
Detecting Dependencies in Enterprise JavaBeans
with SQuAVisiT

Alexandru Sutii, Serguei Roubtsov, Alexander Serebrenik
Technische Universiteit Eindhoven, The Netherlands

a.sutii@student.tue.nl, {s.roubtsov, a.serebrenik}@tue.nl

Abstract—We present recent extensions to SQuAVisiT, Soft-
ware Quality Assessment and Visualization Toolset. While SQuA-
VisiT has been designed with traditional software and traditional
caller-callee dependencies in mind, recent popularity of Enter-
prise JavaBeans (EJB) required extensions that enable analysis
of additional forms of dependencies: EJB dependency injections,
object-relational (persistence) mappings and Web service map-
pings. In this paper we discuss the implementation of these
extensions in SQuAVisiT and the application of SQuAVisiT to
an open-source software system.

I. INTRODUCTION

SQuAVisiT, Software Quality Assessment and Visualization
Toolset [1], is a generic framework allowing for quality
analysis and visualization of software systems. Rather than
reimplementing different analysis and visualization techniques
we have opted for a generic plugin architecture facilitating
reuse of existing tools such as code duplication detector
CCFinder [2] and dependency visualizer SolidSX [3]. SQuA-
VisiT has been successfully applied in a number of industrial
case studies [4], [5].

While SQuAVisiT has been developed with traditional soft-
ware and traditional caller-callee dependencies in mind, in
recent years we have seen a growing demand for application
of SQuAVisiT to non-traditional software such as Simulink
models [6] or Enterprise JavaBeans (EJB)-based applications.
In this paper we focus on the SQuAVisiT extensions necessary
to support the latter applications. EJB [7] is one of the APIs of
Java Platform, Enterprise Edition (Java EE), a Java computing
platform. EJB is a managed, server-side component archi-
tecture for developing business applications. A typical EJB
application contains a collection of beans that are managed
by a container (or an Application Server).

As opposed to traditional caller-callee dependency mecha-
nism, beans’ interaction at runtime rely upon a dependency
injection mechanism hidden inside the container. The “latent”
character of the dependency injection mechanism makes trac-
ing dependencies between artifacts in an EJB application a
challenging task [8], [9]. To support developers and maintain-
ers of EJB-based applications we extend SQuAVisiT with the
ability to extract EJB-specific dependencies, i.e., EJB depen-
dency injections, object-relational (persistence) mappings and
Web service mappings.

II. TOOL DESIGN

An overview of the architecture of our tool is illustrated
in Figure 1. The components that are not contained in the

EjbDependenciesAnalyzer box existed in SQuAVisiT earlier.
The EJB 3.1 specification provides the developer with two

methods of specifying how the container should manage the
beans: source code annotations and deployment descriptors.
Java Parser parses the source code of the EJB application
and generates an XML file containing classes and interfaces
found. For each class, the XML file lists its methods and fields;
for each method—the methods it invokes; for classes, methods
and fields—annotations, if present.

For each dependency type, we created a separate com-
ponent: Web Analyzer, Persistence Analyzer and Injection
Analyzer. Note that dependency injection can be specified
by means of both annotations and deployment descriptor;
whereas, persistence or Web service mappings can only be
defined using annotations.

The Injection Locator and Injection Analyzer components
work together in order to extract dependencies between Java
classes. The Injection Locator provides an API that can be
used to find out what class will be injected for a certain
variable. It parses both the annotations and the deployment
descriptor and creates a mapping from ejb-names to beans.
Next, it computes a mapping from each interface to all the
classes that implement it. Finally, the deployment descriptor
is parsed to obtain custom injections from the ejb-ref and ejb-
local-ref nodes. When determining what bean will be injected
in a reference, Injection Locator checks whether there exists
an entry in the deployment descriptor for this reference. If this
is not the case, it checks what bean implements the interface
of the reference and returns that bean.

The Injection Analyzer browses through the source code and
checks where EJB annotations are used. For each annotation
it adds a dependency between the class and the annotation it
occurs in and the class that will be injected.

In addition to dependencies the three Analyzer components
identify the hierarchical structure of the system packages and

 EJB Dependencies Analyzer EJB Dependencies Analyzer

Source
Files

(*.java)

Java
Parser

Annotations
File

Deployment
Descriptor

(ejb-jar.xml)

Depen-
dencies

System
hierarchy

Dependencies
SQuAVisiT

Injection
Locator

Web
Analyzer

Persistence
Analyzer

Injection
Analyzer

Fig. 1. Tool Architecture

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany
Tool Demonstrations

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

485

classes. DependenciesSQuAVisiT component provides an API
for storing the extracted dependencies. When the extraction
finishes, this component outputs the Dependencies file that
can be used, e.g., by the dependency visualizer SolidSX.

III. CASE STUDY

Our concern was not just how to extract the dependencies
from the source code, but also how to further analyze them
in a way a human can easily understand. Therefore, we have
used the radial diagram of SolidSX [3], the follow-up tool of
ExTraVis, that has been shown to be beneficial for program
comprehension [10]. In the radial diagram, the hierarchy of
artifacts is displayed as concentric rings, whereas the curved
lines represent dependencies between two artifacts (Figure 2).

Fig. 2. Traditional implements-dependencies between classes and interfaces
(Java) are red, injected @EJB dependencies (EJB) are blue and persistency
dependencies @JoinColumn and @Table (EJB) are green.

Extended SQuAVisiT has been successfully applied to a
number of open-source systems. Figure 2 shows multiple
kinds of dependencies found in Gestionnaire Fiches [11]. By
inspecting Figure 2 a number observations can be made.

First, amelioration.service.impl is the only package using
dependency injections: its classes are beans managed by the
EJB container with no explicit dependencies on each other.
Source code inspection confirmed that when one of these beans
needs another bean, it does not define a variable of the type
of the needed bean. Instead, it uses the interface the needed
bean needs to implement while the EJB container makes sure
to inject the correct bean.

Second, amelioration.business.impl.model.type and amelio-
ration.business.impl.model define persistence mappings. Like
other beans in this applications, the beans from these packages

implement interfaces, i.e., the user does not have to be aware
that the implementing beans use persistence mappings.

Third, classes in amelioration.business.impl.model have
many @JoinColumn dependencies on tables created by the
classes from amelioration.business.impl.model.type, but not
vice versa. This indicates that there exists an association
relation from the former classes to the latter.

Finally, @implements shows a clear separation between
packages containing Java interfaces and packages containing
implementation of these interfaces.

IV. CONCLUSION

This paper presents recent extensions to SQuAVisiT, Soft-
ware Quality Assessment and Visualization Toolset, enabling
SQuAVisiT to analyse and visualize dependencies found in
EJB-based applications. Three EJB-specific additional types of
dependencies are extracted: injected dependencies, persistence
mappings and Web service mappings.

We have applied the extended SQuAVisiT to a number
of small and medium-size open-source EJB applications, and
obtained meaningful maintainability insights.

As a future work we consider application of the tool in
industrial case studies, integration of SQuAVisiT with I2SD,
our tool for reverse engineering Sequence Diagrams from
Enterprise JavaBeans with interceptors [12], and definition of
metrics based on the new types of dependencies [13], [14].

REFERENCES

[1] M. G. J. van den Brand, S. Roubtsov, and A. Serebrenik, “SQuAVisiT:
A flexible tool for visual software analytics,” in CSMR. IEEE, 2009,
pp. 331–332.

[2] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Software Eng., vol. 28, no. 7, pp. 654–670, 2002.

[3] SolidSource website, http://www.solidsourceit.com/products.
[4] D. Bosnacki, A. Mathijssen, and Y. S. Usenko, “Behavioural analysis

of an I2C Linux driver,” in FMICS, 2009, pp. 205–206.
[5] S. Roubtsov, A. Serebrenik, and M. G. J. van den Brand, “Dn-based

design quality comparison of industrial Java applications,” in CEE-
SECR, 2009, pp. 95–101.

[6] Y. Dajsuren, M. G. J. van den Brand, A. Serebrenik, and S. Roubtsov,
“Simulink models are also software: modularity assessment,” in QoSA.
ACM, 2013, pp. 99–106.

[7] K. Saks, “JSR 318: Enterprise JavaBeansTM, Version 3.1, EJB Core
Contracts and Requirements,” JCP, Tech. Rep., 2009.

[8] C. Richardson, “Untangling Enterprise Java,” Queue, vol. 4, no. 5, pp.
36–44, Jun. 2006.

[9] S. A. Roubtsov, A. Serebrenik, and M. G. J. van den Brand, “Detecting
modularity “smells” in dependencies injected with Java annotations,” in
CSMR, 2010, pp. 244–247.

[10] B. Cornelissen, A. Zaidman, and A. van Deursen, “A controlled exper-
iment for program comprehension through trace visualization,” IEEE
Trans. Software Eng., vol. 37, no. 3, pp. 341–355, 2011.

[11] C. Souti, “Gestionnaire Fiches,” https://code.google.com/p/gestionnaire-
fiches-ejb/, Accessed on April 16, 2013.

[12] S. Roubtsov, A. Serebrenik, A. Mazoyer, M. G. J. van den Brand,
and E. Roubtsova, “I2SD: reverse engineering sequence diagrams from
Enterprise JavaBeans with interceptors,” IET Software, vol. 7, pp. 150–
166, June 2013.

[13] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and
S. Ducasse, “Software quality metrics aggregation in industry,” Journal
of Software: Evolution and Process, 2012.

[14] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “You can’t
control the unfamiliar: A study on the relations between aggregation
techniques for software metrics,” in ICSM. IEEE, 2011, pp. 313–322.

486

