An Empirical Assessment on Merging and
Repositioning of Static Analysis Alarms

Niloofar Mansoor
University of Nebraska—Lincoln
Lincoln, Nebraska, USA
niloofar @huskers.unl.edu

Alexander Serebrenik
Eindhoven University of Technology
Eindhoven, The Netherlands
a.serebrenik @tue.nl

Abstract—Static analysis tools generate a large number of
alarms that require manual inspection. In prior work, reposition-
ing of alarms is proposed to (1) merge multiple similar alarms
together and replace them by a fewer alarms, and (2) report
alarms as close as possible to the causes for their generation. The
premise is that the proposed merging and repositioning of alarms
will reduce the manual inspection effort. To evaluate the premise,
this paper presents an empirical study with 249 developers on
the proposed merging and repositioning of static alarms. The
study is conducted using static analysis alarms generated on C
programs, where the alarms are representative of the merging vs.
non-merging and repositioning vs. non-repositioning situations
in real-life code. Developers were asked to manually inspect and
determine whether assertions added corresponding to alarms in
C' code hold. Additionally, two spatial cognitive tests are also
done to determine relationship in performance. The empirical
evaluation results indicate that, in contrast to expectations, there
was no evidence that merging and repositioning of alarms reduces
manual inspection effort or improves the inspection accuracy (at
times a negative impact was found). Results on cognitive abilities
correlated with comprehension and alarm inspection accuracy.

Index Terms—Static analysis, Empirical study, Manual inspec-
tion of alarms, Repositioning of alarms, C language

I. INTRODUCTION

Static analysis tools help to automatically detect common
programming errors like division by zero and array index out
of bounds [1]-[6] and even certify absence of such errors in
safety-critical systems [7]-[9]. However, these tools generate
a large number of false positives [1], [10]-[13]. Previous
studies report that there are 40 alarms for every thousand lines
of code [14], and 35% to 91% of alarms are false positives
[15]. Moreover, partitioning alarms into false positives and
errors requires costly manual inspection [12], [13], [16].
Several studies [13], [14], [17], [18] report the large number
of false positives and the cost incurred in manual inspection
of alarms as the two primary reasons for the underuse of tools
in practice.

Multiple techniques have been proposed to simplify manual
inspection of alarms [16], [19]-[23]. We observe that, in
general, even when such techniques target reduction in manual

Tukaram Muske
Tata Consultancy Services
Pune, India
tukarammuske @ gmail.com

Bonita Sharif
University of Nebraska—Lincoln
Lincoln, Nebraska, USA
bsharif @unl.edu

effort required to inspect the alarms, they are being evaluated
based on reduction in the number of alarms, assuming that
inspecting fewer alarms reduces the manual inspection effort.
However, this assumption has not been validated and a priori is
not necessarily true since inspection of different alarms might
require different effort. Therefore, we consider a recently
proposed technique that aims at reduction of the manual
inspection effort and evaluate to what extent it improves user’s
performance during manual inspection of the alarms. As an
example of such technique we consider repositioning of alarms
[19], [20]. Repositioning aims at two points. First, multiple
similar alarms are grouped together so that fewer alarms
get inspected, and second, alarms are reported closer to the
reasons for their generation so that manual inspection effort is
reduced (see Section II). Hence, we investigate fo what extent
repositioning of alarms improves user’s performance during
manual inspection of the alarms. Since the cognitive ability
[24] of developers plays a role in how they problem solve,
we also seek to investigate whether there exists a relationship
between cognitive tasks and tasks involving manual inspection
of alarms. We perform this investigation, because, if a rela-
tionship is observed, users for manual inspection of alarms can
be selected based on their performance on cognitive tasks.
To perform the two investigations discussed above, we
conduct an empirical study with 249 developers using a ques-
tionnaire made available online on Qualtrics and distributed
through social media and Mechanical Turk. After filtering
the responses received from 1395 participants, we considered
responses of 249 participants as valid and analyzed them.
The empirical evaluation results indicate that, in contrast to
expectations, we do not find enough evidence that the merging
and repositioning of alarms reduces manual inspection effort or
improves accuracy of the inspection results, and sometimes it
has a negative impact. A closer look at the results suggest that
the study results are inconclusive and a more detailed study
needs to be performed to evaluate the premise. Furthermore,
the evaluation results indicate that the participants’ spatial
cognition abilities (one’s ability to perceive how objects relate

1 void foo () {

2 int arr([5],tmp=1,1=0;
3

4 if(...){

5 if(..0)f{

6 i = 1ib1l();

7 lelse(

8 i = 1ib2();

9 }

10 //assert (0 <i<4);
11 tmp = 0;

12 telse(

13 tmp = 1ib3();

14 }

15

16 if (i < tmp)

17 arr[i]=0;

18 else

19 arr[i]=1;

20 }

Fig. 1: A code example showcasing repositioning of alarms
taken from [19].

to each other - relevant in programming) correlated with their
comprehension skills and the inspection accuracy.
The paper makes the following contributions:

e An empirical evaluation conducted to validate the as-
sumption of reduced developer effort in evaluating repo-
sitioning and merging of alarms.

« An investigation studying the relationship between cog-
nitive tasks and manual inspection of repositioned and
merged alarms.

¢ A complete replication package for reproducibility.

II. BACKGROUND AND RELATED WORK

In this section we discuss related work in repositioning
alarms. For additional details, we direct the reader to a survey
of 130 studies that propose techniques for processing alarms
after they are generated [24].

To overcome limitations of techniques that cluster similar
alarms, repositioning of alarms has been proposed recently.
Repositioning of alarms is performed with two goals in mind:
(1) to reduce the number of alarms by safely merging multiple
similar alarms together; and (2) to report alarms closer to the
causes for their generation, so that manual inspection effort
gets reduced. In the rest of the paper, we use merging of alarms
to refer to the first repositioning goal (reducing the number of
alarms by safely merging multiple similar alarms together),
and closer reporting (or simply repositioning) of alarms to
refer to the second repositioning goal (reporting alarms closer
to the causes of their generation).

We illustrate the two repositioning goals by borrowing and
discussing the motivating example discussed in a prior study
by Muske et al. [19] shown in Figure 1. Analysis of the
example code using a static analysis tool generates two alarms
for array index out of bounds property. Such tool-generated
alarms are called original alarms. These alarms are shown
using Ay7 and Ajg.

Repositioning these two alarms results in merging them
into a single alarm and reporting the merged alarm on line
10. The alarm resulting after the repositioning is shown as
RAjo Note that, during this repositioning, the effect of the
else branch at line 12 is ignored, because i = 0 if the else
branch at line 12 is taken and the alarms A;7 and Ag are safe
due to this value. The shown repositioning of alarms achieves
both the repositioning goals: reduces the number of alarms
from two to one !, and reports alarms closer to causes of
their generation. The repositioning techniques claim to reduce
manual inspection effort required for A;7 and A;9 because,

1) the number of alarms to be inspected is reduced from two

to one, and

2) during inspection of A7 (or A1g), the code that includes

assignment to ¢ on line 2 and the else branch on line
12 gets inspected, whereas this is not the case during
inspection of RA;y.

III. RESEARCH QUESTIONS AND HYPOTHESES
A. Research Questions

The goal of this research is to understand the impact of
alarm repositioning on the alarms inspection performance
(measured by accuracy of evaluation and speed of inspection).
As explained in Section II the repositioning technique aims
to achieve the effort reduction in two ways: (1) merging of
alarms, and (2) reporting alarms clauser to the cause point.
Therefore, we ask the following two research questions.

RQ1: Does merging of multiple similar alarms and
representing them by fewer alarms improve alarms
inspection performance?

RQ2: Does reporting of alarms closer to the causes
of their generation improve the alarms inspection
performance?

Furthermore, it has been shown in prior literature that
cognitive abilities such as amount of working memory and
coding skills seem to be related [25]. In other work, it has
been shown that mental rotation tasks [26] are also related to
problem solving [27]. In order to test if this holds for alarm
inspections, we investigate whether there exists a relationship
between performance on cognitive tasks and manual inspection
of alarms. The findings of this investigation can help to
select users for manual inspection of alarms based on their
performance on cognitive tasks. The third research question is
as follows.

RQ3: Is there a relationship between cognitive tasks

and tasks involving manual inspection of alarms?

B. Hypotheses

Both merging of similar alarms (RQ1) and closer-reporting
of alarms (RQ2) can impact performance - inspection effort
(measured in time) and accuracy of the inspection results.
Therefore, we answer both RQ1 and RQ2 in terms of these two

'When repositioning of alarms is performed, only the repositioned alarms
are to be manually inspected.

parameters: reduction in manual inspection time, and gain in
accuracy of inspection results. For RQ1 and RQ2, we design a
separate hypothesis corresponding to each of these parameters.

As alarms inspection effort is generally measured in terms
of time taken, we use terms inspection effort and inspection
time interchangeably.

1) Alarms Merging - Inspection Time Hypothesis (MTH):
The first hypothesis seeks to test if merging of similar alarms
reduces alarms inspection effort. The null and alternate hy-
potheses follow.

MTH, Merging of multiple similar alarms does not
cause any significant reduction in time taken to inspect the
alarms.

MTH, Merging of multiple similar alarms reduces time
taken to inspect the alarms.

This hypothesis will help determine whether substituting a
group of similar alarms by a fewer alarms reduces manual
effort required to inspect the similar alarms. If reduction
in effort is observed, similar alarms could be merged and
the resulting alarms will be reported to reduce the manual
inspection effort.

2) Alarms Merging - Inspection Accuracy Hypothesis
(MAH): This hypothesis seeks to test if merging of similar
alarms improves accuracy of manual inspection results. The
null and alternate hypotheses follow.

MAH, Merging of multiple similar alarms does not
significantly improve accuracy of manual inspection of the
alarms.

MAH4 Merging of multiple similar alarms improves
accuracy of manual inspection of the alarms.

This hypothesis will help determine whether substituting a
group of similar alarms by a fewer alarms improves accuracy
of manual inspection results. If improvement in accuracy is
observed, similar alarms could be merged and reported to the
user.

3) Closer reporting - Inspection Time Hypothesis (CTH):
The third hypothesis seeks to test if closer-reporting of alarms
reduces the code traversals performed during their inspection,
thereby reducing alarms inspection effort.

CTHy Closer reporting of alarms does not significantly
reduce time taken to inspect the alarms.

CTH, Closer reporting of alarms reduces time taken to
inspect the alarms.

This hypothesis will help determine whether closer report-
ing of alarms reduces manual effort required to inspect the
alarms. If reduction in effort is observed, alarms can be post-
processed to identify their causes and reported as close as
possible to the causes.

4) Closer reporting - Inspection Accuracy Hypothesis
(CAH): This hypothesis seeks to test if closer reporting of
alarms improves accuracy of manual inspection results.

CAHy Closer reporting of alarms does not significantly
improve accuracy of manual inspection of the alarms.

CAH,4 Closer reporting of alarms improves accuracy of
manual inspection of the alarms.

This hypothesis will help determine whether closer report-
ing of alarms improves accuracy of the manual inspection
results. If improvement in accuracy is observed, alarms can be
reported as close as possible to the causes for their generation.

5) Cognitive Tasks - Alarms Inspection Relationship
Hypothesis (CogAH): This hypothesis (related to RQ3) seeks
to test if a relationship between cognitive tasks and tasks
involving manual inspection of alarms exists.

CogAH, There does not exist a relationship between
accuracy on cognitive tasks and tasks involving manual in-
spection of alarms.

CogAH 4 There exists a relationship between accuracy
on cognitive tasks and tasks involving manual inspection of
alarms.

Based on this hypothesis, if the relationship between accu-
racy on cognitive tasks and alarms inspection tasks is observed,
users performing better (more accurate) with cognitive tasks
can be selected for manual inspection of alarms.

IV. EXPERIMENT DESIGN
A. Study Overview

The goal of this controlled experiment [28], [29] is to
analyze the inspection of alarms in C code for the purpose of
evaluating repositioning and merging alarms from the point of
view of a C developer in the context of whether or not static
analysis alarms hold. Participants were asked to complete a
series of comprehension and cognitive tasks. The study was
approved by the university’s institutional review board.

The study was hosted online on Qualtrics [30], a platform
that allows building and distributing surveys. Qualtrics en-
ables implementation of complex logic and randomization and
allows customization of surveys. It also enables the survey
distributor to see how much time is spent on each question in
milliseconds, which we used for task duration. The survey was
distributed through social media as a direct link (Link Share)
and also put up as a Mechanical Turk Human Intelligence Task
(HIT) [31]. On the Mechanical Turk website, a requester can
post an HIT and workers can accept and complete the HIT. The
requester can then check the submission and accept or reject
the HIT. Accepting a HIT will automatically pay a worker for
their task. Since the study was expected to take two hours,
we paid the participants twice the hourly minimum wage of
the state we are based in. A complete replication package? is
available for download.

B. Tasks and Groups

We had three sets of main tasks, cognitive, proficiency and
comprehension tasks. We also included a pre-questionnaire
that asks the participants about their demographic details and a
post-questionnaire asking about their their overall experience.

Zhttps://osf.io/u32hj/?view_only=fe862992cef34476a2407bdabec8b731

TABLE I: Summary of the task groups considered in the study, different treatments given, and task selection for each participant.

#Tasks .
Availabl #Availabl igned # of Lines Assi t | Related
vailable vailable assigne ssignmen elate
Category of tasks #Tasks © in Code ¢
treatments tasks to each Logic RQs
. Per Task
participant
3D Mental
Cognitive i 30 48 30 Random
Rotation Task RQ3
tasks
Operation Span Task 10 10 - Random
Proficienc Between All,
Y Proficiency Tasks 5 5 X .
tasks 7 - 14 lines randomized
Comprehension No-repositioning (NR), 2 1
P Learning Task 1 p . 2 (NR) 183 Random
tasks Repositioning (R) (L-NR, L-R) (L-R/L-NR)
. A-1: 350 (1 file)
Manual Inspection)
4 A-2: 219 (I file)
of Alarms 2 2 Random RQ3
(A-1, A-2, A-3, A-4) A-3 : 353 (1 file)
(Task Group A)
A-4: 166 (1 file)
Repositioning L 4 2
. . No-repositioning (NR), B-1: 135 (1 file)
(closer-reporting) of 2 L (B-1-NR, B-1-R (B-1-NR/B-1-R, . Random RQI1, RQ3
Repositioning (R) B-2 : 160 (1 file)
an Alarm (Task Group B) B-2-NR, B-2-R) B-2-NR/B-2-R)
. . X 4 2 C-1: 188 (1 file)
Merging of Similar No-merging (NM),
2 i (C-1-NM, C-1-M (C-1-NM/C-1-M, | C-2-NM : 2526 (7 files) Random RQ2, RQ3
Alarms (Task Group C) Merging (M) .
C-2-NM, C-2-M) C-2-NM/C-2-M) C-2-M : 1693 (3 files)

1) Cognitive Tasks: After completing the pre-questionnaire
on demographic and experience details, the participants re-
ceived links and unique IDs to complete two separate cognitive
tasks: 1) operation span task [32], [33] and 2) 3D mental
rotation task [26]. They measure spatial recognition ability
and working memory respectively. Baum et al. [25] discovered
that there is an effect from working memory capacity on
bug localization accuracy in code reviews. Sharafi et al. [27]
also found that spatial ability and data structure manipulation
are related neural tasks. We included these tasks to explore
whether these correlations exist when it comes to solving
our comprehension tasks. Since our study was hosted online,
we used the Magpie framework [34] to build psychological
experiments that run on the participants’ browser. We used
the open source Mental Rotation Task [35] and hosted it on
a website which was linked in the survey. We also developed
the operation span task using the magpie framework [36], and
included the link to this task in our survey as well.

Each trial in the 3D mental rotation task shows two images
of 3D objects to participants, and asks them to determine if the
objects are the same or different. We gave the participants five
practice trials with the answers shown to them after answering
the questions, and thirty main trials to complete the task. The
operation span task included three practice trials and ten main
trials. In each trial of the task, the participants are asked to
verify the correctness of a math equation (a distractor), and
then memorize a letter that comes after the equation. After
a number of equations and letters are shown, the participant
will be asked to enter the letters they have memorized in a
text box, in the order that they have seen them.

2) Proficiency Tasks: Subsequently, the participants were
asked to answer five short C programming questions in ran-
domized order. We included these questions to be able to
exclude the participants who did not have C programming
skills. Danolova et al. [37] argue that it’s important to include
proficiency or screening questions in surveys, specifically in

surveys done using online recruitment platforms. Failure of
adding proficiency questions to the experiment, will lead to
inclusion of corrupt data from participants with no program-
ming experience.

3) Comprehension Tasks: The next question presented was
a learning/tutorial comprehension task. This task included an
assertion inside the code for the participant to inspect and
check, and we included the answer to the question. The learn-
ing task had both a repositioned and non-repositioned treat-
ments, and one of these two treatments was randomly selected
for each participant. Next, six more programming questions
were presented to the participant. Each question included
manually evaluating assertions placed on certain code lines.
The main prompt was: Does the assertion on the line hold?.
The participants were given the choices “Yes” and “No”,
and an optional text box to comment about their reasoning.
Accuracy (score) of the answer is considered “correct” if the
assertion evaluation is correct. Our study followed a within-
subjects design [38], where all participants are exposed to all
treatments albeit in different tasks to avoid learning effects.
The comprehension tasks were set up and randomized in a
way that each participant would see all the different treatments
(repositioned/non-repositioned, merged/non-merged). Table I
shows a summary of all tasks and the related research question.

For the Manual Inspection of Alarms task category, we
designed four different tasks and two of them were randomly
selected and presented to each participant. We denote these
tasks as Category A tasks. For the tasks related to the
Repositioning of A Single Alarm task category, we had two
different tasks with the treatments of repositioned and non-
repositioned, and each participant saw one repositioned and
one non-repositioned task. We call tasks in this category
category B tasks. Similarly, the C task group was for tasks
related to the Merging of Similar Alarms category, for which
we had two tasks with merged and non-merged treatment. We
showed each participant one merged and one non-merged task.

For Category B and C tasks, to ensure randomization and
that the participants are getting both of the treatments, we
selected the first question of each category and randomized
the treatment, and ensured that the participant gets the other
treatment for the second task in the same category. We
implemented this logic using Qualtrics’ randomization and
survey flow tool. An example of the randomization of compre-
hension tasks for a specific participant is shown in Table II.
This logic ensured that each participant gets one task each
for repositioned, non-repositioned, merged, and non-merged
treatments. We followed the convention shown in Table II for
naming the tasks with their treatments.

TABLE II: Randomized order of tasks for a sample participant

Order | Task Name

1 LearningTask-A (Non-repositioned)
2 A-4

3 A-3

4 B-1-R (Repositioned)

5 B-2-NR (Non-repositioned)

6 C-1-NM (Non-merged)

7 C-2-M (Merged)

The naming convention of the tasks is as follows. There
are three different families of comprehension tasks, which are
denoted by A, B and C groups. The first letter of the task
name is the name of the group it belongs to. The second
letter of the task name is its number within its group. The
tasks with no treatment, which are non-repositioned and non-
merged, are specified with NR and NM as their last characters
respectively. The tasks with repositioning or merging treat-
ments are specified with R and M as the last character. As an
example, B-1-NR, is the first task of the B group without the
repositioning treatment. The tasks were chosen from realistic
C applications and experienced C developers in an industrial
firm were consulted for feedback on the types of tasks used.
Refer to our replication package for details.

C. Variables

The independent variables in this controlled experiment are
repositioning and merging of alarms. Table III summarizes the
experimental design. The participants each had to complete
two tasks without any treatments, one task with a reposition-
ing treatment, one task without the repositioning treatment,
one task with the merging treatment, and one task without
the merging treatment. The order of which the participants
received a treatment or non-treatment task in each group
was randomized. Thus, either the first task of the group
was a treatment task, or the second one, but we ensured
that all participants received one treatment task in each of
the repositioning and merging groups, and one non-treatment
task in each group. The dependent variables were accuracy
and speed of solving the tasks. For the cognitive tasks, we
measured the accuracy score of each task.

TABLE III: Experiment Overview (within-subjects design)

Study the effect of repositioning
Goal)
and merging alarms

. Repositioning Alarms
Independent Variables .
Merging Alarms

No treatments (manual inspection of alarms)
Task Types (Treatments) Repositioned/Non-repositioned

Merged/Non-Merged

Dependent Variables Accuracy, Speed

Secondary Factors Mental Rotation and Operation Span Scores

D. Farticipants

We had two separate but identical Qualtrics surveys set
up for participants recruited through Mechanical Turk and
participants recruited through Link Share. We inspected the
submissions and if we observed that participants did not meet
specific requirements on timing and proficiency, we excluded
those participants. We set the minimum amount of time for
completing all the tasks presented to a participant to 30
minutes, as our pilot study with five participants indicated
30 minutes as the minimum time to analyze and answer the
questions. To confirm that we did not delete useful data by
setting the cutoff time to 30 minutes, we randomly chose
a subset of the entries with duration under 30 minutes. We
compare the individual tasks’ duration with the entries from
our pilot study, and we noticed that the amount of time spent
on each task is significantly lower compared to our trusted
pilot participants.

Furthermore, we only kept the entries of participants who
at least completed the proficiency questions and the first two
comprehension tasks, as we needed the completion of at least
two of the main comprehension tasks for analysis. If the
participants did not go further than the learning task, their
entries would be discarded, as they had not completed any of
the experiment’s main tasks. To further prevent including data
from participants who did not make an effort on completing
specific tasks, we set a cutoff duration for each individual task
under analysis as well. We explain this process in Section V-A.

E. Study Instrumentation

We published the survey under the name “Assessing Static
Analysis Alarms” in Mechanical Turk with the following
description to give the MTurk workers an idea on the purpose
of the study: “The purpose of this study is to understand how
developers resolve/manually inspect static analysis alarms in
the C programming language. You will be asked to complete
a series of programming and cognitive tasks. It will take about
two hours of your time.”.

The time allotted for each worker was three hours to prevent
the participants from running out of time, and to account for
unexpected events such as internet outages. The study was
published in batches and for 20 workers at a time, to easily

manage accepting and rejecting submissions. After 20 workers
would complete the study, we examined their submissions and
decided on whether to accept or reject them. The survey was
published to workers with the criteria of being employed in
Software and IT services industry. After accepting the HIT,
the workers were shown the Qualtrics survey link and they
were asked to enter the ID that was generated for them upon
completing the Qualtrics survey into a text box. They were
also asked to enter their MTurk worker ID on the first page of
the Qualtrics survey, so that we could ensure the validity of
the submissions on the survey. We also recruited participants
through sharing the survey link on social media and with
computer scientists and developers we knew as friends or
coworkers. The participants who partook in the study through
following the link had to email the survey administrator with
their Qualtrics ID to get their incentive.

We tailored the survey in a way that the code would
look similar to what the participants see in their IDEs while
working on software development tasks. We used PrismJS [39]
to highlight the syntax of the code shown to participants.
Since some of the tasks required traversing multiple C files,
we created a tabbed view that included each file on each
tab inside the Qualtrics questions (see replication package
for the figure of the view), but unfortunately the Qualtrics
customization did not allow us to insert such JavaScript code
into the tasks. We worked around this limitation by hosting
the tabbed view including all the necessary files for each
question on another website, and embedding the page into
the corresponding Qualtrics questions.

V. EXPERIMENTAL RESULTS
A. Data Cleaning and Pre-processing

Initially we had 1254 entries into our Link Share Qualtrics
survey, and 141 entries into our Mechanical Turk Qualtrics
survey. Inspection of the data indicated that a number of
participants did not substantially complete the survey. At first,
we deleted the entries from participants who did not progress
beyond the learning task, spent less than 30 minutes on the
entire survey (as explained in section IV-D) and they did not
complete any of the main tasks. Subsequently, we checked
the data for obvious spam data (e.g. copy/paste comments and
keysmashing), and deleted records from participants who spent
less than 20 seconds on each question.

After performing the explained steps, we were left with
151 entries from our Link Share Qualtrics survey, and 98
entries from our Mechanical Turk Qualtrics survey. In our
pre-questionnaire, we asked the participants demographic and
experience details. Table IV summarizes these demographic
and experience details of the participants from the two surveys.

Among the remaining submissions, we analyzed the tasks
separately, since there might have been participants who
completed some of the tasks and stopped working on the
survey. To get a better idea on how much time should be
spent on each task, and to define a cutoff to delete the entries
in which the participants were too fast or too slow to solve the
task, we put together a list of fifteen participants whom we

TABLE IV: Summary of demographic and experience details
from Link Share and Mechanical Turk participants

Choices Link Mechanical
Share | Turk
Age 19-23 33 3
24-28 55 49
29-33 37 29
34-38 19 12
39-43 2 1
44-48 3 2
49+ 2 2
Gender Woman 40 45
Man 107 52
Non-binary 2 1
Undisclosed 2 -
Programming Less experienced 49 17
Experience Equally experienced 80 63
Compared to Peers | More experienced 22 18
Years of Less than 1 year 34 9
Programming Between 1 and 3 years | 50 41
Experience Between 3 and 5 years | 37 34
More than 5 years 30 14
Usage of Static Yes 113 52
Analysis Tools No 38 46
Frequency of A couple times a year 33 17
Fixing Bugs Every month 54 43
Every week 44 19
Everyday 20 19
Most Familiar Visual Studio 70 60
IDE Eclipse 25 26
NetBeans 18 12
Intellij 27 -
Other 11 -
Years of 0-1 59 7
Experience in 2-4 69 73
Industry 5+ 23 18

trusted spent significant time on the study. These were students
or programmers that the authors personally reached out to and
asked them to complete the study. We separated the six tasks
presented to the participants (7 = number of tasks, 1 < j < 6)
and we found the minimum time spent on each task among the
trusted participants (Trusted;). We then excluded the entries
where task j took less time than Trusted;. Subsequently, we
used the interquartile range method to detect the outliers who
spent an unusually long time working on each task.

In the last step, we also considered the proficiency in the C
programming language by setting a criteria on the proficiency
questions. From the remaining entries, we only kept the tasks
from the participants who received a score greater and equal to
2 out of 5 from the proficiency questions. Figure 2 shows the
differences between the level of experience of the participants
of Link Share vs Mechanical Turk. Most of the participants
from Link Share and Mechanical Turk think that they are

wn
(=)

B LinkShare
Mechanical Turk

1n

Lessthan Between1 Between3 More than
1 year and 3 years and 5 years 5 years

Years of Experience

[\S] (9% &
S (=} (=}

Number of Participants
1S

Fig. 2: Years of experience in programming for Link Share
and Mechanical Turk survey participants

TABLE V: Number of entries for each task

Link Mechanical | Overall
Share | Turk

A Tasks | 34 19 53

B-1 31 20 51

B-2 30 12 42

C-1 27 14 41

C-2 23 21 44

equally experienced to their peers. The Mechanical Turk and
Link Share participants had different levels of experience
in programming and also years of industry experience. Due
to these differences, we decided to analyze the differences
between the two groups instead of combining the entries and
analyzing the combined data in search of the answers for our
research questions. Table V shows how many entries were left
after cleanup of the data for each task, in the LinkShare and
Mechanical Turk surveys.

B. RQI Results : Merging and Performance

We first examined the differences between the speed and
score obtained by participants from Mechanical Turk and
LinkShare on C-1 and C-2. We used ANOVA on the duration
and score of participants for each of the tasks, and calculated
the effect size using Cohen’s d. We did not find differences be-
tween the groups, so we do not distinguish between LinkShare
and Mechanical Turk participants’ submissions for these tasks.

Next, we compared the duration and scores of participants
who worked on the merged and non-merged treatments for
each task. Figure 3 shows the box plot of the time participants
worked on each treatment, and the scores of the participants
who worked on the different treatments. For Task C-1, we first
ran the Shapiro-Wilk test on the two merged and non-merged
groups’ speed to determine the normality of the data distribu-
tion. We found that data was not normally distributed. We then
ran the Mann-Whitney test to see if the differences between the
two merged and non-merged treatments are meaningful. The
test showed that there are no significant differences between
the speed of the participants working on merged and non-

C Task 1 - Merged vs
Non-merged durations

400 °

o

2350 o

Merged Non-merged

(a) Durations of treatments of Task C-1

C Task 2 - Merged vs
Non-merged durations

800

~ 700

2 600

]

3 500

2

= 400

£ 300

g 200
100

o

o

Merged Non-merged

(b) Durations of treatments of Task C-2

C Task 1| - Merged vs
Non-merged Alarms Scores

@ HEl Merged
§ 15 Non-merged
k=3
2
=
[+1
g 10
S
S
3
S 5
g
=
“ ||

0

Incorrect Correct
Correctness

(c) Accuracy of answers for treatments of
Task C-1

C Task 2 - Merged vs
Non-merged Alarms Scores

@ Bl Merged
=]
Non-merged

,§- 15 &
2
5
A 10
Gy
S
St
2 s
g
=
Z .

0

Incorrect Correct
Correctness

(d) Accuracy of answers for treatments of
Task C-2

Fig. 3: Comparison of different treatments in the C task group

merged treatments (Merged treatment: N = 19, Non-Merged
treatment: N = 22, p = 0.504, d = 0.1035).

To examine the effect of the treatment on the accuracy of
answers, we gave the score of 0 or 1 based on the accuracy
of the answers for the task, and treated them as categories of
“correct” and “incorrect”. We ran the Fisher’s Exact test to
determine if there are non-random associations between two
categorical variables. The test showed that there is not enough
evidence to claim there’s any associate between accuracy
of answers and merging of alarms (p = 0.14). We repeated
the same steps for the speed of the participants receiving
different treatments on Task C-2 (Merged treatment: N = 22,
Non-Merged treatment: N = 22). We found no significant
differences between the speed (Mann-Whitney test p-value =
0.391, d = 0.004) and no association between accuracy of
answers and merging of alarms (p = 0.0546).

We could not reject the null hypotheses MTH, and
M AH,, indicating lack of evidence that merging multiple
similar alarms improves the accuracy and inspection effort.

C. RQ?2 Results: Repositioning and Performance

To investigate performance on tasks of group B, we looked
at the accuracy and speed of completing the tasks. Once again,
we examined the differences between the speed and accuracy
score from Mechanical Turk and LinkShare participants who
completed the tasks, to see if the groups have any effect on the
speed and accuracy of tasks. Using ANOVA on the Tasks B-
1 and B-2 durations and scores shows there are differences
between the Mechanical Turk and LinkShare durations for
task B-1 (ANOVA p = 0.036, d = 0.61), but not on task B-
2 (ANOVA p = 0.055, d = 0.674). Based on these results,
we decided to analyze the effect of repositioning on the
Mechanical Turk and LinkShare task B-1 entries separately,
but for task B-2 we merged the entries from the two sources.

For tasks B-1 LinkShare, B-1 Mechanical Turk, and B-2,
we looked at the effect of repositioning of alarms on duration
and score. See Figure 4. For all groups of tasks, we first
ran the Shapiro-Wilk test to test whether the distribution of
data was normal. We found that the repositioned and non-
repositioned tasks’ durations were normally distributed on task
B-1 LinkShare, but not on the other groups. To investigate the
effect of repositioning on the speed of problem solving, we
used the T-Test or Mann-Whitney test based on the normality
of data. Table VI shows the results of the statistical tests, and
that none of the tests showed any significant effect on the
speed from repositioning. We used the Fisher’s Exact test to
explore whether the repositioning treatment has an effect on
the accuracy scores. We could not find any evidence that this
effect existed based on the Fisher’s Exact test (B-1 LinkShare:
p = 0.293, B-1 MTurk: p = 0.255, B-2: p = 1)

We cannot reject the null hypotheses C'T'Hy and C' AHy, in-
dicating lack of evidence that repositioning (closer-reporting)
of alarms increases accuracy and speed of manual inspection.

D. RQ3 Results: Cognitive Tasks and Performance

For RQ3, we looked at the relationship between the com-
prehension tasks accuracy score (Cs.,) of the participants on

TABLE VI: Results of statistical tests for Task group B

Test » Effect Size Repositioned | Non-repositioned
Group N Group N
B-1
. T-Test 0.889 | -0.050 13 18
LinkShare
B-1 .
Mann-Whitney | 0.623 | -0.104 8 12
MTurk
B-2 Mann-Whitney | 0.989 | -0.168 26 16

the comprehension tasks to the scores they obtained on the
two cognitive tasks. To find out which cognitive task entries
were useful, we found the participants with proficiency score
> 2, who completed at least one comprehension task based
on our cutoff criteria. The results were the entries of 122
participants. Since the participants were asked to complete
six comprehension tasks, we calculated their score on the
survey out of six. We gave a score of zero for each task
that the participants did not attempt to complete. (N = 122,
Meanc,,, £ SD = 1.93£1.22)

We then calculated the scores on the cognitive tasks. In the
3D Mental Rotation task, the participants saw five practice
trials and thirty main trials. In each trial, they saw two images
of two 3 objects side by side, and they decided if the objects
were the same or different. The participants would get one
point for each correct answers on the main tasks. Thus, the
scores of the participants (denoted by MRT,,) are calculated
out of 30 (N = 111, Meanyrr,,, £ SD = 22.13+6.17).
In the Operation Span (OSPAN) Task, we calculated the
score based on the operation span task MIS scoring method
presented by Lammert et al. [40]. The MIS method takes
into account the performance on both the letter recall and the
correctness of math equation check distractor tasks. For the
operation span task, we had ten main tasks for the participants,
and the MIS score (denoted by OSPAN;,,) for each task is
out of 1, leading to the overall highest possible score being
10 (N =94, Meanospan.., £SD = 6.077£1.66).

To find the relationship between the cognitive scores and
Cseo, We used Pearson’s correlation. We found that there
was a moderate positive correlation between the M RT.,
and Cy.,, 7 = 0.431, p < 0.005, with mental rotation task
score explaining 18% of the variation in comprehension tasks
scores. However, we did not find a correlation between the
OSPAN;., and Cyepo. (r = 0.189, p = 0.069)

Our findings for RQ3 show evidence that can reject the
null hypothesis CogAHj, indicating there is a relationship
between a programmers’ spatial abilities and their problem
solving skills.

E. Post Questionnaire Results

Overall, most participants found the study somewhat diffi-
cult. Breaking this down further, out of the 122 participants
with proficiency test scores > 2 who had at least completed
one task after the learning task, 21 participants believed that
the survey was “Extremely difficult”, 48 participants thought
it was "Somewhat difficult”, 24 said it was “Neither easy nor

B Task 1 - LinkShare - Repositioned vs
Non-repositioned durations

B Task 1 - MTurk - Repositioned vs
Non-repositioned durations

B Task 2 - Repositioned vs
Non-repositioned durations

400 S
=] =
g 400 5 300
250
3 300 3
= = 200
S 2
§ 200 § 150
A 100 A 100
50

600

D W B W
o O o 9
oS o o O

Duration (Seconds)

._.
(=]
S

Repositioned Non-repositioned Repositioned
(a) Durations of treatments of Task B-1 -

LinkShare Mechanical Turk

B Task 1 - LinkShare - Repositioned vs
Non-repositioned Scores

(b) Durations of treatments of Task B-1 -

B Task 1 - MTurk - Repositioned vs
Non-repositioned Scores

Non-repositioned Repositioned Non-repositioned
(c) Durations of treatments of Task B-2
(LinkShare and MTurk combined)
B Task 2 - Repositioned vs
Non-repositioned Scores

125 - =
@ B Repositioned «g 10 - REP(‘S"IO“ffI ,2 L RCP()Sl!loanJ
5 10.0 Non-repositioned 8, Non-repositioned 8 5 Non-repositioned
5 S 8 3
£ 75 = £
£ &6 & 10
4 Gy
3 5 o
© 50 Zo4 =
|5} 13} b
°© < =5
E 25 £ E
Z Z Z
0.0 0 0-
Incorrect Correct Incorrect Correct Incorrect Correct
Correctness Correctness Correctness

(d) Accuracy of answers for treatments of (e) Accuracy of answers for treatments of (f) Accuracy of answers for treatments of

Task B-1 - LinkShare

Task B-1 - Mechanical Turk

Task B-2

Fig. 4: Comparison of different treatments in the B task group

difficult”, 10 people believed it was “Somewhat easy”, and 4
believed that it was “Extremely easy”.

F. Threats to Validity

Internal Validity: Confounding factors such as proficiency in
the C programming language and the online nature of the study
are threats to the internal validity of the study. We tried to
mitigate the lack of proficiency in C by asking the participants
to complete a proficiency test and excluding the participants
who could not achieve a proficiency score > 2. Since we could
not monitor the participants due to the online nature of the
study, we tried to use duration as an indicator of attention
while working on the tasks. However, the cutoff time might
have affected the number of entries we had for each task.
Additionally, when we split participants into blocks of < 5
years and > 5 years of programming experience, we did not
see any significant differences in the results.

External Validity: The comprehension tasks chosen for this
study were taken from open source software and the realistic
nature of the tasks makes them a good representative of what
software developers work on. In terms of population validity,
the participants had varying levels of expertise and we had
more participants with less than five years of experience com-
pared to participants with more than five years of experience
(Figure 2). This can possibly be a threat to the generalizability
of the results, especially when trying to understand whether

applying these methods for experienced programmers can
make a difference in their work.

Construct Validity: Our dependent variables were chosen
carefully to make sure they represent what we seek to measure.
Due to the online nature of the study, we measured the
accuracy and the speed of participants while working on
comprehension tasks. These measures can give us some ideas
about whether the repositioning or merging of the alarms had
an effect on inspection time and difficulty of problem solving.

Conclusion Validity: With respect to conclusion validity, we
ensured to test all assumptions for the statistical tests used. We
used the unpaired Mann-Whitney test to compare the averages
of the two independent groups in the study, which is suitable
for small samples that are not normally distributed. For the
normally distributed samples, we used the T-Test.

VI. DISCUSSION AND IMPLICATIONS

This section discusses possible reasons for no reduction in
manual inspection effort.

A. Impact on Manual Effort Reduction

When it comes to manual effort reduction several possible
explanations can be provided for the inconclusive results.
1) Indeed, there is no reduction in manual inspection effort
due to the alarms merging and repositioning.
2) There is reduction, but it is negligible when compared
with the effort required to inspect the repositioned alarms.

3) There is significant reduction, however the study setup
and design is not able to capture it due to sample size.

Following we discuss these possibilities in detail.

1) Possibility 1 - No reduction: Based on our experience
with working on manual inspection of alarms, and also as
argued in the original paper introducing repositioning of
alarms [19], we expected reduction in inspection effort, as
the merging of alarms reduces the numbers to be inspected,
and reduces the code traversals to be performed. In our
own manual analysis of those tasks, we found that there is
some code that gets skipped due to the alarms merging and
repositioning. Therefore, based on the theoretical grounds we
consider possibility 1 to be unlikely.

2) Possibility 2 - Negligible reduction: We analyze our
study setup and manual inspection process in practice to
identify differences in the process as those could also be
the reasons for not observing significant improvement in the
inspection effort. We observe the following:

(1) Number of alarms reported matter: In our tasks, only the
alarms that are merged are considered. However, in practice,
there are thousands of alarms [14]. When these alarms are
reported to the user, it is not guaranteed that similar alarms
will get reported together. Thus, their manual inspection can be
performed at different times, and the context switch happens
when user switches from one alarm to another alarm. In our
tasks, there was no context switches impact as those alarms
were from the same code locations (functions).

(2) Reduced effort is negligible as compared to the remain-
ing effort: In general, inspecting alarms is a time consuming
process as it requires to traverse the code to figure out values
for variables involved. This is true for original alarms as well
the alarms resulting after merging and repositioning. In our
manual inspection of those merged and repositioned alarms,
we found that the time required to inspect is considerable, and
this effort dominates the effort that gets reduced.

3) Possibility 3 - Significant reduction: This possibility
relates to the reduction being present but our study not being
able to detect it due to the study setup. It could be due to the
following reasons:

(1) Small number of participants: We had a large number
of participants taking the study. However, the number of
submissions left after preprocessing and cleaning the results,
for each of the Link Share and Mechanical Turk categories is
small compared to the developer population.

(2) Within-subjects study: Since a participant cannot com-
plete a same task with and without a treatment due to learning
effects, we designed the study as within-subjects. As the
experience and proficiency with programming languages affect
the inspection time, it is possible that the reduced time is
nullified.

B. Impact on Inspection Accuracy Improvement

As discussed earlier (Section V), the merging and reposi-
tioning of alarms does not improve the inspection accuracy.
Our analysis to understand the reasons for this resulted in the
following possibilities:

(1) Assumptions about the code: Every user has different
assumptions about APIs and the code encountered during the
inspection process, €.g., whether the arguments passed to main
function can take null value. Therefore, it is possible that
participants made different assumptions for the same code
during the inspection process and ultimately reached different
conclusions.

(2) Code context is different for repositioned alarms: The
feedback given by some of the participants during the pilot
stage of the study included that the variables present in the
assertions were not found in the code surrounding to it, and
it confused some of the participants. These cases arise as
repositioning reports alarms at different locations than the
locations where the error can occur (the involved variables
are actually used). Considering this could be a reason, a more
detailed investigation is required.

Confirming the premise of impact of merging and reposi-
tioning of alarms offers a variety of new insights and oppor-
tunities to design new techniques to reduce code traversals
performed during the alarms inspection, and thus simplify the
inspection process.

C. Cognitive Skills Effect on Accuracy

The results for RQ3 show that comprehension tasks’ scores
are more affected by the participants’ spatial cognition skills
(as measured by the 3D Mental Rotation task) compared
to working memory (as measured by Operation Span Task).
This relationship can be explained by the nature of the
comprehension tasks, which mostly asked the participants to
explore the state and value of a variable throughout the task,
and might have led them to create a map of the variables
in their mind to follow to answer the questions. The tasks
were not memory intensive tasks, and they did not require the
participants to memorize the values of different variables or
states at a time. This could explain why we could not see
a relationship between working memory and accuracy of the
comprehension tasks.

VII. CONCLUSIONS AND FUTURE WORK

The paper investigates the effect of merging and reposi-
tioning of alarms on their inspection time and accuracy. We
designed and conducted a Qualtrics within-subjects study for
this purpose. The findings from our sample, do not provide
enough evidence indicating that repositioning and merging
of alarms have an effect on the alarms’ inspection time and
accuracy. However, our analysis showed that the participants’
spatial cognitive abilities correlated with their comprehension
skills and accuracy. For future work, we plan to conduct the
same study using an eye tracker to get more detailed and
fine-grained data about the effects of alarms merging and
repositioning, and understand the inspection process to identify
other factors that can help reduce the inspection effort.

ACKNOWLEDGMENT

This work has been partly funded by the National Science
Foundation under grant number CCF 18-55756.

[1]

[3]

[4]

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in International
Conference on Software Engineering. 1EEE, 2015, pp. 598-608.

L. N. Q. Do, J. Wright, and K. Ali, “Why do software developers
use static analysis tools? a user-centered study of developer needs and
motivations,” IEEE Transactions on Software Engineering, 2020.

N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,” in
Workshop on Program Analysis for Software Tools and Engineering.
ACM, 2007, pp. 1-8.

A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66-75, 2010.

A. Venet, “A practical approach to formal software verification by static
analysis,” ACM SIGAda Ada Letters, vol. 28, no. 1, pp. 92-95, 2008.
N. Ayewah and W. Pugh, “The Google FindBugs fixit,” in International
Symposium on Software Testing and Analysis. ACM, 2010, pp. 241-
252.

A. Kornecki and J. Zalewski, “Certification of software for real-time
safety-critical systems: state of the art,” Innovations in Systems and
Software Engineering, vol. 5, no. 2, pp. 149-161, 20009.

G. Brat and A. Venet, “Precise and scalable static program analysis of
NASA flight software,” in Aerospace Conference. IEEE, 2005, pp.
1-10.

E. Denney and S. Trac, “A software safety certification tool for automat-
ically generated guidance, navigation and control code,” in Aerospace
Conference. 1EEE, 2008, pp. 1-11.

X. Rival, “Abstract dependences for alarm diagnosis,” in Asian Sympo-
sium on Programming Languages and Systems. Springer, 2005, pp.
347-363.

R. Mangal, X. Zhang, A. V. Nori, and M. Naik, “A user-guided approach
to program analysis,” in Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 462-473.

I. Dillig, T. Dillig, and A. Aiken, “Automated error diagnosis using
abductive inference,” in Conference on Programming Language Design
and Implementation. ACM, 2012, pp. 181-192.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Interna-
tional Conference on Software Engineering. 1EEE, 2013, pp. 672-681.
M. Beller, R. Bholanath, S. Mclntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in International Conference on Software Analysis, Evolution,
and Reengineering. 1EEE, 2016, pp. 470-481.

S. Heckman and L. Williams, “A systematic literature review of action-
able alert identification techniques for automated static code analysis,”
Information and Software Technology, vol. 53, no. 4, pp. 363-387, 2011.
T. Muske, A. Baid, and T. Sanas, “Review efforts reduction by parti-
tioning of static analysis warnings,” in Source Code Analysis and Ma-
nipulation (SCAM), 2013 IEEE 13th International Working Conference
on, Sept 2013, pp. 106-115.

L. Layman, L. Williams, and R. S. Amant, “Toward reducing fault fix
time: Understanding developer behavior for the design of automated
fault detection tools,” in International Symposium on Empirical Software
Engineering and Measurement. 1EEE, 2007, pp. 176-185.

M. Christakis and C. Bird, “What developers want and need from
program analysis: An empirical study,” in International Conference on
Automated Software Engineering. ACM, 2016, pp. 332-343.

T. Muske, R. Talluri, and A. Serebrenik, “Repositioning of static analysis
alarms,” in International Symposium on Software Testing and Analysis.
ACM, 2018, pp. 187-197.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]
[31]

[32]

[33]

[38]

[39]
[40]

——, “Reducing static analysis alarms based on non-impacting control
dependencies,” in Asian Symposium on Programming Languages and
Systems. Springer, 2019, pp. 115-135.

W. Lee, W. Lee, and K. Yi, “Sound non-statistical clustering of static
analysis alarms,” in International Conference on Verification, Model
Checking, and Abstract Interpretation. Springer, 2012, pp. 299-314.
D. Zhang, D. Jin, Y. Gong, and H. Zhang, “Diagnosis-oriented alarm
correlations,” in Asia-Pacific Software Engineering Conference. 1EEE,

2013, pp. 172-179.
W. Lee, W. Lee, D. Kang, K. Heo, H. Oh, and K. Yi, “Sound non-

statistical clustering of static analysis alarms,” ACM Transactions on
Programming Languages and Systems, vol. 39, no. 4, pp. 1-35, 2017.
T. Muske and A. Serebrenik, “Survey of approaches for postprocessing
of static analysis alarms,” ACM Computing Survey, vol. 55, no. 3, Feb
2022.

T. Baum, K. Schneider, and A. Bacchelli, “Associating working memory
capacity and code change ordering with code review performance,”
Empirical Software Engineering, vol. 24, no. 4, pp. 1762-1798, 2019.
S. G. Vandenberg and A. R. Kuse, “Mental rotations, a group test of
three-dimensional spatial visualization,” Perceptual and Motor Skills,
vol. 47, no. 2, pp. 599-604, 1978, pMID: 724398. [Online]. Available:
https://doi.org/10.2466/pms.1978.47.2.599

Z. Sharafi, Y. Huang, K. Leach, and W. Weimer, “Toward an objective
measure of developers’ cognitive activities,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 30, no. 3, pp.
1-40, 2021.

N. Juristo and A. M. Moreno, Basics of Software Engineering Experi-
mentation, 1st ed. Springer Publishing Company, Incorporated, 2010.
K. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Trans. Softw. Eng. Methodol., vol. 27, no. 3, pp. 11:1-11:51,
2018. [Online]. Available: https://doi.org/10.1145/3241743

“Qualtrics xm - experience management software,” May 2022. [Online].
Available: https://www.qualtrics.com/

“Amazon mechanical turk,” May 2022. [Online]. Available: https:
/Iwww.mturk.com/

N. Unsworth, R. P. Heitz, J. C. Schrock, and R. W. Engle, “An automated
version of the operation span task,” Behavior research methods, vol. 37,
no. 3, pp. 498-505, 2005.

A. R. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm,
and R. W. Engle, “Working memory span tasks: A methodological
review and user’s guide,” Psychonomic bulletin & review, vol. 12, no. 5,
pp. 769-786, 2005.

“Magpie experiments framework,” June 2022. [Online]. Available:
https://magpie-experiments.org/

“Mental rotation task,” June 2022. [Online].
//github.com/magpie-ea/magpie-mental-rotation
“Operation span task,” June 2022. [Online]. Available: https://github.
com/niloofarmansoor/magpie-ospan

A. Danilova, A. Naiakshina, S. Horstmann, and M. Smith, “Do
you really code? designing and evaluating screening questions for
online surveys with programmers,” in 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain,
22-30 May 2021. 1IEEE, 2021, pp. 537-548. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00057

C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

“Prismjs,” May 2022. [Online]. Available: https://prismjs.com/

M. Lammert, F. Morys, H. Hartmann, L. Janssen, and A. Horstmann,
“MIS—-a new scoring method for the operation span task that ac-
counts for math, remembered items and sequence,” 2019, psyArXiv
10.31234/osf.io/ue3;8.

Available: https:

