
Techniques for Efficient Automated Elimination of
False Positives

Tukaram Muske
Tata Research Development and Design Centre

Tata Consultancy Services, Pune, India
t.muske@tcs.com

Alexander Serebrenik
Eindhoven University of Technology

Eindhoven, The Netherlands
a.serebrenik@tue.nl

Abstract—Static analysis tools are useful to detect common
programming errors. However, they generate a large number
of false positives. Postprocessing of these alarms using a model
checker has been proposed to automatically eliminate false
positives from them. To scale up the automated false positives
elimination (AFPE), several techniques, e.g., program slicing, are
used. However, these techniques increase the time taken by AFPE,
and the increased time is a major concern during application of
AFPE to alarms generated on large systems.

To reduce the time taken by AFPE, we propose two techniques.
The techniques achieve the reduction by identifying and skipping
redundant calls to the slicer and model checker. The first
technique is based on our observation that, (a) combination
of application-level slicing, verification with incremental context,
and the context-level slicing helps to eliminate more false posi-
tives; (b) however, doing so can result in redundant calls to the
slicer. In this technique, we use data dependencies to compute
these redundant calls. The second technique is based on our
observation that (a) code partitioning is commonly used by static
analysis tools to analyze very large systems, and (b) applying
AFPE to alarms generated on partitioned-code can result in
repeated calls to both the slicer and model checker. We use
memoization to identify the repeated calls and skip them.

The first technique is currently under evaluation. Our initial
evaluation of the second technique indicates that it reduces AFPE
time by up to 56%, with median reduction of 12.15%.

Index Terms—Static analysis, alarms/warnings, false positives,
model checking, program slicing, code partitioning

I. INTRODUCTION

Static analysis tools help to detect common programming
errors in software systems and even to ensure that the systems
are free of such defects [1], [2]. Despite this, recent studies
[3]–[5] report that these tools are underused in practice. The
studies report that the large number of false positives generated
is a primary reason for the underuse: in general there are
40 alarms for every thousand lines of code [5], and 35% to
91% of alarms are false positives [6]. Partitioning alarms into
false positives and errors requires manual inspection which
is tedious, and time-consuming [3]. Moreover, the manual
inspection of alarms even can be error-prone [7].

To reduce the number of false positives reported and thus
the cost of manual inspection, postprocessing of alarms using
a model checker has been proposed [8], [9]. In this postpro-
cessing, (a) an assertion is generated corresponding to each
alarm such that the assertion holds if and only if the alarm
is a false positive; (b) the assertion is verified using a model

checker; and (c) the alarm is eliminated as a false positive if
the verification concludes that the assertion holds.

Due to the state space explosion problem, model checkers
are known to fail to verify large systems [10]. To address this
problem during automated false positives elimination (AFPE),
several techniques have been proposed. These techniques
include verification using incremental context expansion (that
we call VerICE) [10], context-level slicing (slicing the code
before each model checking call in its verification context)
[8], [11], and grouping of related assertions [12]. Although
the combination of these techniques helps to scale up AFPE
to large systems, it considerably increases the number of calls
made to the slicer and model checker (more details in Section
II). Prior evaluations of AFPE in industry setting indicate that
processing a group of related assertions, on average, results in
five calls to both the slicer and model checker [8], [11], [12].

Due to the large number of model checking calls made
during AFPE and each call taking considerable amount of
time, applying AFPE to alarms becomes time-consuming: on
average, processing a group of related alarms takes around
three to four minutes [8], [11], [12]. This ultimately renders
AFPE unsuitable to postprocess alarms generated on large sys-
tems. Therefore, improving efficiency of AFPE, i.e., reducing
the time taken by AFPE, is important.

To improve efficiency of AFPE, we propose two automatic
techniques. We achieve the improvement by identifying redun-
dant calls to the slicer and model checker: skipping those calls
does not affect the false positives eliminated. We stress that the
identification of redundant calls by the techniques proposed is
correct but not necessarily complete, i.e., all calls identified as
redundant are redundant, but there might be redundant calls
not identified as such by the techniques proposed. We design
the two techniques based on our observations below.

1) Technique 1: We find that, while AFPE with the combi-
nation of application-level slicing, VerICE, and context-level
slicing helps to eliminate false positives, it results in redundant
calls to the slicer. To compute and skip the redundant calls,
we design a novel technique based on data dependencies.

2) Technique 2: Code partitioning, i.e., breaking the sys-
tem into smaller partitions and analyzing them separately, is
commonly used by static analysis tools to analyze very large
systems [13]–[15]. It is common that two or more partitions
formed overlap: they share some functionality and the code



(a set of functions) that implements the functionality is also a
part of each of those partitions. During the partition-wise static
analysis, for an expression appearing in a function common to
two or more partitions, multiple alarms of same property can
get generated (Section IV-A). We find that, applying AFPE
to such alarms results in repeated calls to both the slicer
and model checker. Based on this observation, we design a
technique that uses memoization to skip those repeated calls.

The first technique is currently under evaluation. Our initial
evaluation of the second technique indicates that, the technique
identifies up to 58.5% of the model checking calls with their
corresponding slicing calls as redundant, while the median
being 19.8%. Skipping these redundant calls reduces AFPE
time by up to 56%, with median reduction of 12.15%.

Following are the key contributions of this paper.
1) A technique to improve efficiency of AFPE by eliminat-

ing redundant calls to the slicer.
2) A technique to improve efficiency of AFPE applied to

alarms generated on partitioned-code.
Outline: Section II briefly discusses the techniques used to
scale AFPE on large systems. Sections III and IV describe the
two techniques proposed to improve AFPE efficiency. Section
V presents our initial evaluations. Section VI discusses related
work, and Section VII presents conclusions and future work.

II. BACKGROUND & NOTATIONS

Following we describe existing techniques proposed for
scalability of AFPE. We begin by presenting examples of
alarms, and notations, that we use to describe the techniques.

A. Alarm Examples and Notations

Consider the code example shown in Figure 1, crafted
to illustrate need of combination of multiple techniques for
scalable AFPE. The example shows two division by zero
alarms, D22 and D39, of which D39 is a false positive, because
the values of k at line 39 are non-zero. The assertions gener-
ated corresponding to these alarms for AFPE are respectively
shown on lines 21 and 38. As the assertions are in different
functions, they are not grouped together by the grouping
techniques [8], [16]. For illustration purpose, we assume that
the function complexFunc is complex, and verification of a
code that contains this function, using a model checker, times
out, i.e., given a sufficiently large time limit, the verification
cannot conclude whether the assertion holds or fails.

We use mcall(ϕ, f) to denote a call to the model checker,
which verifies the assertion generated corresponding to an
alarm ϕ, and in the context of given function f . We call this
function f verification context. Since the verification context
in a model checking call is specified as a function, we use the
terms context and function interchangeably. On similar lines,
we use scall(ϕ, f) to denote a call to the slicer, which slices
the code in function f with respect to the assertion generated
corresponding to an alarm ϕ, assuming f as the entry-function.
We use Sϕ,f to denote the slice resulting from scall(ϕ, f),
and Sϕ,App to denote the slice generated when f is the entry-
function of the application.

1 int t, x, y, z;
2 void main()
3 x=lib1(); y=lib2();
4 f1();
5 }
6
7 void f1(){
8 int i = 0;
9 while(i++ < x){

10 if(y == z){
11 f2(i);
12 f4();
13 }
14 }
15 }
16
17 void f4(){
18 t = complexFunc(0);
19 z = lib4();
20 if(z == 4){
21 //assert(x!=0);
22 display(1/x); ..D22
23 }
24 }

21 void f2(int p){
22 int i, j;
23
24 i = p % 5;
25 j = lib4() % 5;
26 y = complexFunc(5);
27
28 f3(i,j);
29 }
30
31 void f3(int i, int j){
32 int arr[5]={4,2,3,9,0};
33 int k = 2;
34
35 if(i != j)
36 k = arr[i] - arr[j];
37
38 //assert(k!=0);
39 t = 100 / k; ..D39

40 }
41
42 int complexFunc(int r){
43 ...//complex code
44 }

Fig. 1: Example to illustrate the need of combination of
techniques for scalability of AFPE, and redundant slicing calls
resulting in this combination.

B. The Need of Combination of Techniques

In AFPE, to use a model checker in a more scalable
way, Post et al. [10] have proposed verification of assertions
using approach called incremental context expansion (VerICE).
Verification of each assertion (or a group of related/similar
assertions [12], [16]) is started from the function that includes
the assertion(s). Then the verification context is expanded to its
callers until the assertion is proven to hold, a verification call
times-out or runs out-of-memory, or the last verified context is
the application’s entry-function. This technique, VerICE, has
been later adopted and found useful by several other works
[8], [11], [12], [16]. During AFPE with VerICE, processing of
D39 results in two model checking calls, first mcall(D39, f3)
and then mcall(D39, f2), without eliminating the alarm as a
false positive. The first call results in a counter-example (i.e.,
shows that the assertion fails), while the second call times out,
because the function complexFunc is a part of f2.

During AFPE, to remove such complex code from code to
be verified by the model checker, backward slicing [17] is
used [9], [11], [12]. For each assertion or a group of related
assertions, the complete application code is sliced with respect
to the assertion(s), and the assertions in the sliced code are
verified. However, usage of slicing at the application-level may
not always help. For example, during AFPE with VerICE and
application-level slicing, processing of D39, still results in the
same two model checking calls, generating the same results.
It is because the function complexFunc is still a part of f2
in the application-level slice. AFPE with those two techniques
also does not eliminate the false positive, D39.

To address this problem, verification context-level slicing
(that we call vcSlicing) is used [8], [11]. In this technique,



before each model checking call mcall(ϕ, f), the code is sliced
using scall(ϕ, f) and the slice generated is verified by the
model checker. For example, during AFPE with VerICE and
vcSlicing, D39 gets eliminated as a false positive. In this case,
the second model checking call, mcall(D39, f2), proves that
the assertion holds, because the context-level slice generated,
SD39,f2, does not include the complex function.

To speed up vcSlicing, the application code is sliced at the
application-level for each alarm/group of alarms, and then
the assertions in each slice are verified using VerICE and
vcSlicing [8], [11], [12]. Moreover, generating the application-
level slice first also can be a requirement when other tech-
niques are used, e.g., abstraction of unbounded loops based on
the assertion(s) [18]. During AFPE with this combination of
techniques, processing of D39 results in three slicing calls and
two model checking calls: scall(D39,main), scall(D39, f3),
mcall(D39, f3), scall(D39, f2), and mcall(D39, f2). Processing
of D22 results in three slicing calls and three model check-
ing calls: scall(D22,main), scall(D22, f4), mcall(D22, f4),
scall(D22, f1), mcall(D22, f1), mcall(D22,main). This indi-
cates that the combination of techniques during AFPE in-
creases the number of slicing and model checking calls.
Henceforth, unless stated otherwise, we assume that AFPE
is performed with the combination of those three techniques:
application-level slicing, VerICE, and vcSlicing.

III. COMPUTATION OF REDUNDANT SLICING CALLS

This section presents our technique to compute redundant
vcSlicing calls resulting during AFPE.

A. Our Observation: Redundant vcSlicing Calls

Recall that, the goal of vcSlicing, i.e., any scall(ϕ, f), is
to remove any (complex) code that belongs to f in Sϕ,App

and does not impact the result of mcall(ϕ, f). For exam-
ple, the second vcSlicing call for D39 shown in Figure 1,
scall(D39, f2), removes the function complexFunc from f2
present in SD39,App. This code removal allows to eliminate
the alarm as a false positive through mcall(D39, f2) (Section
II-B). Note that, vcSlicing may not always result in such code
removal, e.g., scall(D39, f3) does not remove any code from
f3 present in SD39,App. Moreover, the two vcSlicing calls for
D22, scall(D22, f4) and scall(D22, f1), also do not remove any
code respectively from f4 and f1 present in SD22,App. That
is, among those total four vcSlicing calls, three are redundant,
and they can be skipped to reduce the AFPE time.

B. Proposed Technique

1) Notations: Let callers(f) denotes the set of functions
that call f directly or indirectly; and callees(f) denotes the
set of functions that are directly or indirectly called by f ,
inclusive of f . A variable v at a program point p is said to be
data dependent on a definition (assignment) dv of v, if dv is
a reaching definition of v at p [19]. Data dependencies of a
variable v are the definitions on which v is data dependent.

2) The Key Idea: We observe that, a vcSlicing call
scall(ϕ, f) removes code belonging to f present in Sϕ,App

only if the following condition is satisfied: a definition in
g1 ∈ callees(f) is a data dependency of a variable used
in h ∈ callers(f), and the same definition is not a data
dependency for any variable used in g2 ∈ callees(f). That is,
the call is useful (resp. redundant) if the condition is satisfied
(resp. not satisfied). For example, scall(D39, f2) gets identified
as useful because the condition is satisfied: the definition
of y in f2 (at line 26) is a data dependency of y used in
f1 ∈ callers(f2) (at line 10), and the same definition is not
a data dependency for any variable used in any function in
callees(f2). We stress that, the condition is not satisfied for
scall(D22, f4): the definition of z in f4 (at line 19) is a data
dependency of z used in f1 ∈ callers(f2) (at line 10), but the
same definition is also a data dependency of z used in f4 at
line 20. Thus, scall(D22, f4) is redundant. For scall(D39, f3)
and scall(D22, f1), the condition identifies them as redundant.

3) Computation Method: To efficiently compute whether
the condition is satisfied for a given vcSlicing call scall(ϕ, f),
we use the program dependence graph (PDG) [19] constructed
while generating the application-level slices for the assertions.
Starting from the assertion generated for ϕ, we traverse over
the transitive data and control dependencies of variables in the
assertion, and determine whether the condition is satisfied.

To avoid switching between the AFPE process and com-
putation of redundant vcSlicing calls, instead of computing
whether the corresponding vcSlicing call is redundant before
each model checking call (on-demand computation), we first
identify all possible vcSlicing calls and compute redundant
calls from them. We use the computation results later when
calls to the vcSlicing are actually to be made. We plan to
design an aggressive variant of the technique, in which we will
use heuristics to determine whether the code being removed
by a vcSlicing call is potentially complex. The call will be
identified as useful only if the code is determined as complex,
otherwise redundant.

IV. AFPE ON PARTITIONED-CODE

This section presents our technique to improve efficiency of
AFPE applied to alarms generated on partitioned-code.

A. Code Partitioning: An Example

Code partitioning is commonly used to scale static analysis
tools to very large systems [13]–[15]. Each partition formed,
is denoted by the single sub-routine (function) that is entry to
the code that implements the functionality. Recall that two or
more partitions can overlap (Section I). For example, Figure 2
shows two partitions p1 and p2, and function foo is common
to these partitions. For the same array access at line 17, an
array index out of bound alarm gets generated at line 17, gets
generated both the partitions, p1 and p2. These two alarms
are respectively shown as Ap1

17 and Ap2
17. Note that, although

these two alarms are generated for the same point of interest
(POI), they are different. We call such alarms common-POI



1 // Partition p1
2 void p1(){
3 foo(lib1());
4 }
5
6 // Partition p2
7 void p2(){
8 foo(lib2());
9 }

10 // Common function
11 void foo(int i){
12 int t, arr[4]={...};
13
14 assert(i>=0 && i<4
15 // common-POI alarms
16
17 arr[i] = 0; ..Ap1

17
..Ap2
17

18 }

Fig. 2: Examples of partitioned-code and common-POI alarms.

TABLE I: Experimental results for improvement efficiency of
AFPE on partitioned-code.

Appli-
cation

Parti-
tions
(App.
size–

KLOC)

Prop-
erty

Ala-
rms

Groups
of

related
assert-
ions

False
Posi-
tives

Elimtd.

model
check-

ing
calls

%
Redu-
ction

in
calls

AFPE
Time

(mins)

%
Time
Redu-
ction.

smp
utils

29
(16)

AIOB 178 43 20 88 10.2 866.4 6.8
OFUF 1534 277 198 210 11.4 1000.2 0.5

dict
gcide

8
(10.8)

AIOB 106 26 1 47 55.3 22.0 55.9
DZ 128 100 8 94 58.5 23.2 40.6
OFUF 652 331 43 139 33.8 40.3 19.7

uucp 5
(73.7)

AIOB 22 9 0 6 33.3 66.4 31.7
OFUF 343 136 0 23 21.7 213.65 20.0

ffm-
peg

93
(83.7)

AIOB 1775 507 340 589 6.8 904.2 11.0
DZ 582 134 5 192 19.8 211.9 16.8
OFUF 12375 1979 1314 1849 6.9 4217.4 7.3

Ind-
ustry
app.

3
(14.6)

AIOB 145 38 52 120 9.2 236.8 1.8
DZ 9 6 0 18 0 69.1 0
OFUF 300 89 75 208 15.9 452.8 2.4

alarms. The assertion generated corresponding to these alarms,
for AFPE, is shown at line 14.

B. Our Observation: Redundancy in AFPE

We observe that, AFPE applied to common-POI alarms
results in repeated slicing and model checking calls. For
example, consider the two common-POI alarms in Figure 2.
Processing Ap1

17 results in two slicing and two model check-
ing calls, scall(Ap1

17, p1), scall(Ap1
17, foo), mcall(Ap1

17, foo), and
mcall(Ap1

17, p1). On similar lines, processing Ap2
17 results in

two slicing and two model checking calls, scall(Ap2
17, p2),

scall(Ap2
17, foo), mcall(Ap2

17, foo), and mcall(Ap2
17, p2). Note

that, for these two alarms, the vcSlicing and model checking
calls made for the context foo are same. That is, the slices
generated by scall(Ap1

17, foo) and scall(Ap2
17, foo) are same, and

therefore, the results of mcall(Ap1
17, foo) and mcall(Ap2

17, foo)
also are same. Since the function of a set of common-POI
alarms is common to two or more partitions, processing the
common-POI alarms during AFPE results in at least one
repeated model checking call, and the corresponding vcSlicing
call(s) are also repeated. Eliminating this redundancy helps to
reduce the time taken by AFPE.

C. Reuse-based Technique for Efficiency Improvement

To eliminate redundancy in processing of common-POI
alarms during AFPE, we implement a reuse-based technique
similar to memoization [20] and tabling [21]. That is, before

making a model checking call and its corresponding vcSlicing
call, we check whether the same model checking call has
been already performed for a different alarm generated for the
same POI but in another partition. If the call has been already
performed, we reuse result of the earlier call, otherwise the
call is made. This way reusing results of model checking calls
across partitions for common-POI alarms allows to reduce the
number of model checking calls and their corresponding vc-
Slicing calls, thus improving efficiency of AFPE. For example,
applying this reuse-based approach to alarms shown in Figure
2 allows to reduce one model checking (resp. slicing) call out
of the total four model checking (resp. slicing) calls.

V. EXPERIMENTAL EVALUATION

The first technique to skip redundant slicing calls (Section
III) is currently under evaluation. This section presents our
initial evaluation of the reuse-based technique applicable for
common-POI alarms (Section IV).

a) Implementation: To evaluate the improvement in
AFPE efficiency due to our technique, we implemented AFPE
with the following techniques: grouping of related assertions,
abstraction of unbounded loops, slicing at application- and
verification context-levels, and VerICE. We used CBMC [22]
as the model checker: it is commonly used model checker in
earlier AFPE-related works [8], [9], [11], [12]. For each model
checking call, we set the time out threshold to 10 minutes.

b) Selection of Applications and Alarms: Table I presents
five partitioned-code applications that we selected for the eval-
uation, along with the the number of partitions on them. The
first four applications are open-source whereas the last one is
an industry application from automotive domain. The last three
applications are from benchmarks we used earlier [23], and
first two were randomly chosen from applications available to
us and having multiple partitions on them. We analyzed the
partitions using our commercial static analysis tool for three
properties: array index out of bounds (AIOB), division by zero
(DZ), and arithmetic overflow underflow (OFUF). Column
Alarms presents the number of alarms generated.

c) Evaluation Results: To evaluate the improvement in
efficiency, we processed the alarms in two settings: with and
without reusing AFPE results of common-POI alarms across
partitions. Table I provides the results of AFPE: the number
of groups of related assertions, false positives eliminated, the
number of model checking calls made, % reduction in model
checking calls due to our technique, time taken by AFPE
(column AFPE time), and the % time reduction due to our
technique. Note that, higher reduction in the number of model
checking calls does not imply a similar reduction in the time.
This occurs because the total AFPE time also includes the time
required to process the alarms which are not common-POI
alarms, generate partition-level slices, and over-approximate
the loops. Our technique does not reduce this processing time.

The results indicate that, our proposed technique reduces the
number of model checking calls by up to 58.5%, with median
reduction of 19.8%. The reduction in calls reduced the AFPE
time by up to 56%, with median reduction of 12.15%.



VI. RELATED WORK

Existing techniques that improve AFPE efficiency are based
on multiple approaches. The first prominent approach is to
group related assertions and verify assertions in each group
together [12], [16]. For example, Chimdyalwar and Darke
[12] have used data and control dependencies to form groups
of assertions that are related and present in same function.
However, processing a group of related assertions during
AFPE still can result in redundant slicing and model checking
calls, e.g., when the code is partitioned (Section IV-B).

Another approach used to improve AFPE efficiency is to
predict result of a given model checking call [11], [16], and
use the predicted results to skip a subset of model checking
calls. For example, Muske and Khedker [11] have used static
analysis-based technique to predict model checking calls that
are most likely to generate counter-examples. Since the calls
generating counter-examples do not help to eliminate a false
positive, they can be skipped, and the verification context can
be expanded to the next level as per VerICE. Wang et al. [9]
have used slicing as a mean to improve efficiency of AFPE.

Applying these AFPE techniques to common-POI alarms
can help to improve efficiency, however they may still result in
repetitive model checking calls as they do not take into account
that they are generated for the same program points. This
indicates that existing techniques and our both the techniques,
being orthogonal to each other, can be used together.

VII. CONCLUSIONS & FUTURE WORK

Reducing the cost of redundant manual inspection of
false positives, by eliminating them before the inspection,
is important for wider adoption of static analysis tools. The
model-checking based AFPE proposed for this goal, being
computation-intensive, requires considerable time to postpro-
cess the large number of alarms. Reducing this processing
time is important, more particularly when the systems being
analyzed are too large. Based on our observation that, even
after applying the existing relevant techniques AFPE suffers
from the problem of redundant calls to the slicer and model
checker, we designed two automated techniques. We designed
the techniques by taking into account (1) the particular type
of common-POI alarms generated on partitioned-code, and
(2) checking for a set of assertions and a context, whether
the context-level slicing removes any irrelevant code from the
context appearing in the application-level slice.

Our initial evaluation of the technique, applicable to
common-POI alarms, has shown promising results: reduction
in AFPE time by up to 56%, with median reduction of
12.15%. Detailed evaluation of both the techniques is currently
ongoing. We believe that, on similar lines to the design of
the proposed techniques, more techniques can be designed to
reduce AFPE time. For example, we plan to design a technique
to predict result of a model checking call based on the results
of model checking calls made earlier for the same context
but for some other alarms. Also, we plan to explore machine
learning techniques for these predictions.

REFERENCES

[1] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in International
Conference on Software Engineering. IEEE, 2015, pp. 598–608.

[2] L. N. Q. Do, J. Wright, and K. Ali, “Why do software developers
use static analysis tools? a user-centered study of developer needs and
motivations,” IEEE Transactions on Software Engineering, 2020.

[3] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Interna-
tional Conference on Software Engineering. IEEE, 2013, pp. 672–681.

[4] M. Christakis and C. Bird, “What developers want and need from
program analysis: An empirical study,” in International Conference on
Automated Software Engineering. ACM, 2016, pp. 332–343.

[5] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in International Conference on Software Analysis, Evolution,
and Reengineering. IEEE, 2016, pp. 470–481.

[6] S. Heckman and L. Williams, “A systematic literature review of action-
able alert identification techniques for automated static code analysis,”
Information and Software Technology, vol. 53, no. 4, pp. 363–387, 2011.

[7] I. Dillig, T. Dillig, and A. Aiken, “Automated error diagnosis using
abductive inference,” in Conference on Programming Language Design
and Implementation. ACM, 2012, pp. 181–192.

[8] P. Darke, B. Chimdyalwar, A. Chauhan, and R. Venkatesh, “Efficient
safety proofs for industry-scale code using abstractions and bounded
model checking,” in International Conference on Software Testing,
Verification and Validation. IEEE, 2017, pp. 468–475.

[9] L. Wang, Q. Zhang, and P. Zhao, “Automated detection of code vulnera-
bilities based on program analysis and model checking,” in International
Working Conference on Source Code Analysis and Manipulation. IEEE,
2008, pp. 165–173.

[10] H. Post, C. Sinz, A. Kaiser, and T. Gorges, “Reducing false positives
by combining abstract interpretation and bounded model checking,” in
International Conference on Automated Software Engineering. IEEE,
2008, pp. 188–197.

[11] T. Muske and U. P. Khedker, “Efficient elimination of false positives us-
ing static analysis,” in International Symposium on Software Reliability
Engineering. IEEE, 2015, pp. 270–280.

[12] B. Chimdyalwar and P. Darke, “Statically relating program properties
for efficient verification,” in International Conference on Languages,
Compilers, and Tools for Embedded Systems. ACM, 2018, pp. 99–103.

[13] S. Khare, S. Saraswat, and S. Kumar, “Static program analysis of large
embedded code base: An experience,” in India Software Engineering
Conference. ACM, 2011, pp. 99–102.

[14] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools,” Electronic Notes in Theoretical Computer Science, vol.
217, pp. 5–21, 2008.

[15] T. Muske, “Improving review of clustered-code analysis warnings,”
in International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 569–572.

[16] T. Muske, A. Datar, M. Khanzode, and K. Madhukar, “Efficient elimina-
tion of false positives using bounded model checking,” in International
Conference on Advances in System Testing and Validation Lifecycle.
IARIA XPS Press, 2013, pp. 13–20.

[17] M. Weiser, “Program slicing,” in International Conference on Software
Engineering. IEEE, 1981, pp. 439–449.

[18] P. Darke, B. Chimdyalwar, R. Venkatesh, U. Shrotri, and R. Metta,
“Over-approximating loops to prove properties using bounded model
checking,” in Design, Automation & Test in Europe Conference &
Exhibition. IEEE, 2015, pp. 1407–1412.

[19] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems, vol. 9, no. 3, pp. 319–349, 1987.

[20] U. A. Acar, G. E. Blelloch, and R. Harper, “Selective memoization,” in
Symposium on Principles of Programming Languages. ACM, 2003,
pp. 14–25.

[21] T. Swift, “Tabling for non-monotonic programming,” Annals of Mathe-
matics and Artificial Intelligence, vol. 25, no. 3-4, pp. 201–240, 1999.

[22] CBMC, http://www.cprover.org/cbmc/.
[23] T. Muske, R. Talluri, and A. Serebrenik, “Reducing static analysis alarms

based on non-impacting control dependencies,” in Asian Symposium on
Programming Languages and Systems. Springer, 2019, pp. 115–135.


