
Challenges in Software Ecosystems Research

Alexander Serebrenik
Eindhoven University of Technology

The Netherlands
a.serebrenik@tue.nl

Tom Mens
University of Mons

Belgium
tom.mens@umons.be

ABSTRACT
The paper is a meta-analysis of the research field of soft-
ware ecosystems, by method of surveying 26 authors in the
field. It presents a relevant list of literature and six themes
in which challenges for software ecosystems can be grouped:
Architecture and Design, Governance, Dynamics and Evo-
lution, Data Analytics, Domain-Specific Ecosystems Solu-
tions, and Ecosystems Analysis. As such, it provides a
roadmap for future research in the field.

Categories and Subject Descriptors
K.6.3 [Management of computing and information
systems]: Software Management—software maintenance;
D.2.9 [Software Engineering]: Management

1. INTRODUCTION
Research on software ecosystems in a software engineering

setting has been around for more than a decade, since the
work by Messerschmitt and Szyperski in 2003 [46]. In this
paper, we overview the state-of-the-art in software ecosys-
tems research, and we shed some light on open challenges
and future research.

The insights reported are based on an online survey that
was conducted during two months in autumn 2014 with 26
respondents that have been active in software ecosystem re-
search. As such, this survey complements the results of a
systematic literature review, carried out by Manikas and
Hansen [42], where 59 papers on the topic of software ecosys-
tems were analysed.

The contributions of this paper are twofold. First, we
identify open challenges in software ecosystem research. These
challenges can be taken up by other researchers, in order to
further advance the state-of-the-art and state-of-the-practice
in this important field of research. Second, the overview
of challenges in software ecosystems research serves as a
roadmap for researchers new to the domain.

2. SURVEY
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW ’15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
c© 2015 ACM. ISBN 978-1-4503-3393-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2797433.2797475

Before starting the online survey, we identified 164 poten-
tial respondents based on whether they had co-authored a
research article or book chapter related to software ecosys-
tem, or an article that was presented in one of the annual
workshops related to software ecosystems: the IWSECO se-
ries (International Workshop on Software Ecosystems), the
WEA series (Workshop on Ecosystem Architectures) and
BigSystem 2014 (ACM international workshop on Software-
defined ecosystems). The survey was completely anony-
mous, but respondents were optionally given the possibility
to leave an email address on which we could contact them
for providing them with the results of our survey.

2.1 Questionnaire
The survey was composed of seven open-ended questions

related to the definition of a software ecosystem, challenges
and trends in the current research on software ecosystems, as
well as pertaining to tools that support software ecosystem
researchers and stakeholders:

• What constitutes a software ecosystem according to
you and why?

• Provide a prototypical example of a software ecosystem
according to the previous definition.

• What specific challenges need to by addressed by soft-
ware ecosystem researchers and why?

• What are the most important recent trends in software
ecosystem research?

• What tools, if any, do you use when studying software
ecosystem and for which specific purpose?

• What tools for software ecosystem research are still
missing and should be developed to advance the re-
search field?

• What tools, if any, are needed by stakeholders involved
in or relying on software ecosystems?

The survey started by asking the respondents what consti-
tutes a software ecosystem and why, as well as to illustrate
this definition by one or more examples. The results revealed
that research on software ecosystems has been conducted
from a broad spectrum of viewpoints, which is in accordance
with the research literature; e.g., Lungu considers a software
ecosystem as “a collection of software projects which are de-
veloped and evolve together in the same environment” [39],

while Jansen et al. consider a software ecosystem to be “a
set of actors functioning as a unit and interacting with a
shared market for software and services, together with the
relationships among them” [34]. Therefore, in order to cor-
rectly interpret the respondents’ answers, we first needed to
identify their stance on what constitutes an ecosystem.

Next, we asked the respondents to report recent trends
in software ecosystem research and identify challenges that
need to be addressed by software ecosystem researchers.
Since all respondents were software ecosystem researchers
themselves, they are best positioned to identify these chal-
lenges and trends.

Finally, since the importance of tools for software ecosys-
tem governance and research has been widely recognised [16,
47] and numerous tools have been proposed [22, 40, 59], we
asked the respondents about the tools they currently use as
well as about those they believed to be missing still.

2.2 Survey results
Of the 164 potential candidates we originally identified,

23 did not have any valid email address. Of the remaining
141, 26 researchers responded to our survey by filling in the
questionnaire, between 25 October 2014 and 17 December
2014. This corresponds to a response ratio of 18,4%.

For each of the seven questions in the survey, respondents
were allowed to leave the response field blank if they felt they
were not able to respond to a particular question. 9 out of 26
respondents answered all questions, 7 respondents answered
all questions but one, 5 respondents provided answers to five
questions, 4 to four questions, and one respondent answered
only three questions.

20 out of 26 respondents indicated their interest in the
survey results and provided their email addresses: 14 re-
spondents were from Western and Northern Europe, five
respondents from Latin America and one respondent from
North America. Two respondents are currently employed
by a company, while the remaining 18 respondents are re-
searchers in academia.

We also observed differences in the number of responses
obtained for different questions. All 26 respondents provided
a definition and an example of an ecosystem, as well as iden-
tifying the challenges that need to by addressed by software
ecosystem researchers. Only 21 respondents described the
current trends and tools, 18 respondents suggested research
tools that should be developed, and 11 respondents sug-
gested future tools for stakeholders. These differences might
be explained either by the respondents focusing on the first
couple of questions and neglecting the remaining ones due
to laziness or fatigue, or by the more challenging nature of
the latter questions: describing the past might be an easier
task then analysing the present, which is again easier than
forecasting the future.

3. DEFINITION OF AN ECOSYSTEM
The metaphor of ecosystem has been used in a software

setting occasionally in popular scientific literature since the
late 1990s. Huberman and Hogg considered a distributed
computing system of concurrent agents as a computational
ecosystem, analogous to biological ecosystems [31]. They
studied the dynamics and chaotic behavior of such compu-
tational systems and showed how reward mechanisms may
stabilize the system, thereby optimizing its performance.

Scientific research on software ecosystems in the domain

of software engineering only started to gain momentum since
the 2003 work by Messerschmitt and Szyperski [46]. They
defined a software ecosystem as “a collection of software
products that have some given degree of symbiotic relation-
ships.”

Since then, different definitions have been proposed, fo-
cusing on relations between projects comprising an ecosys-
tem [39], presence of a shared architectural platform [12], or
the business [34] and social context [48] where the ecosys-
tems operate.

In their systematic literature survey, Manikas and Hansen
attempted to combine the technical, architectural and busi-
ness viewpoints above in a single encompassing definition [42]:
“Software ecosystems are sets of software solutions function-
ing as a unit, enabling actors to automate activities and
transactions.” More precisely, they conclude that a software
ecosystem constitutes “the interactions of a set of actors on
top of a common technological platform that results in a
number of software solutions or services. Each actor is mo-
tivated by a set of interests or business models and connected
to the rest of the actors and the ecosystem as a whole with
symbiotic relationships, while, the technological platform is
structured in a way that allows the involvement and contri-
bution of the different actors.”

Regardless of which definition is adopted, we observed
from the survey responses that the following aspects appear
to be essential when identifying a software ecosystem:

The social aspect, requiring a community-centric way of
collaborating and coordinating between the different
actors. Depending on the ecosystem under consider-
ation, these actors may include internal and external
developers, but also domain experts and users. The ac-
tors may also be companies that produce, distribute,
sell or buy software.

The technical aspect. Whatever the kind of software ecosys-
tem that is considered, its constituent components should
influence each other as the software ecosystem evolves.
This is often achieved through some kind of techni-
cal architecture required to manage and control the
ecosystem, and to create, share and evolve the soft-
ware and services offered by the ecosystem.

The economical aspect, focusing on a software ecosys-
tem from a business point of view in terms of supply
and demand of software and services.

4. EXAMPLES OF SOFTWARE ECOSYSTEMS
Many examples of software ecosystems were provided by

the survey respondents.
Different companies were cited explicitly as examples of

being keystones of a business-oriented software ecosystem:
SalesForce [30], SAP [63] and FaceBook [7].

Apple, Google and Microsoft, the three main companies in-
volved in providing commercial operating systems for desk-
top PCs or smartphones were also cited by multiple re-
spondents. The mobile ecosystems and app stores managed
by these companies were frequently cited, and are popular
ecosystems in the research literature [29, 32].

Programming language communities were frequently men-
tioned as being the core of dedicated software ecosystems.
Explicitly cited languages were Python (including all its

modules) [53], the R language and its CRAN archive net-
work [27, 18, 69], the Pharo development platform for the
Smalltalk programming language [56], and Microsoft’s .NET
platform (supporting a variety of programming languages
such as C#). The Eclipse IDE, supporting mainly but not
exclusively Java programming, and allowing third parties to
contribute with different plugins was mentioned 10 times by
survey respondents. This software ecosystem, supported by
IBM, has been extensively studied [23, 43, 13, 14].

Software ecosystems focusing around operating systems
are also a popular source of research. iOS, Android, and
(distributions of) the open source Linux operating system
were cited several times by the survey respondents [33, 55,
15, 70]. Another source of software ecosystems are those
surrounding a particular open source software foundation.
This was for example the case for Apache (cited 2 times)
and Mozilla (mentioned once). Both Apache [49, 4] and
Mozilla [36] are popular subjects of ecosystems research.

5. CHALLENGES

5.1 Quality and Design
The lion’s share of the software ecosystem research so far

has focussed on analysing quality and historical develop-
ment. In agreement with this line of thought, several respon-
dents noted the importance of understanding and analysing
the quality of a software ecosystem. Quality can, however,
be interpreted in many different ways. One of the respon-
dents wonders “How to create a lively community?”, sug-
gesting a social point of view, that requires a high-quality
ecosystem to have an active community of developers and
users. This point of view has recently been explored in sev-
eral studies [44, 73, 69].

Another respondent indicated as challenge the ability “to
characterize the wealth of the community w.r.t. the wealth
of the software components”suggesting a socio-technical per-
spective aiming at understanding relations between develop-
ers and the software entities they create (cf. [6, 70]).

Yet another respondent focused on“key architectural chal-
lenges such as: platform interface stability, security, relia-
bility”. This suggests a technical perspective, bringing soft-
ware ecosystems closer to traditional software systems so
that existing software quality measurement techniques may
be applied, after adapting them to the specificities of soft-
ware ecosystems.

A further group of challenges is related to transforming
the insights obtained from studying the past in order to de-
sign new software ecosystems. In particular, respondents
recognise the importance of software architecture in soft-
ware ecosystem design and wonder “what traits make a good
architecture for building software ecosystems?”. This chal-
lenge has been recognised in the past [21, 11, 3] but does
not seem to have been addressed adequately. The software
ecosystem research community is not unique in experiencing
such difficulties in transitioning from analysis to design: sim-
ilar difficulties have been reported in other areas of software
engineering [35, 38].

5.2 Governance
Once the foundations of the software ecosystem have been

laid, procedures and processes can be expected to emerge
determining future evolution of the ecosystem. Those pro-
cedures and processes are related to the management and

governance of software ecosystems [2], a challenge empha-
sised by multiple survey respondents: “how to connect busi-
ness goals and technical issues of ecosystems” or “signifi-
cant challenges also remain with regard to software ecosys-
tem governance, as the actions of keystones (e.g. platform
owners, community managers) may well have far-reaching
consequences for the ecosystem and its inhabitants.”

5.3 Dynamics and Evolution
An important challenge, raised by many survey respon-

dents, relates to the dynamics and evolution management
of software ecosystems. Indeed, the software evolution com-
munity has seen a gradual shift from studies of individual
software systems to macro-level studies of software ecosys-
tems [28, 45, 15].

Similar to the discussion of quality and design (Section 5.1),
some respondents aim at understanding the past: “The main
[challenge], from my point of view, is to understand the dy-
namics and evolution of the ecosystem.”

Others focus at implementing the future steps: “How to
evolve the ecosystem. Evolution and compatibility aspects in
ecosystem are key aspects for the success. If a ecosystem is
not able to evolve quickly it is going to die.”

Some respondents elaborate on specific evolutionary chal-
lenges and relate software evolution to dependencies be-
tween software components and the need to understand how
changes in one of the components affect other components,
i.e., the well-known problem of change impact analysis [9].

One respondent stressed the importance of domain knowl-
edge for performing change impact analysis (cf. [1]): “Pro-
vide clear upgrade paths. What happens when Android’s API
changes? How should the other entities in the ecosystem
change, what is the time-frame.”

5.4 Data analytics
Scale. Massive amounts of data are produced when soft-
ware ecosystems are being created, maintained and used.
For example, GitHub counts over 20 million repositories, and
Stack Overflow has more than 20 million posts. The chal-
lenge of analysing data at this scale has been recognised both
in the literature [51] and by the survey respondents: “Soft-
ware ecosystems may consist of many systems. Analysing all
these systems as a whole may raise some technical problems,
due to the quantity of data to take into account.”

Scale is not the only challenge associated with the data
derived from software ecosystems. In fact, many of the chal-
lenges associated with the big data [20] have been recognized
by the survey respondents.

Variety, i.e., different forms of data, also known as het-
erogeneity, can be witnessed by combination of structured,
semi-structured and unstructured data. Moreover, recent
studies explore non-textual data, e.g., derived from biomet-
rics [26] or video recordings [62].

Veracity relates to the uncertainty and inconsistency of
data. Data may also be incomplete, e.g., due to its unavail-
ability or inaccessibility: “non-open source, data not cap-
tured in repositories (e.g., business data) etc.” Obtaining
data necessary to study closed source software ecosystems
remains challenging.

Furthermore, data might appear incomplete due to pecu-
liarities of the software engineering process followed. For in-
stance, history as recorded in the Git version control system
can be revised, i.e., some of the information might be erased

later [8]. The problem of inconsistent data has been exten-
sively discussed in the database community [41]. Kouters
et al. [37] have discussed different kinds of inconsistencies
found in contributors’ aliases in GNOME.

Velocity, i.e., speed of streaming data becomes a challenge
when e.g., analyzing commits on GitHub with modifications
being committed every second1.

Privacy. Software engineering data often contains informa-
tion about individuals involved in software development and
maintenance. It is therefore imperative to preserve privacy
of those individuals. It has been shown that repository data
can be used to infer gender [66, 67] and personality traits [5]
of software developers. Privacy issues raised for digital trace
data might be even more severe if survey data is concerned as
surveys allow one to discover beliefs and perceptions: popu-
larity of surveys in software ecosystem research [58, 68] make
maintaining privacy to a major concern. Privacy, however,
is conflicting with the growing call for sharing the software
ecosystem data following the recognition of importance of
openness of the data [52] and of reproducible research in
software engineering [61, 57].

5.5 Domain-Specific Ecosystem Solutions
While the concerns discussed in the preceding subsections

are applicable to software ecosystem of different kinds, one
of the respondents stressed the importance of distinguishing
between software ecosystems from different domains: “De-
scriptive research, followed by explanatory research, should
be the basis for identifying the challenges in the different do-
mains. Once this is done, specific solutions can be developed.
An important topic, which is to my opinion insufficiently
covered, is what the consequences are for the development
process and the software architectures.”

Indeed, popularity of domain-specific solutions such as
domain-specific languages [65] and domain-specific architec-
tures [19] suggests importance of domain-based solutions for
software ecosystem as well. Bosch has recognised domain-
specificity of application-centric software ecosystem such as
Microsoft’s Office suite [10]. However, one might wonder
whether ecosystems developed in the same domain, such as
GNOME and KDE, or Python and Ruby, exhibit more sim-
ilarity in the way they are organised, governed or evolve
than ecosystems from different domains. First steps towards
understanding specificities of software ecosystems within a
given domain have been made for embedded software [25]
and the telecom industry [71].

5.6 Analysis of Ecosystems
Statistics. Analysis of software ecosystems data requires
advanced statistical techniques, specifically addressing chal-
lenges related to aggregation of data [50] and evolution of
software ecosystems [17, 60].
Visualization. Visualization techniques form an alterna-
tive to statistical analysis. Indeed, one respondent expressed
the need to have “standard ways of visualising ecosystems”
and numerous visualization approaches have been proposed
by software ecosystem researchers [54, 72].
Comparisons. Finally, more attention should be dedicated
to comparative studies: “doing comparisons across software
ecosystems to understand differences is wide open” (cf. [24,
23, 64]). Comparative studies can be seen as a prerequisite

1https://github.com/blog/620-committing-like-crazy

for designing successful domain-specific ecosystem solutions
(cf. Section 5.5).

6. CONCLUSIONS
We identified the current challenges and future trends in

software ecosystem research, based on an online survey car-
ried out with 26 researchers, that was complemented with
our own vision on the research field. We hope that many
of the identified challenges in our roadmap will be taken up
by other researchers, in order to further advance the state-
of-the-art and state-of-the-practice in this important field of
research.

7. ACKNOWLEDGMENTS
We are grateful to the survey respondents for sharing

their knowledge and insights on different aspects of software
ecosystems. This research was carried out in the context of
ARC research project AUWB-12/17-UMONS- 3 and NWO
project 600.065.120.10N235.

8. REFERENCES
[1] A. Aryani, F. Perin, M. Lungu, A. N. Mahmood, and

O. Nierstrasz. Predicting dependences using
domain-based coupling. J. Software Evolution and
Process, 26(1):50–76, 2014.

[2] A. Baars and S. Jansen. A framework for software
ecosystem governance. In Software Business, volume
114 of Lecture Notes in Business Information
Processing, pages 168–180. Springer, 2012.

[3] O. Barbosa and C. Alves. A systematic mapping
study on software ecosystems. In Int’l Workshop on
Software Ecosystems (IWSECO), pages 15–26. CEUR
Workshop Proceedings, 2011.

[4] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and
S. Panichella. The evolution of project
inter-dependencies in a software ecosystem: the case
of Apache. In Int’l Conf. Software Maintenance, 2013.

[5] B. Bazelli, A. Hindle, and E. Stroulia. On the
personality traits of StackOverflow users. In Int’l
Conf. Software Maintenance. IEEE, 2013.

[6] A. Begel, K. Y. Phang, and T. Zimmermann.
Codebook: Discovering and exploiting relationships in
software repositories. In Int’l Conf. Software
Engineering, pages 125–134, 2010.

[7] A. Bessi, A. Scala, L. Rossi, Q. Zhang, and
W. Quattrociocchi. The economy of attention in the
age of (mis)information. Journal of Trust
Management, 1(1):12, 2014.

[8] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton,
D. M. Germán, and P. T. Devanbu. The promises and
perils of mining Git. In Working Conf. Mining
Software Repositories (MSR), pages 1–10, 2009.

[9] S. A. Bohner and R. S. Arnold. Software Change
Impact Analysis. IEEE Computer Society, 1996.

[10] J. Bosch. From software product lines to software
ecosystems. In Int. Software Product Line Conf.,
pages 111–119, 2009.

[11] J. Bosch. Architecture challenges for software
ecosystems. In European Conf. Software Architecture,
pages 93–95. ACM, 2010.

[12] J. Bosch and P. Bosch-Sijtsema. From integration to
composition: on the impact of software product lines,
global development and ecosystems. In Int’l Conf.
Software Product Lines. Springer, 2009.

[13] J. Businge, A. Serebrenik, and M. G. J. van den
Brand. Survival of Eclipse third-party plug-ins. In Int’l
Conf. Software Maintenance, pages 368–377, 2012.

[14] J. Businge, A. Serebrenik, and M. G. J. van den
Brand. Analyzing the Eclipse API usage: Putting the
developer in the loop. In European Conf. Software
Maintenance and Reengineering, pages 37–46. IEEE
Computer Society, 2013.

[15] M. Caneill and S. Zacchiroli. Debsources: Live and
historical views on macro-level software evolution. In
Int’l Symp. Empirical Software Engineering and
Measurement, pages 1–10. ACM, 2014.

[16] M. Cataldo and J. D. Herbsleb. Architecting in
software ecosystems: Interface translucence as an
enabler for scalable collaboration. In European Conf.
Software Architecture, pages 65–72. ACM , 2010.

[17] M. Claes, T. Mens, R. Di Cosmo, and J. Vouillon. A
historical analysis of Debian package incompatibilities.
In Working Conf. Mining Software Repositories
(MSR), 2015.

[18] M. Claes, T. Mens, and P. Grosjean. On the
maintainability of CRAN packages. In Int’l Conf. on
Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), pages 308–312, 2014.

[19] E. de Almeida, A. Alvaro, V. Garcia, L. Nascimento,
S. Meira, and D. Lucredio. Designing domain-specific
software architecture (DSSA): Towards a new
approach. In Working Conf. Software Architecture,
page 30, Jan 2007.

[20] Y. Demchenko, P. Grosso, C. De Laat, and
P. Membrey. Addressing big data issues in scientific
data infrastructure. In Collaboration Technologies and
Systems, pages 48–55, May 2013.

[21] D. Dreyfus and B. Iyer. Managing architectural
emergence: A conceptual model and simulation.
Decision Support Systems, 46(1):115–127, 2008.

[22] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an
extensible language-independent environment for
reengineering object-oriented systems. In Int’l Symp.
Constructing Software Engineering Tools (CoSET),
June 2000.

[23] J. Duenas, H. Parada G., F. Cuadrado, M. Santillan,
and J. Ruiz. Apache and Eclipse: Comparing open
source project incubators. IEEE Software,
24(6):90–98, 2007.

[24] N. Economides and E. Katsamakas. Linux vs.
Windows: A comparison of application and platform
innovation incentives for open source and proprietary
software platforms. Working Papers 05-07, NET
Institute, 2005.

[25] U. Eklund and J. Bosch. Architecture for embedded
open software ecosystems. J. Systems and Software,
92(0):128–142, 2014.

[26] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and
M. Züger. Using psycho-physiological measures to
assess task difficulty in software development. In Int’l
Conf. Software Engineering, pages 402–413, 2014.

[27] D. M. Germán, B. Adams, and A. E. Hassan. The

evolution of the R software ecosystem. In European
Conf. Software Maintenance and Reengineering, pages
243–252, 2013.

[28] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr,
J. J. Amor, and D. M. German. Macro-level software
evolution: a case study of a large software
compilation. Empirical Software Engineering,
14(3):262–285, Mar. 2009.

[29] M. Harman, Y. Jia, and Y. Zhang. App store mining
and analysis: MSR for app stores. In Working Conf.
Mining Software Repositories (MSR), pages 108–111,
June 2012.

[30] D. Hilkert, C. M. Wolf, A. Benlian, and T. Hess. The
as-a-service paradigm and its implications for the
software industry: Insights from a comparative case
study in CRM software ecosystems. In Software
Business, volume 51 of Lecture Notes in Business
Information Processing, pages 125–137. Springer, 2010.

[31] B. A. Huberman and T. Hogg. The emergence of
computational ecologies. In Lectures in Complex
Systems, pages 185–205. Addison-Wesley, 1993.

[32] S. Hyrynsalmi, T. Mäkilä, A. Järvi, A. Suominen,
M. Seppänen, and T. Knuutila. App Store,
Marketplace, Play! An analysis of multi-homing in
mobile software ecosystems. In Int’l Workshop on
Software Ecosystems (IWSECO), volume 879 of
CEUR Workshop Proceedings, pages 59–72, 2012.

[33] A. Israeli and D. G. Feitelson. The Linux kernel as a
case study in software evolution. J. Systems and
Software, 83(3):485–501, 2010.

[34] S. Jansen, A. Finkelstein, and S. Brinkkemper. A
sense of community: A research agenda for software
ecosystems. In Int’l Conf. Software Engineering, pages
187–190, May 2009.

[35] H. Kaindl. Difficulties in the transition from OO
analysis to design. IEEE Softw., 16(5):94–102, Sept.
1999.

[36] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do
faster releases improve software quality? An empirical
case study of Mozilla Firefox. In Working Conf.
Mining Software Repositories (MSR), pages 179–188.
IEEE, 2012.

[37] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. J.
van den Brand. Who’s who in Gnome: using LSA to
merge software repository identities. In Int’l Conf.
Software Maintenance, pages 592–595. IEEE, 2012.

[38] B. H. Krogh. From analysis to design. In Formal
Modeling and Analysis of Timed Systems, volume 4763
of Lecture Notes in Computer Science, pages 4–4.
Springer, 2007.

[39] M. Lungu. Towards reverse engineering software
ecosystems. In Int’l Conf. Software Maintenance,
pages 428–431, 2008.

[40] M. Lungu and M. Lanza. The small project
observatory: a tool for reverse engineering software
ecosystems. In Int’l Conf. Software Engineering, pages
289–292, 2010.

[41] J. I. Maletic and A. Marcus. Data cleansing: Beyond
integrity analysis. In B. D. Klein and D. F. Rossin,
editors, Fifth Conference on Information Quality (IQ
2000), pages 200–209. MIT, 2000.

[42] K. Manikas and K. M. Hansen. Software

ecosystems—A systematic literature review. J.
Systems and Software, 86(5):1294–1306, 2013.

[43] T. Mens, J. Fernández-Ramil, and S. Degrandsart.
The evolution of Eclipse. In Int’l Conf. Software
Maintenance, pages 386–395, 2008.

[44] T. Mens and M. Goeminne. Analysing the evolution of
social aspects of open source software ecosystems. In
Int’l Workshop on Software Ecosystems (IWSECO),
pages 1–14. CEUR Workshop Proccedings, June 2011.

[45] T. Mens, A. Serebrenik, and A. Cleve. Evolving
Software Systems. Springer, 2014.

[46] D. Messerschmitt and C. Szyperski. Software
ecosystem: Understanding and indispensable
technology and industry. MIT Press, 2003.

[47] I. Mistr̂ık, J. Grundy, A. Hoek, and J. Whitehead.
Collaborative software engineering: Challenges and
prospects. In Collaborative Software Engineering,
pages 389–403. Springer, 2010.

[48] E. Mitleton-Kelly. Ten Principles of Complexity and
Enabling Infrastructures, pages 23–50. Pergamon,
2003.

[49] A. Mockus, R. Fielding, and J. Herbsleb. Two case
studies of open source software development: Apache
and Mozilla. ACM Trans. Software Engineering and
Methodology, 11(3):309–346, 2002.

[50] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik,
B. Vasilescu, and S. Ducasse. Software quality metrics
aggregation in industry. J. Software Evolution and
Process, 25(10):1117–1135, 2013.

[51] O. Nierstrasz and M. Lungu. Agile software
assessment (invited paper). In Int’l Conf. Program
Comprehension, pages 3–10, 2012.

[52] F. S. Parreiras, G. Gröner, D. Schwabe, and
F. de Freitas Silva. Towards a marketplace of open
source software data. In Hawaii Int’l Conf. System
Sciences (HICSS), pages 3651–3660. IEEE, 2015.

[53] F. Pérez, B. E. Granger, and J. D. Hunter. Python:
An ecosystem for scientific computing. Computing in
Science & Engineering, 13(2):13–21, 2011.

[54] J. Pérez, R. Deshayes, M. Goeminne, and T. Mens.
SECONDA: software ecosystem analysis dashboard. In
CSMR, pages 527–530, 2012.

[55] E. S. Raymond. The cathedral and the bazaar:
musings on Linux and open source by an accidental
revolutionary. O’Reilly & Associates, Inc., 2001.

[56] R. Robbes, M. Lungu, and D. Röthlisberger. How do
developers react to API deprecation? the case of a
Smalltalk ecosystem. In Int’l Symp. Foundations of
Software Engineering, pages 56:1–56:11. ACM , 2012.

[57] G. Robles. Replicating MSR: A study of the potential
replicability of papers published in the mining
software repositories proceedings. In Working Conf.
Mining Software Repositories (MSR), pages 171–180.
IEEE, 2010.

[58] G. Robles, L. Arjona Reina, A. Serebrenik,
B. Vasilescu, and J. M. González-Barahona. FLOSS
2013: a survey dataset about free software
contributors: challenges for curating, sharing, and
combining. In Working Conf. Mining Software
Repositories (MSR), pages 396–399. ACM, 2014.

[59] G. Robles, J. Gonzalez-Barahona,
D. Izquierdo-Cortazar, and I. Herraiz. Tools for the

study of the usual data sources found in libre software
projects. Int’l Journal of Open Source Software and
Processes, 1(1):24–45, 2009.

[60] I. Samoladas, L. Angelis, and I. Stamelos. Survival
analysis on the duration of open source projects.
Information & Software Technology, 52(9):902–922,
2010.

[61] F. Shull, J. C. Carver, S. Vegas, and N. J. Juzgado.
The role of replications in empirical software
engineering. Int’l Conf. Empirical Software
Engineering, 13(2):211–218, 2008.

[62] D. Socha and J. D. Tenenberg. Sketching software in
the wild. In Int’l Conf. Software Engineering, pages
1237–1240, 2013.

[63] G. Timbrell and G. Gable. The SAP ecosystem: A
knowledge perspective. In F. F.-H. Nah, editor,
Enterprise Resource Planning: Solutions and
Management, pages 209–220. IGI Global, 2002.

[64] J. van Angeren, V. Blijleven, and S. Jansen.
Relationship intimacy in software ecosystems: a
survey of the dutch software industry. In Int’l Conf.
Management of Emergent Digital EcoSystems
(MEDES), pages 68–75, 2011.

[65] A. van Deursen, P. Klint, and J. Visser.
Domain-specific languages: An annotated
bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[66] B. Vasilescu, A. Capiluppi, and A. Serebrenik.
Gender, representation and online participation: A
quantitative study of StackOverflow. In
SocialInformatics, pages 332–338, 2012.

[67] B. Vasilescu, A. Capiluppi, and A. Serebrenik.
Gender, representation and online participation: A
quantitative study. Interacting with Computers,
26(5):488–511, 2014.

[68] B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den
Brand, A. Serebrenik, P. T. Devanbu, and V. Filkov.
Gender and tenure diversity in GitHub teams. In
Conference on Human Factors in Computing Systems
(CHI), pages 3789–3798. ACM, 2015.

[69] B. Vasilescu, A. Serebrenik, P. T. Devanbu, and
V. Filkov. How social Q&A sites are changing
knowledge sharing in open source software
communities. In Computer Supported Cooperative
Work (CSCW), pages 342–354, 2014.

[70] B. Vasilescu, A. Serebrenik, M. Goeminne, and
T. Mens. On the variation and specialisation of
workload: A case study of the GNOME ecosystem
community. J. Empirical Software Engineering,
19(4):955–1008, 2014.

[71] M. Viljainen and M. Kauppinen. Software ecosystems:
A set of management practices for platform
integrators in the telecom industry. In Software
Business, volume 80 of Lecture Notes in Business
Information Processing, pages 32–43. Springer, 2011.

[72] R. Wettel and M. Lanza. CodeCity: 3D visualization
of large-scale software. In Int’l Conf. Software
Engineering, pages 921–922, 2008.

[73] Q. Xuan, M. Gharehyazie, P. T. Devanbu, and
V. Filkov. Measuring the effect of social
communications on individual working rhythms: A
case study of open source software. In
SocialInformatics, pages 78–85, 2012.

