
How do Scratch Programmers Name Variables and
Procedures?

Alaaeddin Swidan
Delft University of Technology

The Netherlands
Email: alaaeddin.swidan@tudelft.nl

Alexander Serebrenik
Eindhoven University of Technology

The Netherlands
Email: a.serebrenik@tue.nl

Felienne Hermans
Delft University of Technology

The Netherlands
Email: f.f.j.hermans@tudelft.nl

Abstract—Research shows the importance of selecting good
names to identifiers in software code: more meaningful names
improve readability. In particular, several guidelines encourage
long and descriptive variable names. A recent study analyzed
the use of variable names in five programming languages,
focusing on single-letter variable names, because of the apparent
contradiction between their frequent use and the fact that these
variables violate the aforementioned guidelines.

In this paper, we analyze variables in Scratch, a popular block-
based language aimed at children. We start by replicating the
above single-letter study for Scratch. We augment this study by
analyzing single-letter procedure names, and by investigating the
use of Scratch specific naming patterns: spaces in variable names,
numerics as variables and textual labels in procedure names.

The results of our analysis show that Scratch programmers
often prefer longer identifier names than developers in other
languages, while Scratch procedure names have even longer
names than Scratch variables. For the single-letter variables, the
most frequent names are x, y, and i. Single-letter procedures
are less popular, but show more tendency to be in upper case.
When compared to the other programming languages, the usage
of single uppercase letters in Scratch variables seems to be similar
to the pattern found in Perl, while for the lowercase letters—to
the pattern found in Java. Concerning Scratch specific features,
44% of the unique variable names and 34% of the projects in
the dataset include at least one space. The usage of textual labels
between parameters in procedure names appears as not common,
however textual patterns used imply an influence from textual
languages, for example by using brackets.

Previous research indicate the identifier names as one signif-
icant issue in transitioning from visual block-based to textual
programming languages. The naming patterns we found support
this claim for Scratch programmers who may incur difficulties
when transitioning to the use of mainstream textual programming
languages. Those languages restrict the use of spaces in identifiers
and more often divert into short and single-letter names—
tendencies opposite to the naming preferences in Scratch.

I. INTRODUCTION

The naming of identifiers in the source code has been exten-
sively studied (see, e.g., recent studies of this subject [1], [2],
[3], [4], [5], [6], [7], [8]). Still, the impact of the variable name
choice on code readability and maintainability is controversial,
as witnessed, e.g., by recent studies of Beniamini et al. [3] and
Hofmeister et al. [5] reaching contradictory conclusions.

Furthermore, many computer science and programming
curricula focus on the programming concepts and the syntax
of the languages as opposed to practices in naming variables
and identifiers. Indeed, while “meaningful variable names” are

Fig. 1: TIOBE Programming Community index: evolution of
the popularity of Scratch

advocated by some teachers [9], [10] and practitioners [11]
neither the ACM Curriculum Guidelines for Undergraduate
Programs in Computer Science1 nor the Curriculum Guide-
lines for Undergraduate Degree Programs in Software En-
gineering2 discuss this topic. In fact, as discussed by Ray-
mond [12] standard metasyntactic variables used in syntax
examples are “foo” and “bar”. The names of these identifiers
are meaningless, and to some extent, they represent a refusal to
name, suggesting to the learner that naming is less important
to the programming task.

The goal of this paper is to contribute towards understand-
ing the patterns in variable and procedure naming in
Scratch. Scratch is a block-based visual language developed
by MIT with the aim of helping young people learn the
basic concepts of programming and collaoration. Scratch has
recently become very popular among school-age children and
in several countries has been introduced as part of the school
curriculum as a means to teach programming [13], [14].
Moreover, the overall popularity of Scratch is witnessed by
Scratch being currently rated 19 in the TIOBE index3, topping
such languages as Lua, Scala and Groovy and since early 2014
exhibiting an increasing trend shown in Fig. 1.

Scratch programming materials too do not focus on naming.
For example, the Creative Computing Learner Workbook
created by the ScratchEd group at Harvard does not explain

1http://www.acm.org/education/CS2013-final-report.pdf
2http://www.acm.org/binaries/content/assets/education/se2014.pdf
3https://www.tiobe.com/tiobe-index/

how to select good names for procedures and variables4. It is
therefore interesting to explore the naming habits of Scratch
programmers. And there are other reasons why understanding
the naming practices in the Scratch community is important.
First, it is important for the Scratch community itself as bad
naming practices can easily propagate from one program to
another through ‘remixing’ [15], [16], a code sharing practice
similar to GitHub forking [17]. Second, it is important for
researchers. Software engineering researchers can learn how
to support novice programmers, taking their first steps in
programming. As shown in Fig. 2, 51% of Scratch program-
mers are aged between 10 and 15 at the time of registration
according to the statistics provided by Scratch5. Therefore,
researchers of software engineering education can obtain in-
sights in how to define naming guidelines for educational
materials, and analyzing the differences between Scratch and
textual languages can help in supporting the transition from
visual languages to textual ones [18], [19].

We start by a general discussion of naming practices
in Scratch and analyze the previously published collection
of 250,000 Scratch projects [20]. We replicate two studies
from a recent paper by Beniamini et al. [3]. Similarly to
Beniamini et al. we investigate the distribution of the lengths
of variable names and study popularity of single-letter variable
names such as i and x. As opposed to Beniamini et al. who
focused on variable naming in five mainstream programming
languages we focus on Scratch. Furthermore, while Beniamini
et al. solely focused on the names of the variables, we repeat
their study for procedure names as well.

Variable names in Scratch range mostly between 4 and
10 characters, procedure names tend to be longer. For the
single-letter variables, the most commonly used names
are x, y and i, procedures—a, y and r. Compared to
the other programming languages, single-letter variable
names are less common in Scratch and overall Scratch
variables have longer names. The usage of single upper-
case letters is similar to Perl, for the lowercase—to Java.

Next we focus on Scratch-specific features in naming
identifiers. Scratch supports a number of less commonly used
naming features, for example spaces may be used in names
e.g., a variable max i and integers and even floating point
numbers can be used as variable names e.g., a variable named
6 or 3.14159. Finally, Scratch allows for textual labels in
between parameters. For example a method for printing the
first n letters from a string s could be called “printnof(n,s)”
in a textual language. Scratch allows for this too, however,
one can also define a procedure called “say n characters
from text s”, as shown in Fig. 5. This feature does exist in
textual languages too—most notable in SmallTalk—but is not
commonly found in most mainstream languages.

4http://scratched.gse.harvard.edu/guide/files/CreativeComputing20140820
LearnerWorkbook.pdf

5https://Scratch.mit.edu/statistics/

Fig. 2: Age distribution of Scratch users at the time of
registration according to Scratch statistics web-page

Investigating the use of these Scratch-specific naming pat-
terns is interesting to understand their role in novice program-
ming. If they are popular among Scratch programmers, this
might be because they ease novice programming, and that
means one could even advocate that these features should be
integrated in the textual programming languages, if only to
ease the transition for the block-based languages programmers.

Spaces in variable names are common: 34% of projects
use this feature. Numeric values as identifiers are rarely
used, and mostly represent constants or parts of the data
structure. The usage of textual string between parameters
is not as common; however, textual patterns used imply an
inference from textual languages, e.g., by using brackets.

II. RELATED WORK

Naming identifiers in software code has been studied exten-
sively in the past decades [1], [2], [3], [4], [5], [6], [7], [8],
[21], [22], [23], [24], [25], [26], [27]. In practice, identifiers
constitute a major part of the source code: e.g., in Eclipse
3.0M7 which is tantamount to 2 MLoC, 33% of the tokens
and 72% of characters correspond to identifiers [28].

For a human reading code, it is crucial to the understanding
of code to also understand what the identifiers mean. As such,
several studies have investigated the link between identifier
naming and code readability and comprehension [2], [5],
[24], [26], [27] or identifier naming and externally observable
aspects of the software development process that are expected
to be affected by comprehension such as change-proneness [1],
quality [4], [6] and presence of faults [7], [8]. Caprile and
Tonella [29] have observed that names of C functions consist
of on average of 2.04–3.36 words, often verbs expressing
action, while Caracciolo et al. observed that most method
names in Java and Smalltalk also tend to consist of several
words but rarely more than five words [30].

Going beyond the discussion of whether variable names
should be shorter or longer, Arnaoudova et al. [31], [32] have
studied linguistic anti-patterns, “recurring poor practices in

the naming, documentation, and choice of identifiers in the
implementation of an entity” such as discrepancies between
the behavior implied by the identifier and the corresponding
comment, while Høst has studied whether the Java method
names relate to the behaviour of those methods [33]. In the
educational setting Glassman et al. propose Foobaz, a tool
giving semi-automatic feedback on student variable names
based on the values the variable can take during the execution
and limited input from the teacher [34].

While visual languages such as Scratch have recently be-
come a favorable choice for schools as an introduction to
programming [19], the lion’s share of the previous work on
identifier naming has focused on textual languages. Notable
exception is the recent work of Moreno and Robles [35]:
they observed that Scratch programmers often do not change
the sprite names that were automatically generated by the
environment. van Zyl et al. have observed that one of the
interviewed school teachers working with Scratch has taught
the students to integrate variable types in their names, e.g., ‘S’
for Strings [13]. Finally, Hermans and Aivaloglou encouraged
the students in Scratch MOOC to choose meaningful names
and to avoid keeping default ones [10].

Understanding the naming patterns and preferences of
students learning how to program with visual languages is
essential to act upon the difficulties faced by students when
transitioning to textual programming languages. According
to Kölling et. al. [36], for these learners, dealing with user-
defined identifiers is one of the “fundamental challenges”. It
involves an extra cognitive load to remember identifiers, with
case sensitivity in some cases, instead of selecting a variable
from a drop-down list in Scratch. It also relates to the broader
challenges of spelling and writing for these students.

III. RELEVANT SCRATCH CONCEPTS

We introduce several core features of Scratch required for
understanding the reminder of the paper. Readers are referred
to “Creative Computing” [37] for an extensive overview.

Scratch is a block-based programming language aimed at
children, developed by MIT. Scratch can be used to create
games and interactive animations, and is available both as a
stand-alone application and as a web application. Figure 3
shows the Scratch user interface in the Chrome browser.

1) Sprites: Scratch code is organized into ‘sprites’: two-
dimensional pictures that each have their own source code.
Scratch allows users to bring their sprites to life in various
ways, for example by moving them in the plane, having them
say or think words or sentences via text balloons, but also by
having them make sounds, grow, shrink and switch costumes.

The Scratch program in Fig. 3 consists of one sprite, the
cat, which is Scratch’s default sprite and logo6. The code in
the sprite will cause the cat to jump up, say “hello”, and come
back down, when the green flag is clicked, and to make the
‘meow’ sound when the space bar is pressed.

6https://Scratch.mit.edu/projects/97086781/

Fig. 3: The Scratch UI consisting of the ‘cat’ sprite on the left,
the toolbox with available blocks in the category ‘motion’ in
the middle and the code associated with the sprite on the right.

Fig. 4: The Scratch user interface to create a variable

2) Scripts: Source code within sprites is organized in
scripts: a script always starts with an event, followed by a
number of blocks. The Scratch code in Fig. 3 has two distinct
scripts, one started by clicking on the green flag and one by
pressing the space bar. It is possible for a single sprite to have
multiple scripts initiated by the same event. In that case, all
scripts will be executed simultaneously.

3) Variables: Like most textual languages, Scratch pro-
grammers can use variables. Variables are untyped, but have
to be ‘declared’ through the Scratch user interface, shown in
Fig. 4. This figure also shows that, contrary to most program-
ming languages, variable names in Scratch may contain spaces.

4) Procedures: Scratch allows programmers to create their
own blocks, called procedures. They can have input param-
eters, and labels in between. Procedures are created with an
interface similar to the one to create variables. Figure 5 shows
the definition and the invocation of a procedure in Scratch.

IV. RESEARCH DESIGN AND DATASET

A. Overall design

The goal of this paper is to compare naming practices of the
Scratch programmers to those of the developers in mainstream
programming languages. To that end, we start by partially
replicating the recent work of Beniamini et al. on single-letter
variables in Java, C, PHP, Perl, and JavaScript [3]. In terms of
the classification of Shull et al. [38], we perform a dependent
replication of the studies summarized in Fig. 1 and 2 of the

Fig. 5: Scratch code to define and invoke a procedure

original work. Inherently, the programming language is the
only factor we vary when compared to the original study.
However, as opposed to the data in the original study, Scratch
programs are not available on GitHub. Hence, we use the
dataset previously scraped and processed by Aivaloglou and
Hermans [20]. We report on the results of these replications
in Sections V-A1 and V-A2. Furthermore, we perform another
dependent replication of the same studies by considering
Scratch procedures rather than variables (Section V-A3).

Next, in Section V-A4 we perform a conceptual replication
of the study of the single-letter variable types of Beniamini et
al. [3]. The original study conducted a survey to understand
the type-related user perceptions, with questions such as
“what type would you consider for a variable called ...?”.
We however focus on the types as used in the program.
We investigate types “as-being-used”, as opposed to “as-
being-perceived” in the original study due to the limited
programming experience of the intended Scratch program-
mers. Scratch is meant for people taking their first steps in
programming, such as school-age students, and we do not
expect them to have established perceptions on data types of
single-letters variables. As opposed to our work, in the original
study, however, 30% of survey respondents claim 10-years
experience in programming, while 23% have programming
knowledge in six different languages or more [3]. Furthermore,
we study types as used as opposed to types as defined, since
Scratch does not have a concept of an explicit variable type.
However, we can deduce the variable types from assignments
involving those variables. For example, variable i in Fig. 5
represents an integer since it is assigned 1.

Finally, in Section V-B we report on the ways Scratch
developers employ Scratch-specific naming practices such as
spaces in variable names, numeric values as variables, and the
use of textual labels in between parameters.

B. Dataset

We use the dataset created by Aivaloglou and Hermans [20],
consisting of 250,000 Scratch projects scraped from the
Scratch website in March 2016. We select the projects that use
variables or procedures, which amount to 73,473 projects, 29%
of the original dataset. Variables are used more often: 69,045
projects (27.6%) use variables, while 17,605 use procedures
(7%). We used Python and R to process and analyze the data.

C. Identifier Extraction

To follow the steps of the replicated study, we collect the
unique variable names used in the projects’ scripts. Within
the scripts we identify Scratch blocks that are used to assign
a value to the variables, : e.g., “Change variable by value” or
“Set variable to value”. Variable names in Scratch are unique:
once a variable is declared in a project, its name cannot be
used to create another variable in the same project, even in a
different scope, e.g., in a different sprite.

We note that we focus solely on artifacts created specifically
through “Make a Variable” button in Scratch UI, rather than
other named entities, such as sprites. However, we believe
sprites should be excluded from consideration, since we per-
form a dependent replication study to variable names in textual
languages. Therefore, what we consider as a Scratch variable
must hold a major property similar to variables in the textual
languages: its name must be entered by the user. In Scratch,
however, sprites are assigned default names automatically, and
they often remain unchanged by the users [35].

To determine the type of single-letter variables, we per-
form type inference on the parameter value assigned to each
variable. The inference is performed via standard data type
conversion of the value. If the variable is accessed multiple
times in a project with different data types, for example first
as a string and then as an integer, both data types are counted.

For the procedure names, we identify the blocks used to
call a procedure, extract the name of the procedure, and count
the number of projects in which it occurs.

We note here that Scratch allows the user to create multiple
procedures with the same exact name in the same sprite. It
is not clear to us why the language would support such a
feature. We argue, however, that counting the procedure names
once per project is an indication of the naming patterns used
and fits the needs of this study. For the presence of spaces in
and numbers as variables we simply analyze the previously
extracted variable names, while textual patterns in procedure
names are detected from the extracted procedures’ names. We
provide the analysis code, input and output files for verification
and replication purposes on a GitHub repository7.

D. Data Analysis

Understanding differences in variable name lengths oc-
curring between different programming languages requires
comparison of multiple distributions. Such a comparison is
traditionally performed as a two-step process consisting of
(1) testing a global null hypothesis, that can be intuitively
formulated as “all distributions are the same”, using ANOVA
or its non-parametric counterpart, the Kruskal-Wallis test, and
(2) performing multiple pairwise comparisons of different
distributions, testing specific subhypotheses such as “distri-
butions 2 and 4 are the same”. However, it has been observed
that such a two-step approach can result in inconsistencies
when either the global null hypothesis is rejected but none
of the pairwise subhypotheses is rejected or vice versa [39].

7https://github.com/Felienne/ScratchVars

Moreover, it has been suggested that the Wilcoxon-Mann-
Whitney test, commonly used for subhypothesis testing, is
not robust to unequal population variances, especially in the
unequal sample size case [40]. Therefore, one-step approaches
have been sought. We opt for one such approach, the T̃-
procedure of Konietschke et al. [41], [42]. This procedure is
robust against unequal population variances, respects transi-
tivity, and has been successfully applied in empirical software
engineering [43], [44], [45], [46], [47], [48]. We use the Tukey
(all-pairs) contrasts to compare all distributions pairwise.

To understand differences between the distributions of
single-letter variable names in different languages, we repre-
sent each programming language as a 26-dimensional vector
with the dimensions corresponding to ‘a’, ..., ‘z’. For each
language we consider two distributions: the distribution of the
lower case letters (‘a’, ..., ‘z’) and the distribution of the lower
case letters (‘A’, ..., ‘Z’). We compute the mean Euclidean
distances between pairs of distributions and then perform
hierarchical clustering based on the Euclidean distance.

When comparing distributions of variable name lengths with
the procedure name lengths, the T̃-procedure is not applicable.
Hence, we perform the Mann-Whitney-Wilcoxon test together
with the two-sample test for the nonparametric Behrens-Fisher
problem, i.e., test for H0 : p = 1/2, where p denotes the
relative effect of the two independent samples [42], [49].

For space usage in variables’ names we do two things: (i)
To understand how much popular spaces are among all the
names, we extract the space count per unique variable name.
(ii) To understand the trend of using spaces across the dataset
(multiple projects and multiple users), we extract per project
the maximum space count found in the project’s variables.
For the textual patterns in procedure names, we count the
occurrence of each of the extracted token.

V. RESULTS

This section presents an overview of our analysis of variable
and procedure name used in the previously published Scratch
dataset [20]. We start by replicating studies of Beniamini et
al. [3] and proceed with investigating Scratch-specific features.

A. Replication Studies

Our first analyses are the replication studies regarding one
letter variables.

1) Variable Name Length: The original study of Beniamini
et al. [3] concluded that the single-letter variable names “are
approximately as common as other short lengths except in
PHP” and that “in C, Java, and Perl they make up 9–20%
of the names”. Figure 6 shows the distribution of lengths
in the Scratch dataset. A closer look at the data reveals that
the single-letter variables constitute ca. 4% of all the variable
names, i.e., less than the 9–20% observed by Beniamini et al.
Compared to the five programming languages in the study
of Beniamin et. al., single-letter variables seem to be less
common in Scratch, while the maximum length of a variable’s
name –250 characters– is significantly larger. These Observa-
tions lead us to wonder whether overall the variable names

Fig. 6: The distribution of variable’s name length in Scratch.

in Scratch are longer than in other programming languages.
To this end, we apply the T̃-procedure (Section IV-D) that
reveals that variable names in Scratch indeed are longer than
in the textual languages studied in Beniamini et. al. Moreover,
variable names in Java tend to be longer than those in PHP,
those in PHP than those in C, those in C than those in
JavaScript, and finally, those in JavaScript than those in Perl.
In all cases p-values have been too small to be computed
precisely (p < 2.2× 10−16).

2) Single-letter Variable Names: Further we investigate the
case of single-letter variable names. For the previously studied
programming languages, Beniamini et. al. [3] highlight the
following Observations about the single-letter usage:

a) The most commonly occurring single-letter variable name
is i. The authors attribute this to i being commonly used
as a loop counter. As opposed to the studied mainstream
languages, loops are performed in Scratch using prede-
fined blocks. As illustrated on Fig. 7, the two left-most
blocks –forever and repeat 10– do not require a variable
to control the loop iterations. However, inside the loop
the user will have no access to the built-in loop’s iterator.
When that is needed by the user, then the third block in
Fig. 7 –repeat until– can be used. To understand its use
see Fig. 5. In summary, because of the built-in language
support to variable-free loops, we expect the usage of the
variable name i to be less common in Scratch.

b) Apart from the popularity of i the distribution is
language-dependent. Since Scratch is quite different from
the programming languages considered by Beniamini et
al., we expect the distribution of the single-letter variable
names in Scratch to be different to the distributions in
those languages. Hence, we expect the similarity between
Scratch and the languages considered by Beniamini et
al. to be lower than the similarity between those five
languages in Beniamini et. al. study.

c) Finally, the authors observe that the lower case letters
are used more frequently than the upper case letters.
Since this is also the case for regular text in most natural
languages as well, we expect the Scratch programs to
follow the same pattern.

Figure 8 shows the distribution of variables of one letter,

Fig. 7: Scratch blocks that are used to repeat specific actions

Fig. 8: A histogram of single-letter variables occurrences in
Scratch projects

in upper and lower case, in the Scratch dataset. Note that one
Scratch project may contain both the upper and lowercase ver-
sion of one variable, and they will refer to a different variable.
Inspecting the data we observe that similarly to the previous
study i is the most commonly occurring variable. Hence, we
conclude that contradicting our expectations Observation a)
above also holds for Scratch. Furthermore, we observe that x
and y are extremely popular in Scratch. This can be explained
by the fact that x and y represent the coordinates of the sprites
on the stage, and when reading the position of a sprite, Scratch
developers access the built-in x and y properties. As such,
they form the basis of moving sprites in the 2-D stage. There
seems to be an agreement on this use among the developers of
textual languages studied in Beniamini et. al. When they were
surveyed about variable name interpretations, x and y were
commonly interpreted as “coordinates”. In addition, built-in
Scratch blocks often use x and y as shown in Fig. 9. We
conclude that Scratch programmers seem to be inspired by
the Scratch language in naming variables.

Next we study the similarity of Scratch to the five program-
ming languages in terms of frequency distribution of single-
letter variable names. Hence, we compare the mean Euclidean
distance between the pairs of the twelve distributions (the
five programming languages plus Scratch, considered for the

Fig. 9: Examples of blocks using built-in variables x and y

Fig. 10: A cluster dendrogram of Scratch compared to other
programming languages for the single-letter pattern

uppercase and the lowercase letters). The mean distance shows
that the Scratch usage of the uppercase letters in the single-
letter variable names is close to the ways the upper case
letters are used in Perl, C and Java (mean distances between
36712.85 and 37076.95), while the way lowercase letters
are used in Scratch quite similarly to the way letters are
used in Java (Scratch—44572.57 and Java—46706.21). Hence,
we claim that our expectation based on Observation b) has
been confirmed for the uppercase letters and rejected for the
lowercase letters. Closer look at Fig. 10 shows that the usage
of single uppercase letters is similar to the pattern found in
Perl, for the lowercase—to the pattern found in Java.

Finally, Fig. 8 clearly shows that the lowercase letters
are much more frequently used as variable names than the
uppercase letters, providing support for Observation c).

Single-letter variable names are less common in Scratch
than in other programming languages (ca. 4% vs. 9–20%),
and Scratch variables have longer names than variables in
other programming languages.

3) Procedure Names: Going beyond the study of Beni-
amini, we additionally consider the naming of procedures in
Scratch. For a detailed explanation of procedures in Scratch
see Section III-4 and Fig. 5. Figure 11 shows the distribution
of the procedure names length in the Scratch dataset. By
inspecting this figure, we observe that the procedure names
tend to be longer compared to Scratch variable names. Indeed,
the two-sample test for the nonparametric Behrens-Fisher
problem estimates the relative effect of the two samples
(procedure name lengths vs. variable name lengths) as 0.149

Fig. 11: The distribution of procedure’s name length in Scratch
projects

(with the p-value being too small to be computed precisely
(p < 2.2× 10−16), i.e., it indicates that the procedure names’
lengths tends to be larger than the lengths of the variable
names. This Observation is additionally confirmed by the
Mann-Whitney-Wilcoxon test (the p-value is too small to be
computed precisely). Short procedure names are not common,
they are even less common than variable names: single-letter
procedure names compose less than 1% of the extracted
names, less than 4.9% observed for Scratch variables and 9–
20% in C, Java and Perl variables [3]. The maximum length for
a procedure name is 250 characters, which is the same as the
maximum length for the variable names. We suspect this exact
match is caused by a language constraint that was imposed in
previous versions of Scratch. The current version of Scratch,
however, allows for names longer than 250 characters.

Next, we consider single-letter names for the procedures and
revisit Observations a) and c). We could not revisit Observa-
tion b) with respect to procedures since data on single-letter
procedure names was not collected for the five programming
languages in the study of Beniamini et. al. Figure 12 shows the
number of occurrences for each alphabetic letter. We see that i
is no longer among the most commonly used letters rejecting
Observation a). The top used single-letter name is a, the first
letter in the alphabet, which might explain its popularity. The
uppercase letters are used more often than the lowercase letters
(in 267 vs. 218 projects), rejecting Observation c).

4) Types: In the paper of Beniamini et al. [3] the authors
observe that some letters are highly associated with the data
type starting with the same letter: e.g., char for c and string
for s. They also highlight that the integer data type is a
common association for many other letters. Furthermore, a
survey for developers showed that variable names x, y and z
are commonly interpreted as coordinates, and for these letter it
seems a balance exists between integer and float associations.

As explained in Section IV-A we conduct a conceptual
replication by considering the types of variables as they
are used, as opposed to types as guesses by programmers.
Figure 13 shows the distribution of single-letter variables with
the types inferred. The majority of single-letter variables are
encountered as integers in the Scratch dataset. This partially
agrees with their Observation of integers being common for

Fig. 12: A histogram of single-letter procedures occurrences
in Scratch projects

Fig. 13: Inferred types for variables of one letter

many letters, however, the data types are less diverse in Scratch
compared to the five programming languages considered. One
Observation that contradicts Observations in the original study
is related to the string data type. While string data type in the
five programming languages studied is commonly associated
with s and less frequently with many other letters, the strings
are almost completely absent in the Scratch dataset apart from
i. This is also observed for the other data types where no
noticeable usage could be observed for floats, lists or strings.
The only exception to some extent is the variable c where
we observe some usage linked with the char data type. Floats
as types for x, y and to lesser extent z seem to support the
Observation that these single-letters variables are perceived as
coordinates as suggested by Beniamini et al. [3].

B. Scratch-specific Constructs

In this section we analyze the occurrence of naming prac-
tices that are allowed in Scratch, but are missing from or are
not common in most mainstream textual languages.

1) Spaces in Variable Names: Most textual programming
languages do not allow spaces in variable names. FORTRAN
ignores spaces, this spaces could be used in variable names.

Fig. 14: Number of spaces in variable names

Fig. 15: Numeric variable used as a constant

However it does mean that ‘apples’ and ‘app les’ refer to the
same variable. Other languages supporting spaces in variable
names are SQL and some Scheme implementations. Even
languages targeting data analysts rather than software devel-
opers recommend spaces be avoided [50]. To understand the
usage of spaces in variable names, we measure their presence
across the unique variable names, and across projects. Out
of 67,286 unique variable names in the dataset, we find that
44.05% have at least one space: 30.95% have one space, 9.91%
have two and 2.15% have three space characters. For the
usage of space character per project, we count the maximum
count of a space character in the project’s variable names.
Out of 69,045 projects which include variables, we find 34%
include variables names with at least one space character. As
Fig. 14 shows, variable names with one space character are
the most prevalent. We conclude that Scratch programmers
prefer natural language naming of a variable: the use of a
space character in variable names is common to some extent
for many users, indicated by the project count, and for many
used variable names.

2) Use of Numeric Variable Names: In addition to spaces in
variable names, Scratch supports the use of numbers and even
floating point numbers as variables. We found 718 projects
using integer variable names and 19 with floating point names.
While their use is rare, we manually examined some projects
and numbers are used in interesting and clever ways. The most
popular numeric values used as variable names include small

Fig. 16: The most popular numeric values used as variables

Fig. 17: The most used textual labels in between parameters
of procedures

natural numbers and 360 likely to represent 360◦ (cf. Fig. 16).
There seem to be two main uses of numeric variable names.

First, some variables with numeric names represent constants
(cf. Fig. 15). This seems to indicate the Scratch programmers
prefer to drag in a constant rather than repeatedly type it.

A second use is the use of integer variables as simple list
structures. For example, one of the projects we analyzed is
a tic-tac-toe game. In that project, the programmer defined
nine variables named 1 to 9. Each variable represents one
of the nine boxes. Scratch supports lists, so the user here
could have also used a list of 9 items, however, they did not.
Maybe because they were not familiar with the concept of
lists, or maybe they thought this would be easier for the user
to memorize the game logic.

3) Use of Textual Labels between Parameters: Scratch is
influenced by the SmallTalk family of languages which is
visible from the fact that Scratch allows users to insert textual
labels in between parameters in order to make procedures more
readable, as shown in Fig. 5. This practice seems particularly
idiomatic to Scratch, since built-in Scratch blocks use a similar
syntax, e.g., in the “say ... for ... seconds” block. In total 4,414
projects use textual labels accounting for 25% of projects with

procedures, and 1.77% of all projects in the dataset. Their use
is relatively uncommon, however, we do find some interesting
patterns. Fig. 17 shows the most commonly used labels. Here
we see some patterns common in textual languages, like the
use of labels for the names of the parameters ‘x:’ and ‘y:’,
and the use of a closing bracket. We suspect the lack of the
opening bracket (to be caused by the fact that it would be
included in the procedure name. We also see the use of ‘:’ at
the end of many patterns, which could come from the users
being inspired by Scratch default blocks, which use the colon
as shown in Fig. 9. Finally, the use of the space (char-space
in Fig. 17) is interesting, since Scratch already leaves some
room between the parameters, also when a space is not used.

VI. THREATS TO VALIDITY

As any empirical study our work is subject to series of
threats to validity. Construct validity of our study might be
threatened by the operationalization of the notion of a type.
Due to the lack of explicit type declaration in Scratch our
approach inferred the type by inspecting the value assigned
to the variable. To be representative for a project, our method
counted the different types encountered for the same variable
within a project. For example if the variable “score” was set to
“empty” at first, and then set to 0 in a different script, we count
two types for the variable: one string and one integer. The
same can be applied in textual languages with less strict type
systems such as PHP. While the method is simple, it assures
that data types used by Scratch programmers are represented
in the data, and forms a good proxy to compare the results to
the perceptions of professional developers. It is possible that
these data types do not reflect the perception of users precisely.
This is why this threat will be addressed in future work by
surveying students in our running Scratch MOOC.

Another threat to the construct validity is our decision
of what is a variable name in Scratch. As explained above
for the sake of replication we choose to include the names
of variables created specifically through “Make a Variable”
button in Scratch UI.

One threat to the internal validity of our study comes from
the use of non-Latin characters in identifiers. These characters
are encoded as series of question marks, a limitation we inherit
from the original dataset. Since one non-Latin character can
be encoded as several question marks, the variable/procedure
names length reported would overestimate the actual length.
However, the impact of these identifiers is limited as the
majority of Scratch programmers are from countries that use
Latin alphabet8. To validate this, we manually analyzed the
variable names extracted and found that merely 450 variables
have non-Latin alphabetic characters, less than 0.67% of the
total 67,287 unique variable names. Therefore, we did not
exclude names with non-Latin characters from the analysis.

Finally, a threat to the external validity concerns the gen-
eralization of the study results. We argue that we use a large
dataset which comprises around 1% of 23 million currently

8https://scratch.mit.edu/statistics/

shared Scratch projects. It could be that the dataset does
not reflect the users trend for identifier naming. However,
the Scratch community represents novice programmers with
younger age. For these users, it is difficult to imaging they
have an established trend in naming without prior education.

VII. CONCLUSION

In this paper, we study naming patterns for variables and
procedures in the Scratch programming language, a block-
based programming language aimed at novice programmers.
We use a previously released dataset consisting of 250,000
Scratch programs.

Our analysis shows that Scratch programmers most often
use variable names between 4 and 10 characters in length,
while procedure names in Scratch tend to have longer names
than the variables. For the single-letter variables, the most
commonly used names are x, y and i. When compared to
the other programming languages, Scratch variable length
distribution, and the usage of single uppercase letters seems to
be similar to the pattern found in Perl, while for the lowercase
letters—to the pattern found in Java. Spaces in variable names,
a feature relatively unique to Scratch, are used in 34% of
projects in which variables can be found. The usage of textual
string between parameters appears as not so common, however
textual patterns used imply an inference from textual languages
by using brackets for example.

The paper makes the following contributions:
• A detailed analysis of variables name length and single-

letter variables in particular, replicating [3] on the Scratch
programming language

• An analysis of procedure names in Scratch
• An analysis of naming patterns unique to Scratch, includ-

ing spaces in variable names, numeric variable names and
textual labels in procedures.

Studies concerning the difficulties novice programmers have
when transitioning to textual programming languages highlight
that handling identifier naming is one of the fundamental
challenges faced by these learners, as part of a broader spelling
challenge [36]. We believe the naming patterns found in
our study support the claim that challenges will be faced
by Scratch programmers when transitioning to mainstream
textual programming languages. Those languages restrict the
use of spaces in identifiers and more often divert into short
and single-letter names—tendencies opposite to the naming
preferences in Scratch.

This paper gives rise to a number of directions for future
work. Firstly, Beniamini et al. [3] included a survey in which
they ask developers to predict the type of a (one letter) vari-
able. It could be interesting to ask a similar question to Scratch
programmers for common variable names. Furthermore, a
detailed study into the readability of variable names with and
without spaces, and procedures with and without labels would
help us to create naming guidelines for Scratch. Finally, one
additional area to explore is the relation between name length
of variables with the level of computational thinking [51], [52]

of the Scratch programmer in addition to other demographic
factors like gender, age and language.

REFERENCES

[1] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical analysis
of change-proneness in methods having local variables with long names
and comments,” in ESEM, 2015, pp. 50–53.

[2] E. Avidan and D. G. Feitelson, “Effects of variable names on compre-
hension an empirical study,” in ICPC, 2017, pp. 55–65.

[3] G. Beniamini, S. Gingichashvili, A. Klein-Orbach, and D. G. Feitelson,
“Meaningful identifier names: the case of single-letter variables,” in
ICPC, 2017, pp. 45–54.

[4] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the influence
of identifier names on code quality: An empirical study,” in CSMR, 2010.

[5] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in SANER, 2017, pp. 217–227.

[6] M. Lungu and J. Kurs, “On planning an evaluation of the impact of
identifier names on the readability and quality of smalltalk programs,”
in Workshop on User Evaluations for Software Engineering Researchers,
2013, pp. 13–15.

[7] G. Scanniello and M. Risi, “Dealing with faults in source code: Abbre-
viated vs. full-word identifier names,” in ICSM, 2013, pp. 190–199.

[8] P. Tramontana, M. Risi, and G. Scanniello, “Studying abbreviated
vs. full-word identifier names when dealing with faults: an external
replication,” in ESEM, 2014, p. 64:1.

[9] T. Kato, Y. Kambayashi, and Y. Kodama, Data Mining of Students’
Behaviors in Programming Exercises. Cham: Springer, 2016, pp. 121–
133.

[10] F. Hermans and E. Aivaloglou, “Teaching software engineering princi-
ples to K-12 students: a MOOC on Scratch,” in ICSE-SEET, 2017, pp.
13–22.

[11] K. Rother, Cleaning Up Code. Springer, 2017, pp. 195–212.
[12] E. S. Raymond, The New Hacker’s Dictionary. MIT Press, 1996.
[13] S. van Zyl, E. Mentz, and M. Havenga, “Lessons learned from teaching

Scratch as an introduction to object-oriented programming in Delphi,”
African Journal of Research in Mathematics, Science and Technology
Education, vol. 20, no. 2, pp. 131–141, 2016.

[14] J.-M. Sáez-López, M. Román-González, and E. Vázquez-Cano, “Visual
programming languages integrated across the curriculum in elementary
school: A two year case study using Scratch in five schools,” Computers
& Education, vol. 97, pp. 129–141, 2016.

[15] B. M. Hill and A. Monroy-Hernández, “The remixing dilemma,” Amer-
ican Behavioral Scientist, vol. 57, no. 5, pp. 643–663, 2013.

[16] R. Davis, Y. Kafai, V. Vasudevan, and E. Lee, “The education arcade:
Crafting, remixing, and playing with controllers for Scratch games,” in
International Conference on Interaction Design and Children. ACM,
2013, pp. 439–442.

[17] A. Rastogi and N. Nagappan, “Forking and the sustainability of the
developer community participation - an empirical investigation on out-
comes and reasons,” in SANER, 2016, pp. 102–111.

[18] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and S. Cooper, “Mediated
transfer: Alice 3 to Java,” in SIGCSE. ACM, 2012, pp. 141–146.

[19] Y. Matsuzawa, T. Ohata, M. Sugiura, and S. Sakai, “Language migration
in non-CS introductory programming through mutual language transla-
tion environment,” in SIGCSE. ACM, 2015, pp. 185–190.

[20] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the Scratch repository,” in ICER, 2016.

[21] N. Anquetil and T. C. Lethbridge, “Assessing the relevance of identifier
names in a legacy software system,” in CASCON, 1998, p. 4.

[22] R. P. L. Buse and W. Weimer, “Learning a metric for code readability,”
IEEE Trans. Software Eng., vol. 36, no. 4, pp. 546–558, 2010.

[23] B. Caprile and P. Tonella, “Restructuring program identifier names,” in
ICSM, 2000, pp. 97–107.

[24] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier
names for comprehension and memory,” ISSE, vol. 3, no. 4, pp. 303–
318, 2007.

[25] S. Scalabrino, M. L. Vásquez, D. Poshyvanyk, and R. Oliveto, “Improv-
ing code readability models with textual features,” in ICPC, 2016, pp.
1–10.

[26] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an ex-
perimental investigation,” J. Prog. Lang., vol. 4, no. 3, pp. 143–167,
1996.

[27] B. E. Teasley, “The effects of naming style and expertise on program
comprehension,” International Journal of Human-Computer Studies,
vol. 40, no. 5, pp. 757–770, 1994.

[28] F. Deißenböck and M. Pizka, “Concise and consistent naming [software
system identifier naming],” in IWPC, May 2005, pp. 97–106.

[29] B. Caprile and P. Tonella, “Nomen est omen: analyzing the language of
function identifiers,” in WCRE, Oct 1999, pp. 112–122.

[30] A. Caracciolo, A. Chis, B. Spasojević, and M. Lungu, “Pangea: A
workbench for statically analyzing multi-language software corpora,”
in SCAM, Sept 2014, pp. 71–76.

[31] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y. Guéhéneuc, “A new
family of software anti-patterns: Linguistic anti-patterns,” in CSMR,
2013, pp. 187–196.

[32] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
what they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, no. 1, pp. 104–158, 2016.

[33] E. W. Høst, “Meaningful method names,” Ph.D. dissertation, University
of Oslo, Norway, 2011.

[34] E. L. Glassman, L. Fischer, J. Scott, and R. C. Miller, “Foobaz: Variable
name feedback for student code at scale,” in Annual ACM Symposium
on User Interface Software & Technology. ACM, 2015, pp. 609–617.

[35] J. Moreno and G. Robles, “Automatic detection of bad programming
habits in Scratch: A preliminary study,” in Frontiers in Education
Conference, Oct 2014, pp. 1–4.

[36] M. Kölling, N. C. C. Brown, and A. AlTadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in WiP-
SCE, 2015, pp. 29–38.

[37] K. Brennan, C. Balch, and M. Chung, Creative Computing. Harvard
Graduate School of Education, 2014.

[38] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” Empirical Software
Engineering, vol. 13, no. 2, pp. 211–218, 2008.

[39] K. R. Gabriel, “Simultaneous test procedures—some theory of multiple
comparisons,” The Annals Mathematical Statistics, vol. 40, no. 1, pp.
224–250, 1969.

[40] D. W. Zimmerman and B. D. Zumbo, “Parametric alternatives to the
Student t test under violation of normality and homogeneity of variance,”
Perceptual and Motor Skills, vol. 74, no. 3(1), pp. 835–844, 1992.

[41] F. Konietschke, L. A. Hothorn, and E. Brunner, “Rank-based multiple
test procedures and simultaneous confidence intervals,” Electronic Jour-
nal of Statistics, vol. 6, pp. 738–759, 2012.

[42] F. Konietschke, M. Placzek, F. Schaarschmidt, and L. Hothorn, “npar-
comp: An R software package for nonparametric multiple comparisons
and simultaneous confidence intervals,” Journal of Statistical Software,
vol. 64, no. 9, pp. 1–17, 2015.

[43] Y. Dajsuren, M. G. J. van den Brand, A. Serebrenik, and S. Roubtsov,
“Simulink models are also software: Modularity assessment,” in QoSA,
2013, pp. 99–106.

[44] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the
variation and specialisation of workload—A case study of the Gnome
ecosystem community,” Empirical Software Engineering, vol. 19, no. 4,
pp. 955–1008, 2014.

[45] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation
and online participation: A quantitative study,” Interacting with Com-
puters, vol. 26, no. 5, pp. 488–511, 2014.

[46] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in github: What can we learn from code review and bug
assignment?” Inf. & Softw. Technology, vol. 74, pp. 204–218, 2016.

[47] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results
when using sentiment analysis tools for software engineering research,”
Empirical Software Engineering, Jan 2017.

[48] P. van Wesel, B. Lin, G. Robles, and A. Serebrenik, “Reviewing career
paths of the openstack developers,” in ICSME, 2017.

[49] K. Neubert and E. Brunner, “A studentized permutation test for the non-
parametric Behrens-Fisher problem,” Computational Statistics & Data
Analysis, vol. 51, no. 10, pp. 5192–5204, 2007.

[50] M. Bochud, Estimating Heritability from Nuclear Family and Pedigree
Data. Humana Press, 2012, pp. 171–186.

[51] G. Robles, J. Moreno-León, E. Aivaloglou, and F. Hermans, “Software
clones in scratch projects: on the presence of copy-and-paste in compu-
tational thinking learning,” in IWSC, 2017, pp. 31–37.

[52] J. Moreno-León, M. Román-González, C. Harteveld, and G. Robles, “On
the automatic assessment of computational thinking skills: A comparison
with human experts,” in CHI. Extended Abstracts, 2017, pp. 2788–2795.

