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Abstract—Static analysis tools have showcased their impor-
tance and usefulness in automated detection of code anomalies
and defects. However, the large number of alarms reported and
cost incurred in their manual inspections have been the major
concerns with the usage of static analysis tools. Existing studies
addressing these concerns differ greatly in their approaches to
handle the alarms, varying from automatic postprocessing of
alarms, supporting the tool-users during manual inspections of
the alarms, to designing of light-weight static analysis tools.
A comprehensive study of approaches for handling alarms is,
however, not found.

In this paper, we review 79 alarms handling studies collected
through a systematic literature search and classify the approaches
proposed into seven categories. The literature search is performed
by combining the keywords-based database search and snow-
balling. Our review is intended to provide an overview of various
alarms handling approaches, their merits and shortcomings, and
different techniques used in their implementations. Our findings
include that the categorized alarms handling approaches are
complementary and they can be combined together in different
ways. The categorized approaches and techniques employed in
them can help the designers and developers of static analysis
tools to make informed choices.

I. INTRODUCTION

Static analysis tools have showcased their importance and
usefulness in automated detection of code anomalies and de-
fects at an early software development phase [1]-[6]. However,
several studies [7]-[9] report that these tools are underused in
practice. The large number of alarms reported by the tools and
cost involved in manual inspection of the alarms have been ob-
served to be the major reasons for the underuse [8]-[11]. The
alarms are warning messages to the tool-user, communicating
runtime errors like division by zero, overflows/underflows, and
null pointer dereferences, that have been detected via static
analysis [12]. In practice, a high percentage of the alarms are
found to be falsely reported [8], [9].

The above problem of alarms and associated cost can be
addressed either by improving precision of the analysis or by
postprocessing the alarms effectively after they are generated.
The former approach—improvement of analysis precision—
has been extensively considered in the literature [13]-[15].
However, given that verification problems are undecidable in
general, reporting of false alarms by these tools is inevitable
[16], [17]. Furthermore, many times, the tools compromise on
precision to achieve analysis scalability or improved perfor-
mance [18]. As a consequence, reporting of alarms by a static
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analysis tool is certain, their number is large, and they need
to be inspected manually by the tool-users to partition them
into true errors and false positives. Thus, manual handling of
alarms is unavoidable and costly. There exists a large number
of studies that address the problem through postprocessing
of alarms, supporting the manual inspections of alarms, or
designing of light-weight static analysis tools. The approaches
presented by these studies to handle the alarms differ greatly,
and to the best our knowledge, they have not been studied
comprehensively before.

In this paper, we survey various approaches for handling of
alarms generated by static analysis tools. We use handling of
alarms to mean the following:

1) Automatic postprocessing of the alarms (after they are
generated) to reduce the manual inspection effort (cost)
through similarity/correlation-based clustering of alarms,
ranking or classification of alarms, false positives elimi-
nation, etc.

2) Supporting manual inspections of alarms.

Note that the above described handling of alarms does not
consider reducing the number of alarms by making underlined
static analysis more precise. That is, it excludes the option
of improving precision of analyses, like value analysis and
pointer analysis, implemented in the static analysis tools.

The aim of the paper is to provide an overview of various
alarms handling approaches, their merits and shortcomings,
and different techniques used to implement the approaches. We
aim to achieve the goal by answering the research question:
what are possible approaches for handling the static analysis
alarms?

To answer the research question, we performed a systematic
literature search and identified 79 papers dealing with the
handling of alarms. The search is performed by conducting a
keywords-based database search first, followed by snowballing
[19], [20]. The combination was to complement the two
search approaches from each other: the results of the former
approach provided a start set required in the latter approach,
and the latter approach identified the relevant papers which
were missed by the former approach.

We reviewed the identified 79 papers and categorized the
approaches presented by them into seven categories described
in Section IV. Furthermore, merits and shortcomings of each
of the categories are discussed, and wherever appropriate, a



category is classified into sub-categories based on techniques
used to implement the approaches. Our findings include that
the identified alarms handling approaches are complementary
and they can be combined together in several ways. The
categorized approaches and techniques employed in their
implementations can serve as choices to the designers and
developers of static analysis tools.
The following are the contributions of the paper.

1) Identification of 79 papers dealing with handling of
alarms, through a systematic literature search.

2) Study and classification of different alarms handling
approaches into seven categories.

Paper outline: Section II describes the literature search. Sec-
tion III summarizes data extracted from the relevant studies.
Section IV describes the identified categories of approaches for
handling of alarms, and Section V summarizes their merits and
shortcomings. Section VI presents related work, and in Section
VII we present conclusions and discuss future work.

II. LITERATURE SEARCH

This section presents details of our literature search per-
formed to collect papers dealing with handling of alarms. The
search is conducted' by combining keywords-based database
search and snowballing.

A. Keywords-based Database Search

A keywords-based database search (KDS) is conducted,
inspired by systematic literature reviews [21], [22], in Google
Scholar to collect relevant papers presenting approaches for
handling of alarms. The keywords used during the search
are shown in Table I and their selection was considering the
research question in Section I. The selection of keywords
resulted into 84 = 7 x 4 x 3 different search strings. A
separate search is made at Google Scholar for each of the
search strings, and we examined the first 150 papers from
results of every search to check their relevance to handling of
alarms. During the process, we checked in total 12600 results’
for their inclusion or exclusion. A paper is included in the
collection of relevant papers if it deals with

« atechnique, method, or an approach to process the alarms
(group, rank, classify, etc) after they are generated by a
static analysis tool;

« a method or tool-support for systematic manual inspec-
tion of alarms;

« an approach for reducing the number of alarms reported
(without improving the analysis precision).

We excluded a paper from the collection if it deals with

« improving precision of the underlined static analyses like
value analysis and pointer analysis, or refinements to the
analyses (like [13], [14], [23]);

« fault prediction or error/bug report triaging;

« mining of bugs repositories in the context of software
maintenance/evolution

IThe search is conducted during the period of June 4 to June 14 2016.
2The number includes duplicates in the search results.

TABLE I: Keywords used for database search

1) elimination, 2) reduction, 3) simplification, 4) ranking,
5) classification, 6) reviewing, 7) inspection

1) static analysis, 2) automated code analysis,

3) source code analysis, 4) automated defects detection
IIT | 1) alarm, 2) warning, 3) alert

1T

« study of economics or benefits of usage of static analysis
tools (like [3], [7]);

« evaluation, comparison, or benchmarking of precision of
various static analysis tools (such as [24]-[26]).

We considered the title, abstract, introduction/motivation,
conclusion, and sometimes evaluation in a paper while ap-
plying the inclusion/exclusion criteria for the paper. A paper
satisfying any one of the above inclusion (resp. exclusion)
criteria was considered sufficient to include (resp. exclude)
the paper. In the case of a paper satisfying both the inclusion
and exclusion criteria, priority was given for its inclusion. An
included paper was not required to have handling of alarms
as its main topic. We ensured only peer-reviewed papers are
included in the final collection of relevant papers. This activity
identified 49 relevant papers.

B. Snowballing approach

Snowballing [19], [27] is performed after the KDS due to
the following reasons: (a) the keywords used (search strings)
in Table I might be incomplete due to several terminologies
and their synonyms used in the relevant papers; and (b) more
importantly, given a good start set, snowballing approach is
found to be more effective and efficient in collecting relevant
papers as compared to the database searches [19], [27]. By
conducting snowballing after the database search, we tried to
identify and include as many relevant papers as possible, which
were missed by the database search [28].

1) Creation of Start Set: To begin with, the snowballing
requires a start set having diversity in the included papers to
avoid bias towards any specific class of papers or approaches
collected during the snowballing iterations performed later.
Further, such a start set reduces the risk of missing a paper
from clusters of papers not referring to each other [19]. In our
literature search, we created the required start set by including
all the relevant papers identified through the earlier KDS.
Thus, the start set used to begin the snowballing included 49
papers.

2) Backward and Forward Snowballing: Tterations of the
forward and backward snowballing were performed after the
start set was created. In the backward snowballing, the papers
in the reference list of each included paper are examined to
identify new papers to be included. In the forward snowballing,
papers citing an included paper are examined to identify
new papers to include (citation analysis). We performed the
citation analysis using Google Scholar. We used the same
inclusion/exclusion criteria used during the earlier KDS, to
include/exclude a paper during both the backward and forward
snowballing.



Two iterations of the backward and forward snowballing
were performed during which around 5800 papers were exam-
ined for their inclusion or exclusion. This activity identified
30 new relevant papers which were not identified during
the earlier KDS. Thus, the combination of the two search
approaches helped each approach to complement the other: the
KDS provided a good start set to snowballing to start with,
and the snowballing augmented KDS by identifying relevant
papers that were missed by the KDS. Thus, our literature
search performed by combining the two search approaches
identified 79 papers that dealt with handling of alarms.

III. DATA EXTRACTION AND DISCUSSION

This section presents extraction of data from the relevant
papers collected using the literature search, followed by a few
observations from the data extracted.

A. Data Extraction

We reviewed each of the relevant papers and extracted the
following data: (a) alarms handling approaches presented by
the papers; (b) techniques and artifacts used in the approaches;
(c) tools used for evaluating the approaches; (d) programming
languages for which handling of alarms is evaluated.

We used open tagging [29] to classify the approaches
presented by the papers. The tagging was performed by
the first author. The papers having similar approaches are
grouped together, and a broader level approach describing the
approaches in the grouped papers is identified as a category
of handling of alarms. When a paper is found to present
multiple approaches combined, i.e. having a possibility of
belonging to multiple groups of the papers, a more notable
approach, mostly suggested by the title of the paper is selected.
For example, for the study by Kremenek et al. [30] that
presents clustering and ranking of alarms and utilizes user-
feedback for ranking purpose, we have identified ranking as its
primary approach. Moreover, an attempt was made to classify
an identified category into sub-categories depending on the
characteristics of the approaches, or techniques and tools used
to implement the approaches.

B. Results Discussion

As a result of the above categorization, the following seven
categories of approaches for handling of alarms are identified.

A) Clustering: alarms are clustered or partitioned into several
groups based on similarity or correlations among them.

B) Ranking: various characteristics of the alarms and source
code, history of bug/alarm fixes and code changes, etc are
used to rank or prioritize the alarms.

C) Pruning: alarms are classified either as actionable or non-
actionable, and the non-actionable alarms are pruned.

D) False positives elimination (FPE): alarms are processed
using more precise techniques like model checking and
symbolic execution to automatically identify false positives
from the alarms.

E) Static and dynamic analysis combination (SDC): static and
dynamic analyses are combined to handle the alarms.
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Fig. 1: Number of the relevant papers published year- and
category-wise

F) Simplifying inspections: manual inspections of alarms are
simplified through semi-automatic diagnosis, novel user-
interfaces and code navigation tools, review-assisting in-
formation, etc.

G) Design of light-weight static analysis tools (LSATs):
LSATs are designed to counter the problem of large
number of analysis alarms.

The distribution of the papers per category is shown year-
wise in Figure 1. It indicates that, there is continuous ongoing
interest in the topic (handling of alarms), and comparatively
a higher number of papers are published recently (in the
last three years). Further, simplification of manual inspections
has been the more popular category comparatively, while the
other four categories—ranking, classification, false positives
elimination, and static-dynamic combinations—have received
nearly equal popularity.

Figure 2 presents summary of the categorization of ap-
proaches for handling of alarms, along with the number of
papers in each category. The categorization is described in
detail in the next section (Section IV).

Due to the lack of space, we avoid presenting data extracted
from each paper. The extracted data is shown in the document
available at the following url.
https://sites.google.com/site/scam2016paper/home/download

Following are a few observations made from the data.

« Static analysis tools that analyze C programs are usually

used for evaluating the approaches presented.

« Findbugs has been found to be the most popular tool

among the different static analysis tools for Java.

o The artifacts used to handle the alarms differ greatly.

IV. DETAILS OF ALARMS HANDLING APPROACHES

This section describes the categories of approaches to han-
dling of alarms, answer to the research question (Section I),
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Fig. 2: Summary of various approaches for handling of alarms

along with brief description of a few papers (studies) identified
as representatives of their category. Henceforth in the paper,
the papers are referred to as studies.

A. Similarity/correlation-based Clustering

In this category, static analysis alarms are clustered or
partitioned into several groups based on similarity or cor-
relation among the alarms. The alarms in a group being
similar/correlated, either only one of them is inspected or
all of them are inspected together to eliminate the redundant
inspection efforts [31], [35], [36]. The clustering of alarms is
further classified as described below.

1) Sound Clustering: The sound clustering is achieved
using various analysis techniques that guarantee certain de-
pendencies or relationship among the similar/correlated alarms
grouped together. Thus, inspection of only one alarm chosen
from a group is sufficient to guarantee inspection of all
the alarms from that group. In this sub-category, skipping
inspections of alarms other than the chosen alarm does not
result in a false negative, thus it is referred to as sound
clustering. For example, the studies [31]-[33] form groups of
alarms by discovering sound dependencies between the alarms
and computing a dominant (leader) alarm for each group. The
computation of a dominant alarm is such that if the dominant
alarm of a group turns out to be false then all the other alarms
belonging to the same group are also false.

The above clustering approach is suitable for any static
analysis tool due to the following reasons: (a) there are no false
negatives arising due to skipping inspection of alarms other

than the dominant alarms; (b) generally their computation
cost is also found to be low. Thus, this approach can be
implemented by deep analysis tools [50], [103] used to verify
safety-critical systems.

2) Unsound Clustering: This sub-category relates to clus-
tering alarms using similarity in syntactic or structural
information—code or alarm characteristics—produced by
static analysis tools or computed separately. Unlike sound clus-
tering, there are no guarantees on dependencies or relationship
among the alarms belonging to the same group, thus this sub-
category is referred to as unsound clustering. Such clustering
is usually based on heuristics and the grouped alarms are
inspected together. For example, Fry et al. [36] have used the
both structural and syntactic information to partition alarms
into groups of related/similar alarms. The partitioning is based
on hypothesis that alarms on the same or similar execution
paths may be related. On the similar lines, Podelski et al. [35]
have proposed a semantics-based signature for an alarm and
the signatures are used to group the alarms.

Muske [18] has grouped together the alarms reported for the
same program point but belonging to different code-clusters,
so that review information is reused to reduce the effort spent
in manual inspection of the alarms. Le and Soffa [34] have
used cause relationships among the alarms—occurrence of one
alarm can cause another alarm to occur—to group the alarms.
A correlation graph is constructed by determining the error
states of alarms and propagating the effects of the error states
along the paths (cause relationships), and it is used to reduce
the number of alarms that need to be inspected along a path.



However, reducing the number of alarms this way may result
in false negatives.

B. Ranking of Alarms

This category corresponds to prioritizing output alarms such
that the alarms that are more likely to be true errors are
ordered up in the list while the alarms having lower probability
to represent an error are pushed to the bottom of the list.
This approach is of help when identifying of more defects is
demanded in a given time. However, in general, all the ranked
alarms needs to be inspected.

1) Statistical Analysis-based Ranking: Statistical analysis
has been a common technique to prioritize the alarms. For
example, Kremenek and Engler [38] have employed a simple
statistical model to rank the alarms. It is based on the observa-
tion that, code containing many successful checks (safe cases
analyzed by the tool) and a small number of alarms, tends
to contain a real error. As another example, Jung et al. [39]
have used a statistical method (Bayesian statistics) to compute
probability of an alarm being true, and the probabilities are
then used to rank the alarms.

2) History-aware Ranking: In this sub-category, history of
alarm fixes has been used as a base to prioritize the alarms. For
example, Kim and Ernst [40], [41] have prioritized alarms by
analyzing the software change history, where the categories of
alarms that are quickly fixed by the programmers are treated
as being more important. On the similar lines, Williams and
Hollingsworth [42] have proposed a ranking scheme based on
commonly fixed bugs and information automatically mined
from the source code repository.

3) User Feedback-based Self-adaptive Ranking: In this
sub-category, user feedback is used to rank the alarms. For
example, Shen et al. [43] have first assigned a predefined
defect likelihood for each alarm pattern and ranked the alarms
based on the the defect likelyhood. Later, the intial ranking is
optimized self-adaptively based on the feedback from users.
On the similar lines, Kremenek et al. [30] have used user-
feedback to dynamically reorder the ranked reports after each
inspection. As another example, Heckman [12] has utilized
user feedback from analyzed alarms, by combining it with
alarm types and code locality, to rank the remaining alarms.

4) Other Techniques: A few other techniques used in rank-
ing of alarms include the following: (a) Static computation of
execution likelyhood of the program points at which alarms are
reported, also has been used by Boogerd and Moonen [46] for
ranking of alarms. (b) Liang et al. [47] have introduced a novel
Expressive Defect Pattern Specification Notation (EDPSN) to
define a resource-leak defect pattern more precisely. (c) Data
mining techniques also have been explored to classify similar
alarms [48]. (d) Merging results of multiple static analysis
tools that employ different static analysis methods has been
used to prioritize the alarms [44], [45]. The merging of results
enables results of different tools to validate each other, which
in turn, greatly increases or decreases confidence about the
false positives and false negatives.

C. Pruning/classification of Alarms

The approaches in this category classify the alarms either as
actionable and non-actionable (binary classification). The non-
actionable alarms being more likely to be false positives, they
are not reported to the users. Thus, this approach can result
in false negatives. This category is further classified into the
below described sub-categories depending on the techniques
or methods employed to achieve the classification.

1) Machine learning-based classification: Several studies,
such as [54]-[56], have employed machine learning to dif-
ferentiate between actionable and non-actionable alarms. For
example, Hanam et al. [54] have achieved the classification
by finding alarms with similar patterns, where the patterns
identification is based on the code surrounding the alarms. Ma-
chine learning has been employed to account for semantic and
syntactic differences during the patterns identification. Yuksel
and Sozer [55] have evaluated 34 machine learning algorithms
in their study using 10 different artifact characteristics.

2) Alarm Delta Identification: This sub-category corre-
sponds to applying various analyses, instead of syntactic
baselining [51], to identify the alarms that are newly generated
as compared to alarms on the previous code version. This is a
special case for applications having legacy code components
and incremental development (evolving software). It focuses
on computing alarm delta between two subsequent versions,
to mark which alarms are new, which continue to remain, and
which have been disappeared [S0]-[53]. For example, Spacco
et al. [52] have identified newly generated alarms as compared
to the previous version, by matching the alarms through two
approaches: pairing and alarm signatures. Chimdyalwar and
Kumar [53] have pruned recurring false positives in evolving
large software systems. The pruning is achieved by performing
an impact analysis of changes introduced in the current version
and suppressing the alarms that are immune to these changes.

Logozzo et al. [51] have introduced a new static analysis
technique (Verification Modulo Versions) for reducing the
number of alarms while providing sound semantic guarantees.
The proposed technique first extracts semantic environment
conditions—sufficient or necessary conditions—from a base
program (previous version) and uses those conditions to instru-
ment a new version. Later, the instrumented code is verified,
which results in pruning of alarms.

3) Other Techniques: A few other techniques include the
following: (a) Statistical models are used by Ruthruff et al.
[58] to achieve the binary classification of alarms. (b) Das
et al. [59] have constrained the analysis verifier to report
alarms only when no acceptable environment specification
(specified through a vocabulary) exists to prove the assertion.
(c) Chen et al. [60] have pruned alarms corresponding to data-
races through thread specialization: distinguishing the threads
statically by assigning IDs to threads and fixing their number.

D. Elimination of False Positives

In this approach, more precise techniques like model check-
ing and symbolic execution are used to identify and eliminate
false positives from alarms generated by static analysis tools.



In a more general approach to do so, an assertion is generated
corresponding to every alarm and it is verified using model
checkers [61]-[65] or SMT solvers [69], [70]. This approach
to handle alarms is more precise and automatic, as compared to
the other categories except sound clustering (Section IV-Al),
as it eliminates the alarms precisely without any user inter-
vention (inspection). However, the postprocessing of alarms in
this approach generally faces the issues of non-scalability and
poor performance due to the state space problem associated
with the model checking.

1) Achieving Scalability: Post et al. [61] have proposed
an incremental approach (context expansion) to achieve scal-
ability during the false positives elimination (FPE). In this
approach, the code context for the verification of an assertion
is gradually incremented to the callers of the functions, i.e.
the verification is started with the minimal context and the
context is expanded later on a need basis. This approach has
been observed to be beneficial by other studies such as [63],
[67] as well.

Further, program slicing is commonly used technique for the
state space reduction during the assertion verifications, and in
turn, achieving scalability [62]-[64], [66]. A notion of abstract
programs also has been proposed by Valdiviezo et al. [62] to
achieve scalability of model checkers.

2) Improving Performance/efficiency: The false positives
elimination has been found to perform poorly due to the large
number of model checking calls. To address this issue, Muske
et al. [67], [68] have proposed static analysis-based techniques
to predict outcome of a model checking call. The predictions
are used to reduce the number of model checking calls to
be made and improve on the performance of false positives
elimination.

Note that there exists other combinations of static analysis
and model checking, like [23], [104], [105], where these
two techniques iteratively exchange information between them
(tight coupling). We treat this approach different from the
approach of false positives elimination through postprocessing
of alarms.

E. Static-dynamic analyses combination

As a general theme of this approach, static analysis alarms
are checked using dynamic analysis if they are true errors
and the test cases witnessing failures are reported as error
scenarios to the users. This combination requires executing
the programs, that is usually absent in the static analysis. A
few of these studies adopting this combination approach are
described below.

Csallner et al. [72] have combined static analysis and
concrete test-case generation (Check-n-Crash tool), where a
constraint solver is used to derive specific instances of abstract
error conditions identified by a static checker (ESC/Java).
Later, actual test cases exhibiting error scenarios uncovered
by true alarms are presented to the users. As an advancement
to this approach, Csallner et al. [73] have used a three step
approach, consisting of dynamic inference, static analysis, and
dynamic verification (DSD-Crasher tool). The processing in

the approach includes a) inferring likely program invariants
using dynamic analysis, b) using the invariants as assumptions
during the static analysis step, and c) generating test cases that
validate true alarms.

Program slicing also has been used for the efficiency
of static-dynamic analysis combinations: confirming/rejecting
more number of alarms in a given time [74]. The efficiency
is achieved by reporting more precise error information on
simpler programs having shorter program paths and showing
values for useful variables only. This reporting reduces the
alarms analysis and correction time by the tool users.

Li et al. [75] have proposed a concept of residual investi-
gation: a dynamic analysis serving as the runtime agent of a
static analysis, for checking if an alarm is likely to be true.
That is, dynamic analysis is residual of the static analysis. The
novelty of the proposed approach lies in predicting errors in
executions, which are not actually observed. This predictive
nature of their approach is of significant advantage when
generation of test cases is hard for very large and complex
programs [75].

FE Simplifying manual inspections of alarms

This category corresponds to simplifying manual inspec-
tions of alarms using different approaches like semi-automatic
alarm diagnosis, user feedback-based simplifications of inspec-
tions, and checklists-based manual inspections.

1) Semi-automatic alarm diagnosis: This sub-category re-
lates to usage of frameworks for semi-automatic error diag-
nosis or alarm-specific queries for achieving effective and
efficient manual inspections of alarms. For example, Dillig
et al. [17] have proposed an approach to classify alarms semi-
automatically as errors or non-errors by presenting alarm-
specific queries to the users. Abductive inference is used to
compute small and relevant queries that capture exactly the
information needed from user to discharge or validate an error.
Two types of queries (proof obligation and failure witness
queries) are framed, and they are ranked using a cost function
so that easy-to-answer queries are presented first to the users.

Rival [84] has enhanced semantic slicing with information
about abstract dependances to help user in alarm inspections
by making the inspections more automatic. The abstract
dependances relate to chains of dependence among abstract
properties likely to capture the cause for an alarm. In another
study, Rival [16] has proposed a framework for semi-automatic
investigation of alarms. Users are helped to diagnose an alarm
by refining an original static analysis into an approximated
subset of traces that have actually lead to an alarm. The
refinement is achieved through a combination of forward and
backward analyses.

2) Simplifying Inspections Using User feedback: Recent
studies have been found to capture user-feedback to simplify
the manual inspections of alarms. For example, Mangal et al.
[87] have formulated user-guided program analysis to shift
decisions about the kind and degree of approximations to
apply in an analysis from the analysis writer to the analysis
user. In the proposed analysis approach, user feedback about



which analysis results are liked or disliked is captured and
the analysis is re-run [87]. This approach uses soft rules to
capture the user preferences and allows users to control both
the precision and scalability of the analysis.

Sadowski et al. [2] have proposed a program analysis plat-
form to build a data-driven ecosystem around static analysis.
The platform basically is based on a feedback loop between
the users of static analysis tool(s) and writers of those tool(s).
The feedback loop is towards simplifying the fixing of alarms
reported by the analysis tools.

3) Checklists-based manual inspections: A few studies
have been observed to use checklists to systematically guide
users during the manual inspections of alarms. Ayewah et
al. [88] have proposed use of checklists to enable more
detailed review of static analysis alarms. On the similar lines,
Phang et al. [89] have used triaging checklists to provide
systematic guidance to users during manual inspections of
alarms. The users follow the instructions on the checklist,
during manual inspections of alarms, to answer each question
and to determine conclusions about the alarms. It also proposes
that the checklists are designed by tool developers so that, (a)
known sources of imprecision in their tools are pointed out,
and (b) users are instructed on how to look for those sources
of imprecision. Furthermore, the checklists are customized to
individual alarms so that a minimum number of questions are
answered during triaging of an alarm.

4) Usage of novel user-interfaces/visualization tools: This
sub-category deals with usage of code navigation/visualization
tools that simplify the code traversals performed by tool users
while inspecting the alarms manually [91]-[93]. Apart from
these tools, several novel approaches (tools) for simplifying
the inspections have been proposed. For example, Phang et
al. [90] have presented a novel user interface toolkit (path
projection) to help users to visualize, navigate, and understand
program paths during the inspections. Parnin et al. [94] have
used a catalogue of lightweight visualizations to help users
in reviewing the alarms. In their study, a simple light-weight
visualization is designed for each code smell (alarm). Arai
et al. [97] have explored a gamification approach and also
proposed a novel gamified tool for motivating developers to
remove alarms through manual inspections. The tool proposed
calculates scores based on the alarms removed (inspected) by
each developer or team.

G. Designing of light-weight static analysis tools (LSATs)

This category deals with systematic designing of static
analysis tools to avoid generation of a large number of alarms.
Light-weight static analysis tools, different from the deep
static analysis tools [50], [103], are designed to effectively
detect defects that are commonly made by the developers
[98]-[102]. Further, due to the light-weight analysis, LSATs
are able to verify very large software systems with improved
performance. However, there are no guarantees that all defects
of a type will be uncovered.

Hovemeyer and Pugh [98] have implemented automatic
detectors for a variety of bug patterns found in Java programs.

The resulting tool, Findbugs, has received wider acceptance
by the both academia and industry, even though it performs a
shallow analysis intraprocedurally. Splint is another tool that
uses lightweight static analysis to detect likely vulnerabilities
in programs [99]. The analyses performed by Splint being sim-
ilar to those done by a compiler, they are efficient and scalable
while detecting a wide range of implementation flaws. Layman
et al. [102] have conducted a study for identifying factors used
by developers to decide whether or not to fix an alarm. Based
on their findings, they have made several conjectures about
the design of static analysis tools so that analysis results are
reported effectively. A few of the conjectures made are: (a)
alarm descriptions should be as informative and precise as
possible, (b) the point at which the analysis tool notifies the
developer should be customizable by the developer, (c) the
developer must trust that the alarm information is accurate
and reliable.

V. DISCUSSION

Table II summarizes the merits and shortcomings of the
identified approaches category-wise. It shows that the cat-
egories of alarms handling approaches are complementary:
shortcoming of one approach are merits of some other ap-
proaches and they can complement each other.

We observe that possible combinations of the alarms han-
dling approaches are not widely studied or evaluated. There
exists a few studies, such as [30], [68], that consider the
combinations of the approaches and find them to be promising.
Thus, exploring the possible combinations of these various
approaches can be a future research direction to handle
the alarms more effectively. For example, only the domi-
nant/leader alarms identified through sound clustering (Section
IV-Al) can be processed for their ranking (Section IV-B)
or classification/pruning (Section IV-C). In another example,
classification of alarms followed by FPE (Section IV-D) can
help each other: FPE eliminates false positives from the action-
able alarms resulting through the classification, and processing
only the actionable alarms (a subset of alarms generated) in
the FPE results in improvement of its overall performance.

Furthermore, combinations of the approaches can be imple-
mented with two strategies: sequencing the approaches one
after the other (pipelining), and placing them in parallel. The
positioning of approaches in the combinations with pipelining
can vary depending on the requirements in practice. For
example, choice for the first approach to be implemented,
between classification and FPE when they are to be combined,
can be made based on total time available for processing the
alarms. The other strategy, parallelization of the approaches
can help in enhancing confidence about false positives and
true errors. For example, the results obtained in isolation from
approaches like ranking, pruning, and static-dynamic analyses
combinations, can be merged together to increase confidence
about alarms that are more likely to be false positives or errors.

The above combinations of the approaches also may intro-
duce a performance penalty. Thus, performance of such com-
binations also needs to be studied while studying advantages



TABLE II: Merits and Shortcomings of the approaches

[ Categories [ Merits

[ Shortcomings |

classification

- 1. Only dominant alarms need to be inspected (sound clustering). - N .
A. Clustering 2. Group-wise inspection of alarms reduces inspection effort. Unsound clustering may result in false negatives.
. 1. Alarms that are more likely to be errors are identified. N .
B. Ranking 2. Tt does not result in false negatives. It requires inspecting all the alarms.
C. Pruning/ 1. The non-actionable alarms are pruned.
2

. Only the actionable alarms are to be inspected.

The pruning may result in false negatives.

D. False positives elimination . - .
pruning/classification.

It is more precise and automatic as compared to the

It usually faces issues related to non-scalability
and poor performance.

E. Static-dynamic
analyses combinations

It presents error scenarios for true alarms.

It requires support for executing the programs
(test cases, run-time environment, etc), which is
usually absent in static analysis.

F. Simplifying manual
inspections

It provides significant aid to the users during manual inspections.

User involvement is a must.

G. Design of LSATSs

1. It reduces number of alarms significantly.
2. It is found to be effective in detection of programming errors.
3. It is suitable for non-safety critical systems.

LSATs may not applied for verifying
safety-critical systems

and disadvantages of the combinations. We believe, given the
high computing power of machines commonly available today,
implementing such combinations in practice is feasible and can
help practitioners considerably.

Among the identified categories, sound clustering, ranking,
elimination of false positives, and simplification of manual
inspections, do not result in false negatives®. Thus, these
approaches can be implemented in static analysis tools that
aim at verification of safety-critical systems (false negatives
are not allowed during verification of these systems). However,
the other approaches—unsound clustering, pruning, and static-
dynamic combinations, LSATs—are useful for non-safety crit-
ical systems.

VI. RELATED WORK

In this section, we compare our work with a few notable
literature reviews and studies about evaluation or benchmark-
ing of tools/techniques dealing with handling of alarms. We
start by comparing our study with the systematic literature
review conducted by Heckman and Williams [106] as it is a
nicely done review of actionable alert identification techniques
for static analysis. In this review, approaches presented by 21
different studies that deal with the handling of alarms, are an-
alyzed and they are categorized either as ranking or classifica-
tion approaches. Among those studies, 10 studies present clas-
sification of alarms into actionable or non-actionable, while the
other 11 studies dealt with alarms ranking. Compared to this
review, our study is more comprehensive as it includes com-
paratively a large number of papers presenting approaches for
handling of alarms. For example, due to selection of additional
papers, we could identify the categories like clustering, false
positives elimination, and simplification of manual inspections.
These categories help to understand various alarms handling
approaches better and comprehensively.

In their mapping study, Mendonca et al. [11] have selected
and analyzed 51 studies to identify state-of-the-art static anal-
ysis techniques and tools, and main approaches developed for

3No alarm is removed/pruned unless it is guaranteed be false either
automatically or by the tool-user.

handling of alarms. In our study, as our focus was on different
approaches through which alarms are handled, we excluded
many of the papers that were selected in the mapping study.
The excluded papers were dealing with improving analysis
precision, study of defects, or evaluation and benchmarking
of static analysis tools. Furthermore, our study includes 62
papers that were not included in the mapping study.

The mapping study by Elberzhager et al. [107] has classi-
fied and provided analysis of approaches that combine static
analysis and dynamic quality assurance techniques. The static
quality assurance techniques are dealing with code reviews,
inspections, walkthroughs, and usage of static analysis tools,
whereas in our survey, combination of static and dynamic
analyses is one of the categories focusing only on handling
of alarms.

To the best our knowledge, there does not exist other
literature surveys or reviews studying the alarms handling ap-
proaches. There exists several other studies, like [108]-[110],
that evaluate or benchmark various techniques for handling
of alarms. Allier et al. [108] have proposed a framework for
comparing different alarms ranking techniques and identifying
the best approach to rank alarms. The various techniques
or algorithms for handling of alarms are compared using a
benchmark having programs in Java and Smalltalk languages,
and three static analysis tools: FindBugs, PMD, and SmallLint.
Using this framework, algorithms for the ranking of alarms are
compared. In another study, Liang et al. [109] have proposed
an approach for constructing a training set automatically,
required for effectively computing the learning weights for
different impact factors. These weights are used later to
compute scores used in ranking/classification of alarms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied various approaches to handle
the alarms generated by static analysis tools. Our systematic
literature search found 79 papers as relevant. We reviewed
the papers and classified the approaches presented into seven
categories. Also, wherever appropriate, the categories are
further classified into sub-categories depending on techniques
used. We summarized the merits and shortcomings of these



approaches (Section V) to assist designers and developers of
static analysis tools to make informed choices. The catego-
rized alarms handling approaches being complementary, they
provide an opportunity to combine them. We observe that
the identified approaches can be combined together in several
ways. Feasibility of the combinations, their advantages and
disadvantages, however, need to be studied.

Several of the identified approaches—sound clustering,
ranking, elimination of false positives using model checking,
simplification of inspections—can help static analysis tools
that are used to verify safety-critical systems.

In future, we would be exploring various combinations of
the approaches for effective handling of alarms. We believe
doing so is feasible and needed, respectively, because of the
high computing machines/support commonly available today
and the demand from the practitioners in industry to reduce
their burden from manual inspection of alarms. Also, we plan
to evaluate performance of the identified approaches by means
of industrial and open-source case studies.
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