [52] found that SATD may lead, in general, towards
complex software changes, while Maldonado et al. [9] con-
ducted a survey on SATD removal and found that this happens
either in the context of bug fixing, or feature addition. Starting
from the results of Maldonado et al. [9], Zampetti et al. [58]
analyzed the change patterns that lead towards SATD removal,
by combining an automated analysis through GumTree [14]
with manual analysis. Their study produced a taxonomy of
six SATD removal strategies, including complex changes (for
different projects 40–55% of the removals belong to this
category), but, also, recurring specific changes, such as changes
in conditionals (11–29%), exception handling, method calls
(e.g., API) changes, or method signatures changes. Regularities
in program changes have also been found in previous work
categorizing bug fixing patterns [38], and in recent work
learning program repairs from existing source code [47].

Based on the results of previous studies, we conclude that

SATD removal is often a necessity, frequently per-
formed by the developer who did not introduce it,
and in about half of the cases, it follows specific
patterns.

We start from the observation of Zampetti et al. [58], and
from the curated dataset they made available. We propose an
automated approach, named SARDELE (SAtd Removal using
DEep LEarning), to recommend how SATD should be removed.
That is, given a SATD occurring in the systems’ source code,
we recommend one of the six removal strategies proposed by
Zampetti et al. [58]. While this does not provide the concrete
removal solution yet, we claim that it can help developers to
better plan and ponder SATD removal solutions.

SARDELE is based on the conjecture that the SATD
comment and the affected source code contain enough
elements to determine the SATD removal strategy (i.e.,
category). Therefore, we propose an approach that combines
two deep neural networks: (i) a convolutional neural network
(CNN) trained on embeddings extracted from the SATD
comments, and (ii) a recurrent neural network (RNN) trained
on embeddings extracted from the SATD-affected source code.
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TABLE I
SATD REMOVALS DATASET BY ZAMPETTI et al. [58].

Change Camel Gerrit Hadoop Log4J Tomcat Total
Method Calls 165 16 42 8 59 290
Conditionals 61 8 13 7 59 148
Try-Catch 9 3 2 0 5 19
Method Signature 36 3 6 0 17 62
Return Stmt 15 3 4 0 7 29
Other changes 145 23 67 10 94 339
OVERALL 431 56 134 25 241 887

We apply SARDELE on the previously-available dataset [58],
featuring 779 manually-classified method-level SATD removals,
each one classified according to the six categories. Although
we are aware that an approach like the one we propose would
surely benefit from a larger dataset, we opted to propose our
solution and validate it on a very reliable curated dataset,
leaving larger empirical evaluations for future work.

Overall, SARDELE achieves a precision of about 55%, a
recall of about 57%, and AUC of 0.73. On the individual
categories, the performance varies, also depending on the
amount of data in the training corpus for the category, e.g.,
SARDELE reaches up to 73% precision, 63% recall, and
0.74 AUC for changes to method calls. We also found that
the combination of comment-based classifier (CNN) and
source code-based classifier (RNN) significantly outperforms
the individual classifiers. Finally, SARDELE outperforms a
simple machine-learning baseline using Random Forests, and a
manually-produced baseline in which annotators guessed SATD
removal strategies by looking only at the SATD comment.

To summarize, this work highlights the feasibility of outlin-
ing solution directions for SATD removal and paves the ways
towards automatic recommenders for SATD removal strategies.

The study dataset is available for replication purposes [57].

II. SATD REMOVAL TAXONOMY AND DATASET

This work supports developers in removing the SATD, by
recommending one or more of the six removal strategies that
have been identified in a previous study by Zampetti et al. [58].
Starting from a curated dataset of SATD by Maldonado
et al. [9], Zampetti et al. first analyzed, using the GumTree [14]
fine-grained differencing tool, the commits in which the SATD
comment disappeared from the system. Then, they performed
a manual analysis aimed at identifying relevant categories of
SATD removals. In the end, they identified the following six
categories of changes (which include addition/removals of the
mentioned items):

1) Method calls, e.g., changes to APIs;
2) Conditional statements, e.g., addition, removal, or

change to preconditions;
3) Try-catch blocks, e.g., addition of exception handling for

previously-uncaught exceptions;
4) Method signatures, i.e., either the parameters or the

return type of the SATD-affected methods are changed,
for example because of a refactoring action1 or another
improvement;

1apache/tomcat/commit/b0b534f11d90126b9c399e916c456642e9b10e5c
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Fig. 1. SATD classification approach (the number of hidden layers and of
nodes in the neural network varies based on the calibration).

5) Return statements, e.g., the return object is changed to
improve the method functionality/fixing a problem;

6) Other (more complex) changes, that could not be
classified along the aforementioned dimensions.

The dataset provided by Zampetti et al. provides, for method-
level SATD identified (and removed) in five Java open source
projects, the following information: (i) commit where the SATD
was introduced, along with the SATD-related comment, and
method to which the SATD comment was attached, (ii) commit
where the SATD was removed, and (iii) removal category,
according to the aforementioned taxonomy. Overall, the dataset
features a total of 779 SATD removals, as detailed in Table I.
Note that, the total number (887) is greater than 779 since
the SATD can be removed applying more than one removal
strategies. Moreover, the original dataset also contains 912
SATD removals occurred by deleting the whole class or method,
or without modifying the SATD-affected source code. We did
not contemplate such a case in SARDELE, as it is likely that
either the SATD was removed “by chance”, or in the context
of a complex class refactoring.

III. APPROACH

Below we describe SARDELE, the proposed approach for
automatically recommending SATD removal strategies. Given
a method affected by SATD (for which we have the source
code and the SATD-related comment), SARDELE suggests
one of the six SATD removal categories detailed in Section II.

Fig. 1 provides an overview of SARDELE. As the figure
shows, SARDELE consists of two classifiers, one based on
the SATD comment, and one based on the source code of the
SATD-affected method. We conjecture that both the comment
left by the developer who introduced the SATD, and the source
code itself contain meaningful elements for identifying the
SATD removal strategy.

The top-side of the figure (white blocks) starts with prepro-
cessing the SATD comment. Then, to reduce the dictionary
size and capture relationships between adjacent words (i.e.,
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within a window of words), skip-grams are extracted from the
sequence of words, and are seed into a Convolutional Neural
Network (CNN). The bottom-side of the figure (gray blocks)
starts with extracting tokens from the SATD-affected method
source code, and identifying idioms, i.e., frequent literals and
identifiers, to retain. Similarly to the previous case, after having
produced a stream of tokens/idioms, we extract skip-grams
from them. Skip-grams are then seeded into a Recurrent Neural
Network (RNN). Finally, the output of the two networks is
combined and seed onto a softmax layer, which produces
the final classification according to the six SATD removal
strategies.

We base our approach on deep neural network classification
strategies, rather than on traditional machine learners, e.g.,
decision trees. While the latter may have advantages in
terms of computational cost and capability to explain the
predicted classification, properly conveying the semantics
behind comments and source code would have required a
complex, possibly manual, feature engineering. Therefore,
based on previous applications of deep learning to source code
analysis [47], [53], we opted for such a solution. Nevertheless,
in our empirical evaluation, we compare SARDELE with a
simple machine learning-based classifier.

Note that we use different kinds of neural networks for
comments and source code because RNN better preserves
information related to sequences, particularly important when
analyzing source code, as also Tufano et al. did [47]. Instead,
following previous work identifying SATD-comments with
CNN [41] we used CNN to analyze comments.

In the following, we describe the components of SARDELE.

A. Classifying SATD Removal from Comments

Comment preprocessing. Comments are preprocessed by (i)
removing special characters and digits, (ii) converting to lower
case, (iii) removing stop words and applying the Snowball
stemmer [39]. We evaluated SARDELE with and without
stemming and stop words removal, and observed the best
performance with stemming and without stop words removal,
likely because stop words such as “not” might convey useful
information.

Extracting skip-grams from comments. Next, we could
weight terms using a suitable weighting scheme, e.g., tf-idf,
and represent documents as vectors of independent words [2].
However, this approach produces very sparse vectors and the
word independence assumption is strong and not realistic.

To overcome the above problems, we use neural language
models, i.e., word embeddings, that generate a low-dimensional,
distributed embedding of words [7], [48]. Previous studies have
shown that neural language models are able to capture both
semantic and syntactic relationships between words [31], [32].
In this work, we use WORD2VEC [31]–[33], a well-known
unsupervised word embedding approach, able to learn word
representations exploiting the context in which the words appear.
Specifically, we use a continuous skip-gram model [31], [32]
aimed at learning the word embedding of a central word (i.e.,

wi) that is good at predicting the surrounding words in a
specific context window.

To train WORD2VEC, we evaluated two different strategies,
i.e., training the model from all SATD comments, or relying
on the pre-trained model obtained from three million unique
Google sentences. Since SATD comments are mainly composed
of natural language, we did not observe differences between
the two training strategies.

As output, we obtain a dictionary of words in which each
word has its vector representation. Hence, each SATD comment,
after preprocessing, is represented as a concatenation of the
word embeddings of the words included in the comment.

Classifying comments through a Convolutional Neural
Network. A Convolutional Neural Network (CNN) consists of
interconnected neurons organized in an input layer, one or more
hidden layers, and an output layer. Each convolutional layer
applies a convolving filter to local features in the network. CNN
models have been successfully applied to NLP tasks. Kim [18]
reports that, in NLP text classification tasks, CNN built on
top of WORD2VEC can achieve good performance with very
little hyperparameter tuning. Previous studies have reported
that CNN can capture long-range dependencies and learn to
correspond to the internal syntactic structure of sentences,
hence reducing the noise [18], [55].

Our CNN takes as input the skip-grams produced in the
previous step, and tries to capture the most informative word
features for classifying the type of change to be applied to
the SATD-affected method to address the SATD comment.
Calibration of parameters of the hidden layer(s) is discussed
in Section IV-A.

Each convolutional layer is followed by a non-linear ac-
tivation function applied element-wise to the output of the
convolution operations. The output of the activation function
is then passed to a pooling layer to reduce the size of the data
with some local aggregation function. Our pooling layer works
on every filter involved in the CNN. More in detail, we choose
to adopt the max pooling operation that maps the feature map
to a single value based on the maximum value inside each
feature map.

The CNN has been trained to minimize the multi-class cross-
entropy loss function [28] that computes the distance between
the model’s expected output distribution and the actual one.
We use a back-propagation algorithm to compute the gradients
and Adam optimizer [19] to update the network parameters and
add the L2-norm regularization loss to avoid model overfitting.

B. Classifying SATD Removals from the Source Code

Source code preprocessing. Given each SATD-affected
method, we first extract its tokens using the tokenizer of
GumTree [14]. To preserve API and keyword naming, we did
not apply stop word removal, nor stemming. When indexing
source code tokens, there could be two extreme solutions.
The first one is to treat each symbol, programming language
keyword, identifier, or literal as a different dictionary term.
This has the advantage to retain all elements contained in the
source code, e.g., types, method names, and literals. However,
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this would create a very sparse set of features and, ultimately,
introduce noise. The second approach would be to replace
identifiers and tokens with placeholders. While this reduces
the dictionary size, it limits the capability of the approach
to learning specific features from the source code, e.g., the
presence of certain method calls, certain values in a condition,
etc.

A “middle ground” indexing strategy, also adopted in
previous work on learning features from source code [47],
retains identifiers and literals that appear in the source code
body very frequently, with the assumption that they can be
useful to learn meaningful patterns (those have been previously
referred to as idioms). For instance, it could be possible that
integer literals such as 0, 1, -1, or identifiers such as size, length
occur very frequently and should be retained. Based on the
advantages and disadvantages of the three indexing strategies,
we opt for the “middle ground” and retain the original text
for literals and identifiers that are outliers in the frequency
distribution.

Extracting skip-grams from source code. Similarly to
Section III-A, we extract skip-grams from the source code
tokens using WORD2VEC. In this case, WORD2VEC has been
trained on the source code of the SATD methods part of our
training set (see Section IV).

Classifying source code using a Recurrent Neural Net-
work (RNN). Recurrent neural networks (RNNs) have a self-
connected hidden layer. The basic idea is that each new element
in the sequence contributes with some new information, and
updates the current state of the model (see the loop-back arrows
in Fig. 1). Hence, the network output depends on the current
input and on the network state. We choose to use a kind of
RNN with the capability of learning long-term dependencies,
namely Long Short Term Memory (LSTM) to represent each
RNN layer.

The RNN architecture is composed of an input layer,
followed by several hidden layers (we vary the number of
hidden layers but also the number of neurons in each hidden
layer to identify the best configuration for our RNN network).
The output produced by the LSTM cells in the last hidden layer
is passed to a projection layer which generates the features
that will be used by the output layer.

The training strategy of the RNN is similar to the one
described above for the CNN: cross-entropy minimization,
gradient computation through back-propagation, parameter up-
date using the Adam optimizer [19], and overfitting avoidance
through L2-norm regularization.

C. Combining the Two Networks to Classify SATD Removal

To produce the desired classification, the output of the
pooling layer of the CNN and the output of the projection
layer of the RNN is passed to a fully connected softmax layer
that evaluates the probability distribution over the class labels
(as reported in Equation 1), where Ws and bs are respectively
the weight vector and the bias of the softmax classifier.

p(y = j|Xpooling;Ws; bs) = softmaxj(Ws·Xpooling + bs) (1)

In RQ1 we also evaluate SARDELE when using CNN or
RNN only. In such a case, the softmax layer receives inputs
solely from the pooling layer of the CNN or from the projection
layer of the RNN.

IV. STUDY DESIGN

The goal of the study is to evaluate SARDELE, assessing
its capability to recommend SATD removal categories (hereby
referred to as “SATD removals”). The context, described in
Section II, consists of 779 SATD removals belonging to five
Java open source projects. The study aims at addressing the
following research questions:

• RQ1: How do different classifiers, based on comments and
source code, perform for recommending SATD removals?
In Section III we explained how it could be possible to
learn and recommend SATD removals from (i) the SATD
comment itself, (ii) from the source code of the SATD-
affected method, and (iii) by combining the two different
sources of information.

• RQ2: How does SARDELE perform, compared to a simple
machine-learning baseline? Since SARDELE uses deep
neural networks, it is possible that such an expensive
approach is not beneficial if compared to simple Machine
Learners (MLs). Therefore, we compare SARDELE with
ML-based classifiers using Random Forests.

• RQ3: How does SARDELE perform, compared to a human
baseline? If the SATD-related comment already provides
enough hints to the developer for removing the SATD,
then SARDELE would not be very useful. In this research
question, we assess to what extent this happens in our
dataset.

In the following, we first discuss the calibration of SARDELE.
Then, we describe the metrics used to evaluate the performance
of the approaches.

A. Approach Calibration

The use of neural networks, for both the skip-gram models
(WORD2VEC) and for the subsequent classifications, requires
careful calibration of the networks’ hyperparameters. Indeed,
using properly-tuned hyperparameters can improve the overall
performance of the neural model [20], [51], [53].

For the calibration’s purposes, we divided the dataset into two
sets. Specifically, we used 20% of the data (validation set) to
calibrate the proposed approach, while using the remaining 80%
for training and testing, performing 10-fold cross-validation
(i.e., in each iteration 72% training and 8% testing).

The two sets have been defined guaranteeing that each one
contains the same proportion of SATD removal instances in the
original dataset. For each model and for each parameter, we
train the model on the training set, and evaluate the performance
using the evaluation metrics defined in Section IV-B computed
on the validation set.

In the following, we explain how we have calibrated
the various components of SARDELE, namely the word
embeddings, and the two neural networks.
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Fig. 2. Performance varying the number of hidden layers.

1) Word and Token Embedding Setting: As already reported
in Section III, we use WORD2VEC [31]–[33] to learn embed-
dings from comments’ words and from source code tokens.
Similarly to what done in previous work using deep learning
on source code [47], [53] but also on natural language [61],
the skip-gram model is used with a word vector size of 300,
and a token vector size of 400. Similarly to the aforementioned
papers, we set the maximum skip length between words to 5,
while the maximum skip length between tokens is set to 10.
In both cases, we use a softmax layer in order to optimize the
output updates and train each model for 100 iterations.

To calibrate the word embedding size, we considered four
different sizes, i.e., 16, 32, 64, 128, and found that both
precision and recall reach a peak at 32. Therefore, we set
the word embedding size to 32. Similarly, to calibrate the
token embedding size we tried multiple lengths, i.e., 16, 32,
64, 128, and 256 (we set a higher upper bound because the
method body is generally longer than a comment). In this case,
the precision/recall peak is achieved with a size equal to 128.

2) CNN and RNN Hyperparameters: For the CNN we
test different combinations varying (i) the window size, (ii)
the number of hidden layers, (iii) the number of neurons in
each layer, and (iv) the number of iterations. For the RNN
model, we only test different combinations accounting for
different numbers of layers, neurons in each layer and iterations.
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Fig. 3. Error rate and time cost varying the number of iterations.

The parameters tuning has been conducting for each model
separately.

As regards the window size to consider for the CNN, we
experiment with five discrete values, i.e., 1, 3, 5, 7, 9, and
we evaluate the performance of each configuration on the
validation set, keeping constant the value for the number of
hidden layers (i.e., 2), of neurons in each layer (i.e., 60), and
iterations (i.e., 100). For all six classification categories, the
precision/recall peak is achieved using a window size of 5.

For what concerns the number of layers, we evaluate the
models’ performance using five discrete values, i.e., 2, 4, 6, 8,
10. The same values have been used for both the CNN and the
RNN models. Fig. 2 shows the F1-score, i.e., harmonic mean of
precision and recall, obtained for each SATD removal category
varying the number of layers, keeping constant the number of
neurons in each layer (i.e., 60). For the CNN (Fig. 2(a)), the
maximum F1-score2 has been reached using 2 hidden layers
only. For the RNN (Fig. 2(b)), instead, the F1-score peak is
reached with 4 hidden layers.

Concerning the number of neurons in each hidden layer, for
the CNN we experiment with 20 discrete values with a step
size equals to 10 in the range [10 − 200], and for the RNN

2We omit separate graphs for precision and recall, since both reach the
peak at the same time, therefore consistent with the F1-score.
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with 16 discrete values in the range [50 − 200].3 We fixed
the number of iterations to 100, while the window size for
the CNN, and the number of hidden layers for each network,
have been set to the best configuration obtained in the previous
tuning steps. We found an F1-score peak using 50 neurons in
each layer for the CNN and 120 for the RNN.

Finally, the number of iterations is another key parameter to
be set when training a deep neural network, since the weights
and biases will be adjusted iteratively in order to narrow down
the error rate. While increasing the number of iterations would
unavoidably reduce the error rate, it would increase the training
cost (i.e., needed time). We evaluate 9 possible numbers of
iterations, i.e., 1, 10, 20, 50, 100, 200, 300, 500, 1,000 and
set the other parameters with values obtained in the previous
steps. As shown in Fig. 3(a) and Fig. 3(b), the compromise
between error rate and time cost is at '150 for CNN and '200
for RNN. However, since we considered a further increase of
the time cost still acceptable, we decided to set the number
of iterations to 500. In correspondence of such a value, for
both CNN and RNN the error rate curve exhibits a knee, and
therefore a cost increase is no longer paid back in terms of
reduced error rate.

B. Evaluation Metrics

Once the network has been calibrated, given the remaining
80%, we performed 10-fold cross-validation to evaluate the
performance of the approaches.

First we represent the multi-label classification results as
a 6 × 6 confusion matrix (i.e., predicted vs. ground-truth
classification). Then, to compare the three different deep-
learning approaches (CNN, RNN, and SARDELE), we first use
standard metrics in automated classification, namely Precision,
Recall, and F1-score. Our evaluation favors approaches with
high precision without having a very low recall. However, we
also want to reduce the possibility of classifications occurred
by chance. For this reason, we also discuss the performance in
terms of MCC and AUC. AUC, the Area Under the Receiving
Operating Characteristic Curve metric reflects the extent to
which the classifier outperforms a random classifier (i.e.,
AUC = 0.5). MCC, the Matthews correlation coefficient, is
commonly used in assessing the performance of classifiers
dealing with unbalanced data [29]. It is computed according
to Equation 2:

MCCj =
(TPj∗TNj)−(FPj∗FNj)√

(TPj+FPj)(FNj+TNj)(FPj+TNj)(TPj+FNj)
(2)

and can be interpreted as a correlation measure: MCC < 0.2
is considered to be low, 0.2 ≤ MCC < 0.4—fair, 0.4 ≤
MCC < 0.6—moderate, 0.6 ≤ MCC < 0.8—strong, and
MCC ≥ 0.8—very strong.

To statistically compare results of different approaches
in RQ1, we use the McNemar’s test [30], and report the
Odds Ratio (OR) effect size. Since multiple comparisons are

3We consider ranges as reported in the literature [24], [51].

performed, we adjust the obtained p-values using the Holm’s
correction [17], and we assume a significance level α = 0.05.

To address RQ2, we compare SARDELE with ML classifiers
based on Random Forests (we also tried other classifiers which
exhibited worse performance) rebalancing the training set by
using SMOTE [6]. Since this is a multi-label classification
problem (each instance may belong to multiple removal
strategies), we implement it using six different binary classifiers,
each one determining whether a SATD removal belongs to a
given category, or not. The classifiers have been implemented
using Weka [16]. More specifically, Random Forest (RF)
classifier takes as input the tokens extracted from the SATD
comments and the source code of the SATD-affected methods
modeled as bag-of-words (BOW). However, since there exist
tokens that can be used in comments and source code, we have
properly discriminated among them, e.g., the “if” token is used
twice, once for identifying its usage in the text representing the
comments, and a different token, namely “if_code” is used to
model the usage of the Java keyword “if” in the source code of
the SATD-affected method. Both tokens extracted from SATD
comments and tokens extracted from source code have been
preprocessed as detailed in Section III-A and Section III-B.
Finally, we perform a statistical comparison with the automated
classifiers, to determine whether a simple ML approach would
perform better than SARDELE.

To address RQ3, two authors independently looked at the
comments of the SATD-affected methods, to determine whether
such comments already provided enough indications to cope
with the SATD (in such a case the proposed approach would
not be useful). They then discussed and sorted out inconsistent
classifications to produce a common baseline. Note that human
annotators had the possibility to label as “Don’t know” a SATD-
related comment, when they judged the available information
insufficient to produce a (manual) classification. Having the
classification performed by us (i.e., outsiders) and not by
original developers simulates a scenario in which newcomers
have to deal with SATD removal. Once the classification has
been produced, we compare its outcome with the ground-truth
(i.e., the actual SATD removal strategy, available in the used
dataset by Zampetti et al. [58]). Finally, we perform a statistical
comparison with the automated classifiers, to determine whether
a human-based guessing of the SATD removal strategy would
perform better than SARDELE.

V. STUDY RESULTS

This section reports the study results addressing the research
questions formulated in Section IV.

A. How Do Different Classifiers, Based on Comments and
Source Code, Perform for Recommending SATD Removals?

Table II reports the results obtained using the CNN classifiers
based on the SATD comments only, and without considering
the SATD-affected source code. The table reports performance
indicators for each category, as well as the overall.

Overall, the CNN classifier reaches a precision ' 39% and
a recall ' 41%. Moreover, the Overall AUC has a value of
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TABLE II
COMMENT CLASSIFICATION WITH CNN: PERFORMANCES ACROSS THE SIX

SATD REMOVAL CATEGORIES.

Category Pr Rc F1 AUC MCC
Method Calls 50.32 34.05 40.62 0.56 0.13
Conditionals 38.02 38.66 38.33 0.60 0.19
Try-Catch 21.05 26.67 23.53 0.61 0.20
Method Signature 34.09 30.00 31.91 0.61 0.23
Return 34.62 39.13 36.73 0.67 0.33
Other 58.26 73.63 65.05 0.63 0.26
OVERALL 39.39 41.03 39.04 0.61 0.22

TABLE III
SOURCE CODE CLASSIFICATION WITH RNN: PERFORMANCES ACROSS THE

SIX SATD REMOVAL CATEGORIES.

Category Pr Rc F1 AUC MCC
Method Calls 58.68 30.60 40.23 0.59 0.21
Conditionals 47.48 55.46 51.16 0.69 0.35
Try-Catch 33.33 33.33 33.33 0.65 0.31
Method Signature 52.00 26.00 34.67 0.61 0.31
Return 33.33 30.43 31.82 0.63 0.28
Other 59.59 85.35 70.18 0.68 0.38
OVERALL 47.40 43.53 43.56 0.64 0.31

0.61, meaning that the classifier is performing slightly better
than a completely random classifier. This is confirmed by the
MCC that reports a low correlation (i.e., 0.22).

Going into specific categories, only for the Other category
the CNN obtains a good balancing between precision and
recall (precision ' 58% and recall ' 74%), unsurprisingly
because this is the least specific category and the one with the
largest percentage of samples. However, for Method Calls the
CNN shows a precision of 50% with a recall of 34%. Finally,
the worst performance regards the Try-catch category, the one
having the lowest number of samples in the dataset, resulting
in a very low precision (' 21%) and recall (' 27%).

Table III reports the performance of the source-based RNN
classifier relying on the source code of the SATD-affected
methods, without considering the SATD comments. In general,
the performance indicators are better than those obtained with
the comment-based CNN. The Overall precision raises to
47.40% with an increase also in the recall (i.e., ' 44%).
However, looking at the Overall AUC and MCC, it is possible
to state that, even if both values increase with respect to the
comment-based CNN, also the source-based RNN classifier
works only slightly better than a random classifier.

Inspecting the SATD removal categories we find that the
performance improves everywhere, except for the Return
category, where we observe a decrease in terms of both
precision (from 34.62% to 33.33%) and recall (from 39.13%
to 30.43%). Besides the Other category (precision ' 60% and
recall ' 85%), the source-based RNN classifier shows a good
compromise of precision and recall for Method Calls (precision
' 59% and recall ' 31%) and Conditionals (precision ' 47%
and recall ' 55%).

To compare the performance of the two classifiers working
on two different sources of information, Table V reports the
results of the McNemar’s test and the Odds Ratio (OR), where

TABLE IV
COMBINED CLASSIFICATION (SARDELE) PERFORMANCES ACROSS THE

SIX SATD REMOVAL CATEGORIES.

Category Pr Rc F1 AUC MCC
Method Calls 73.13 63.36 67.90 0.74 0.50
Conditionals 58.47 57.98 58.23 0.73 0.47
Try-Catch 38.89 46.67 42.42 0.72 0.41
Method Signature 50.00 48.00 48.98 0.71 0.44
Return 42.31 47.83 44.90 0.72 0.42
Other 69.10 76.19 72.47 0.75 0.49
OVERALL 55.32 56.67 55.82 0.73 0.46

TABLE V
STATISTICAL COMPARISON (MCNEMAR’S TEST p-VALUES AND ODDS

RATIO) BETWEEN DIFFERENT CLASSIFICATION APPROACHES.

Comparison Adj. p-value OR
Comments (CNN) vs Source code (RNN) <0.001 1.53
Comments (CNN) vs SARDELE <0.001 5.31
Source code (RNN) vs SARDELE <0.001 2.87
Random Forest vs SARDELE <0.001 2.94

an OR greater than one indicates that the second technique
outperforms the first one. Looking at the first row, we see that
the results obtained with the comment-based CNN and the
source-based RNN classifiers are statistically different, with
the RNN having 1.53 times more chances to correctly classify
than the CNN. We conjecture that there are cases in which the
SATD comment is somewhat too general, implying that only
looking at the source code it is possible to determine the right
action to apply for removing it. As an extreme case consider the
SATD comment “FIXME” that could be used for identifying
cases in which it is required to change the API since the actual
one has a bug, but also for identifying missing functionality
that can be addressed by a complex change. However, it is also
possible to find cases in which the SATD comment contains
the right action to be applied expressed in terms of source
code elements such as “TODO: add null check” for which
the comment-based CNN classifier recognizes that the action
needed is related to Conditional statements.

We then investigate whether it is possible to determine the
SATD removal strategy combining the information coming from
both the SATD comments and the source code of the SATD-
affected methods. The last row in Table IV highlights the overall
performance of the combined approach (i.e., SARDELE). The
results show that, for each metric, we obtain an improvement
of ' 10% compared to the source-based RNN classifier, and
obviously more compared to the comment-based CNN classifier.
More specifically, the precision increases to ' 55% and the
recall to ' 57%, with an AUC of 0.73 and a moderate
correlation (MCC = 0.46). Note that, even if both precision
and recall are not very high, they are still promising since
SARDELE is performing a multi-class classification.

Going deeper into the SATD removal categories, we can no-
tice how for Other, Method Calls, and Conditionals, SARDELE
achieves precision and recall above 50%, with a precision
of about 70% for Method Calls and Other and of 58% for
Conditionals. Similarly to the comment-based CNN classifier,
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the worst performance is reported for the minority class, i.e.,
Try-catch, probably because a few samples does not allow
to properly train the classifier on this category. However, for
each category, the AUC is always greater than 0.7, indicating
that the combination of different sources allows SARDELE to
clearly outperform a random classifier.

Finally, as shown in Table V, SARDELE achieves signif-
icantly better results (p-value < 0.001) than the individual
classifiers, and has 2.87 more chances to identify the correct
SATD removal category compared to the source-based RNN
classifier, and 5.31 more chances than the comment-based CNN
classifier.

RQ1 summary: Leveraging the SATD comment only
does not allow us to properly recognize (and classify) the
corrective action to be applied for removing the SATD,
and a classifier based on source code only achieves better
performance. The combined approach, i.e., SARDELE,
significantly outperforms the individual classifiers (Precision
' 55%, Recall ' 57%, AUC=0.73) having at least 2.87
more chances to achieve a correct classification.

B. How Does SARDELE Perform, Compared to a Simple
Machine-Learning Baseline?

Table VI reports the results obtained using Random Forest
(RF) classifiers on the tokens extracted from the SATD
comments and the source code of the SATD-affected methods.
Overall RF reaches a precision of 45.03% with a very low
recall (i.e., 17.68%). Moreover, the Overall AUC is only slightly
better than a completely random classifier (0.59). The latter
is also confirmed by the MCC value that has a value of 0.21
representing a very low correlation. The results are in line
with the ones obtained using only the comment-based CNN
classifiers. However, as reported in Table II, the CNN classifier
improves the Overall recall (41.03) while degrading the Overall
precision (39.39).

Going into specific categories, RF obtains the worst perfor-
mances for Try-Catch, Method Signature and Return categories.
Again, this result is not surprising since these are minority
categories (despite rebalancing through SMOTE has been
applied). Also in this case, only for the Other category the RF
obtains an acceptable balancing between precision and recall,
51.4% and 37.5% respectively.

SARDELE outperforms a simple ML classifier, even if the
latter rebalances the minority classes. Specifically, SARDELE
improves the Overall precision of ' 10%, and the Overall
recall of ' 37%. As also done for RQ1, we have statistically
computed the differences between RF and SARDELE. As
reported in the last row of Table V, SARDELE achieves
significantly better results than RF (p−value < 0.001) having
2.94 more chances to identify the correct SATD removal
strategy.

RQ2 summary: SARDELE significantly outperforms a sim-
ple machine-learning baseline, having 2.94 more chances
to identify the correct SATD removal strategy.

TABLE VI
RANDOM FOREST PERFORMANCES ACROSS THE SIX SATD REMOVAL

CATEGORIES.

Category Pr Rc F1 AUC MCC
Method Calls 58.70 27.90 37.90 0.62 0.21
Conditionals 72.20 8.80 15.70 0.60 0.21
Try-Catch 11.80 10.50 11.10 0.54 0.09
Method Signature 69.20 14.50 24.00 0.64 0.30
Return 6.90 6.90 6.90 0.52 0.03
Other 51.40 37.50 43.30 0.59 0.11
OVERALL 45.03 17.68 23.15 0.59 0.16

TABLE VII
CONFUSION MATRIX COMPARING THE MANUAL CLASSIFICATION AND THE

CNN ON THE SATD COMMENTS.

CNN is correct
No Yes Total

Manual classification No 288 283 571
is correct Yes 70 71 141

Total 358 354 712

C. How Does SARDELE Perform, Compared to a Human
Baseline?

As explained in Section IV, we assess the extent to which
a manual classification of the SATD comments matches the
ground-truth, and whether it is at least outperformed by the
automated comment-based CNN classifier, which, based on
the results of RQ1, is our lower bound.

Table VII reports a confusion matrix showing the number
of correct and incorrect classifications of the comment-based
CNN classifier and of the manual classification on the 80% of
the training/testing data (we are excluding the validation set).

The manual classification provides a correct outcome only
in 141 out of 712 cases (' 20%), whereas the CNN is correct
in 354 cases. There are only 70 cases in which the manual
approach succeeds where the CNN fails, while the other way
around happens in 288 cases. For instance, the comment

“TODO we should play nice and only set this if it is null.”
highlights the need for adding a pre-condition, however, the
CNN predicts the need for a complex change. The comment

‘If s=0 is used in the URL, the user has explicitly asked us
to not perform selection on the server side, perhaps due to it
incorrectly guessing their user agent.” is correctly classified
by the CNN, even if the comment does not explicitly report
the need for adding a conditional. These examples suggest that
the context in which the words are used support or hinder the
CNN in determining the right SATD removal strategy.

Looking deeper at the different SATD removal categories
we find that for Try-Catch, Method Signature, and Return, the
manual classification does not help the developer into properly
determine the type of change to be applied for removing the
SATD. Quite surprisingly, the SATD comment does not help
also when determining the need for a complex change (the
Other category) since that in many cases, in particular for
refactoring activities or addition of a new piece of functionality,
the comment is quite general.

Comparing proportions with the McNemar test, we obtain
statistically significant differences (p−value < 0.001) with an
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OR of 4 in favor of the comment-based CNN classifier. The
OR reaches 5.98 when comparing with the source-based RNN
classifier and 8.56 for the combined approach (SARDELE).

RQ3 summary: The automated (CNN) classification of
SATD comments — and above all the source-based
classifier and the combined one — outperforms a SATD
removal strategy identification based on looking at the
SATD comment, thus indicating the potential usefulness of
SARDELE.

VI. LIMITATIONS AND THREATS TO VALIDITY

In this section we discuss (i) the approach’s limitations, and
(ii) the threats to the study’s validity.

A. Limitations of SARDELE

The main current limitation of SARDELE is that it works as
a “black-box”. Since it is based on a combination of deep neural
networks, it produces a classification (i.e., a predicted SATD
removal strategy) without explaining how this classification
has been produced. Section III has motivated the reasons
for choosing a deep learning classifier instead of traditional
machine learners, the latter being easier to interpret. While
the purpose of this work is to show the potential of deep
learning classifiers working on comments and source code
to recommend SATD removal strategies, it is worthwhile to
complement the work with approaches to interpret the deep
neural networks’ classification based on the input features.

Another limitation is that SARDELE only provides a
SATD removal strategy without giving a concrete resolution
template. To this purpose, SARDELE could be possibly
complemented with other techniques and tools, including API
recommenders [26], [49], refactoring recommenders [4], [45],
smell detectors [34], [45], and program repairing approaches,
e.g., [22], [23].

B. Threats to Validity

Threats to construct validity concern the relationship between
theory and observation. One important threat can be represented
by mistakes in the used dataset, in terms of both SATD presence
and introduction, removal occurrence and removal strategy.
As explained in Section II, we mitigated this problem by
using a dataset of SATD occurrences used in different research
works [9], [44]. Concerning the removal strategies, these have
been addressed by multiple evaluators, as the paper proposing
the removal taxonomy has explained [58].

Another threat to construct validity is represented by the way
the baseline used for RQ3 has been created. Ideally, a better
baseline should have been defined by the original developers
who admitted the TD, or at least by other developers of the
subject project. At the same time, as explained in Section IV,
having outsiders involved in the baseline creation mimics the
scenario in which newcomers have to cope with SATD, and
would therefore potentially benefit of SARDELE.

Threats to internal validity concern factors, internal to
our study, that could have influenced the results. A major

factor that could impact the performance of SARDELE is
represented by the various hyperparameters of the employed
neural networks. As explained in Section IV-A, we have
performed a hyperparameter calibration over a validation set
(not used our empirical evaluation) and justified the choices
we made. Note that the calibration has been done by searching
values within certain ranges. We have set the ranges following
what done in previous literature [24], [51], and we observed
peaks of performance within these ranges or, in the case of
iterations, a good compromise between time cost and error rate.
Moreover, each parameter has been optimized “individually”
since exploring all the possible combinations would be too
expensive to run. However, except for the number of layers
and the number of neurons in each layer, the value of the
parameter does not influence the choice for the other ones [51].
Of course, we cannot exclude better performance outside the
ranges.

Threats to conclusion validity concern the relationship
between theory and outcome. As explained in Section IV-B,
we use suitable statistical tests (McNemar’s test [30]) and
effect size measures (Odds Ratio) to support our findings.
Also, we report appropriate performance indicators (AUC)
including indicators suited for unbalanced datasets (MCC)
showing that, at the minimum, SARDELE works better than a
random classifier.

Threats to external validity concern the generalizability of
our results. As already discussed in Section II, at the moment
we have based our evaluation on an existing curated dataset,
to mitigate threats to construct validity. At the same time, we
need to extend the work on a larger dataset.

VII. RELATED WORK

This section details the related literature to self-admitted
technical debt (SATD) and its removal, and deep learning
algorithms applied to source code.

A. Self-Admitted Technical Debt (SATD) and its Removal

The presence of TD (and SATD) as well as its removal,
and therefore the relevance of the problem we are going to
cope with, has been investigated by several researchers. Alves
et al. [1] showed that TD can be related to different software
artifacts and life-cycle activities. In a different work, Zazworka
et al. [59] pointed out the need for identifying and handling
them to reduce their negative impact on software quality such
as maintainability and comprehensibility. The latter has been
confirmed by Ernst et al. [13] who showed how TD awareness
is a problem in TD management.

Potdar and Shihab [40] found that developers tend to “admit”
the presence of TD in the source code through comments
(SATD), defining a catalog of 62 patterns for identifying them.
Maldonado and Shihab [10], instead, looking at source code
comments, classified different types of TD reporting that design
SATD are the most common. Bavota and Russo [5] performed
a finer categorization of SATD and reported that there is no
correlation between SATD and code quality metrics evaluated at
class-level. Looking at the change history, they quantified that
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' 57% of SATD are removed from software projects. Zampetti
et al. [56] developed an approach aimed at recommending
developers when to admit a design TD dealing with code
quality metrics and warnings raised by static analysis tools.

Besides a simple pattern-matching of keywords in com-
ments [10], [40], different approaches for detecting SATD-
related comments have been proposed in the literature. Specif-
ically, Maldonado et al. [11] used a Natural Language Pro-
cessing approach to classify SATD. Also, Ren et al. [41]
proposed the use of CNN to classify SATD, outperforming
previously-proposed approaches. We share with Ren et al. the
use of CNN to classify SATD-related comments. However,
SARDELE combines such a CNN with an RNN that processes
source code to determine SATD resolution strategies.

The aforementioned works motivate SARDELE, highlighting
the developers’ need to cope with (SA)TD removal. Moreover,
while previous research has attempted at identifying the cause
of the problem in the comment [5] or the source code [56], it
did not try to exploit comments and source code to recommend
solution strategies like SARDELE is doing.

In the past years, the research community has investigated in
depth a particular kind of TD, namely code smells. Specifically,
they have developed approaches aimed at identifying them [12],
[15], [34]. Tufano et al. [46] investigated code smells introduc-
tion, survivability and removal looking at the change history of
200 open source projects. Their findings highlight that ' 80%
of code smells survive in the system, and only 9% of code
smell removal happens together with refactoring operations.
Their results are in line with the ones by Bavota et al. [3],
who showed that refactoring activities do not result in source
code quality metrics improvement but also that only 7% of
code smells are removed together with refactoring operations.

Going deeper on SATD, Maldonado et al. [9] conducted an
empirical investigation aimed at analyzing the removal of the
SATD comments by looking at the change history of five Java
open source projects. Their results highlight that (i) there is a
high percentage of SATD comments being removed, (ii) most
of them are self-removed (i.e., removed by the same developers
who have introduced them), and (iii) their survivability varies
by project. Moreover, by surveying 14 developers, Maldonado
et al. [9] went through the reasons behind the removal of SATD
comments. They show that developers tend to remove SATD
comments from source code during bug fixing activities, but
also when adding new features.

The work that is most related to ours is the one by Zampetti
et al. [58]. They conducted an in-depth investigation of SATD
removal studying the relation between the removal of the
comments and the changes applied to the SATD-affected
method. Their results highlight that between 20% and 50%
of SATD comments are removed when either the whole
class/method is removed. Moreover, even if in addressing SATD
developers tend to apply complex source code changes there
are many cases in which the SATD removal occurs changing
method calls and conditional statements.

Finally, Sierra et al. have recently published a survey of the
research work on SATD [43].

B. Deep Learning Algorithms on Source Code

Deep learning algorithms such as Deep Neural Network
(DNN) have been applied to the source code, for example
in relation to bugs. Zhang et al. [60] used RNN to learn
regularities in the source code, define cross-entropy metrics
based on the model trained and predict defect-proneness based
on these metrics. Manjula and Florence [27] combined DNN
with genetic algorithms for metric-based software defect, while
Xiao et al. [54] and Lam et al. [21] considered the bug
localization. Beyond bug localization and prediction, deep
learning techniques have been applied to classify programs
based on their functionality [35], [36] and migrate source code
from Java to C# [37] through statistical machine translation.

Tufano et al. [47] have proposed an approach for automated
program repairing. While they treat source code similarly to
us, the approach by Tufano et al. uses an encoder-decoder
model to perform neural-machine translation, and therefore
recommend repairs. Also, they train their model on bug-fix
diffs, whereas in our case we train the RNN on the entire
SATD-affected method source code.

In summary, while the aforementioned works share with us
the techniques being adopted (deep neural networks), our work
differs (i) for its purpose, i.e., to the best of our knowledge,
this is the first work aimed at automatically recommending
SATD-removal strategies; and (ii) because we combine two
different pieces of information, i.e., the SATD comment and
the SATD-affected source code, and use two different deep
neural networks, i.e., a CNN and an RNN — then combined
through a softmax layer — to recommend SATD removals.

VIII. CONCLUSION

In this paper, we proposed SARDELE, an approach that
leverages deep neural network classifiers to recommend strate-
gies for Self-Admitted Technical Debt (SATD) removal. Such
strategies are based on a previously-proposed taxonomy of six
kinds of SATD-removal patterns [58].

We apply SARDELE on a curated dataset [58] of 779 SATD
removals from five Java open source projects. Results of the
study indicate the capability of the approach to successfully
recommend SATD-removal strategies with a precision of about
55%, a recall of about 57%, and an AUC of 0.73. SARDELE
outperforms a machine-learning classifier based on Random
Forests, and human-produced baseline in which the category
was guessing based on the comments’ content.

There are several directions to continue and improve the
work. First, although we have deliberately chosen to perform
this evaluation on a curated, reliable dataset, there is the
need for producing and using a larger dataset to improve
the performances of the proposed approach. This would also
allow us to refine the taxonomy, producing a finer-grained,
more informative recommendation of the removal. Moreover,
we plan to use approaches that associate the trained network’s
weights with word/token n-grams to provide an explanation of
the generated classifications. Last, but not least, we want to
conduct a user study aimed at verifying that SARDELE helps
developers in removing SATD from the source code.
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