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Abstract

Wave speeds and phase velocities play a crucial role in the theoretical description of the
dynamic behaviour of liquid-filled pipes. Wave speeds describe propagating disturbances under
transient conditions, whereas phase velocities describe wave trains under steady-oscillatory
conditions. Except for linear non-dispersive systems, wave speeds and phase velocities are not the
same.

This paper presents formulae and diagrams for wave speeds and phase velocities describing
the axial, lateral and torsional vibration of liquid-filled pipes. Classical formulae are given, The
influences of quasi-steady and unsteady fluid fiiction, viscous structural damping and fluid-
structure interaction (FSI) are investigated.' An apparent paradox resulting from time-domain and
frequency-domain considerations is discussed.

This study aims at a deeper understanding of wave phenomena in pipe systems.

1 INTRODUCTION

The acoustic behaviour of liquid-filled pipes is determined by pressure waves in the liquid
and stress waves (axial, lateral and torsional) in the pipes. Each type of wave has its own
characteristic wave speed and phase velocity. Wave speeds are essential in a method of
characteristics (MOC) time-domain analysis. They are the speeds of propagation of wave fronts.
For the prismatic pipes considered herein, the wave speeds are constant. Phase velocities are basic
in a harmonic frequency-domain analysis. They characterise wave frains and in general they are
complex valued and frequency dependent.

This paper reviews the classical formulae for wave speeds and phase velocities and it
investigates the influence on these of several viscous effects. The attenuation of wave fronts
(jumps) is given by explicit formulae. The effect of fluid-structure interaction (FSI) on pressure
and stress waves is shown in one illustrative chart.

For conciseness, many symbols are declared in Table 1 and in the nomenclature only.

1.1. Background

The present study is part of a project on modelling damping mechanisms in coupled liquid-
pipe vibrations, Overviews of liquid-pipe coupling (FSI) and damping models are given in
(Tijsseling 1996) and (Leslie and Tijsseling 1999) respectively.
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Many theoretical FSI models lack proper damping mechanisms, This is not a limitation in the
analysis of the initial phase of a transient vibration, which has been the focus of the authors’
research so far. However, to widen the applicability of their models and software, the inclusion
of damping mechanisms is prerequisite. Realistic models for liquid-pipe friction and for structural
damping are needed: (i) to perform modal analyses and tests (natural frequencies and damping
factors), (ii) to predict the steepness of wave fronts (an important parameter in FSI analyses) and
(i11) to represent frequency-dependent behaviour (including visco-elasticity).

1.2. Test problem

A laboratory apparatus at Dundee University has been extensively used to study the effects
of FSI on the transient (Vardy and Fan 1989) and free (Zhang et al. 1999) vibration of a closed,
freely-suspended, liquid-filled pipe. Data for this particular pipe, given in Table 1, will be used for
most of the calculations herein.

Table 1. Geometrical and material properties of Dundee single-pipe apparatus

|[ Steel pipe Water

length: L

Il

4502 mm bulk modulus: K =214 GPa

inner radius: R

I

26.0l mm | mass density: £ = 999 kg/m’

pipe wall thickness: e= 3.945 mm dynamic viscosity: g4 = 0.001 Pas

elastic modulus: E = 168 GPa area of flow: A, = 2125 mm’
mass density: o, = 7985 kg/m®

] Poisson’s ratio: v =029

'!
shear coefficient: “Z =053

area of pipe: A, = 694 mm?®
second moment: I, = 272900 mm*
d e S —_—

1.3. Basic equations
General forms ofthe basic equations describing one-dimensional linear wave propagation are:

A—a-gi(z,r)+B__i¢(z,r} =r(z,1)-Cd(z,1) (1)
ot oz
for the time-domain, and
S&(5)F (z,s)-f]a%a (2.5) = ¥(z.5)+ Ad(.0) @)

for the frequency-domain, in which s = 27if, ~ denotes a Laplace transformed variable and
A(s)=A+~-C 3)
&

The state vector ¢ consists of generalised forces and velocities.
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1.4. Wave speeds
In a method of characteristics (MOC) based time-domain (TD) approach, the wave speeds,

denoted by ¢, are derived from the characteristic equation

det(B—-1A)=0 (4)
in which no damping terms are included (they are within the C matrix and/or r vector). The wave
speeds represent the constant propagation of contact discontinuities.

1.5. Phase velocities
In the frequency-domain (FD), spectral analysis produces phase velocities. These are denoted
by ¢(f) and are derived from the dispersion equation

det{B - A(s)A*(s)} =0 (5)

Phase velocities are usually frequency-dependent and complex valued and wave trains may be
expressed as

Eaﬁt{r—;_n'ﬁf]] - e.#clm[:r:ja"]l {G)
. where the complex phase velocity e(f) =c, +ic, and @=2xf. The equivalent wave speed c,, and
the attenuation factor g are real numbers defined by
3 ] : ae. a8
ooira N g go 29 . 00 ™
£ c A ¢, +¢ |q f}'i

Note that the attenuation factor q is linearly increasing with @) only if ¢(f) is independent of .

o TORSIONAL WAVES
The governing equations for torsional pipe motion are given by (1) with:

: 0 e 00 o 0
A=y 1, 8=\ "Bl c=| | | 7| e ®)
GJ, L1 9 0 0 A 0

in which M, is the torsional moment, ,,, is the angular velocity about the z-axis and J, is the
polar second moment of the pipe cross-section. Torsional pipe motion is assumed to be unaffected
by the contained fluid. Hysteretic damping can be introduced by using a complex £ (i.e. £ =

. E(1+in)),and hence G, modulus. It is noted that a complex G is meaningless in a MOC time-
domain analysis. The characteristic and dispersion equations, (4) and (5) respectively, are identical
because C = 0 and hence A = A*, so that the time- and frequency-domain analyses give the same
result:

Cior = Cae ()= /G, (9

3. LATERAL WAVES

Timoshenko beam equations, including fluid mass and viscous structural damping (with
respect to ¥ and y and with damping coefficients denoted by D; and D, respectively, both with
units Hz), describe lateral pipe motion. They are given by (1) with

1 ¢ 0 o 2

( G D; b 0O @ v

L L 5 > B

x'Gd, 1 0 0 0 , ¢+ 9 2
A%le o a1 o B ablr S eTen gl Bl XN (10)
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The flexural wave speeds (TD) are defined as



¥ T L
4000 |
000 = "
rﬂm
cp S——
€5 4000 4
c 5
BRI i A S S et e 3
%
a. L 1 1 i 1 1 L 1
o i-10 a0®  30* a0t st a0t 70t sae® st 140’

Figure 1: Lateral waves: phase velocities (in m/s) as function of frequency (in Hz) based on data
in Table 1.

CSIJ;ZGA__/(JQ,A:+,GIAI) and cﬂzm (11)

The phase velocities (FD) derived from the dispersion equation (5) are
D f 8 ) ity gl : D; 2
/Hl D)oo 1e 2 "{[(1 Leler (10 22)ert) alrssf{1e o)er }
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where f, = (27)\/k*GA, /p,1, . In the low-frequency limit £ 1 O the phase velocities c,(f) and
cy(/), given by (12), both tend to zero. This is true with and without the damping terms included.

Figure 1 depicts the phase velocities, given by (12), as a function of the frequency of
vibration. Damping effects have been neglected (i.e. Dy = Dy = 0). The velocities cg(f) are then
purely imaginary for f < f, thus a second mode of vibration exists only at frequencies higher than
f., the cut-on frequency. This is shown in Figure 1, with c,4(f) emerging from the top of the graph
for sufficiently large frequencies. From (12) it is seen that the phase velocity c,(f) tends to infinity
as f 1 f.. This phenomenon is an apparent paradox if c,(f) is thought of as a propagating wave
Jront which has, as illustrated below, a finite speed ¢,. With non-zero viscous damping coefficients
the phase velocities are complex numbers, but neither are purely imaginary except for cg(f) at a
critical value of the frequency giving an infinite equivalent wave speed (this does not occur at f
= f. as previously defined but at = f,(D,,[D,) and does not always exist).

The high-frequency asymptotes in Figure 1 are the wave speeds c; and ¢, of (contact)
discontinuities in shear force and bending moment, respectively. These are relevant in impact
mechanics (see Fliigge 1942 and Leonard and Budiansky 1954). Figure 2, an example with

csfcy =5, demonstrates both the propagation of discontinuities and the effects of frequency
dispersion. The pipe of 20m length is subjected to a step moment of 200kNm on the right end.
Responses are calculated at the instants ¢, = (1/3)L/cg, 1, = (2/3)L/cg and t, = L/c,. The jump in the
bending moment (top Fig.2) decreases as the front travels to the left. This is due to numerical
error, as theoretically it should remain equal to the initial value (200kNm) when damping is

":{f} -

(12)
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Figure 2: Propagation of discontinuity in bending moment M and associated shear force O along
pipe (calculated with MOC procedure not for the present test problem, but for example with c,
= 1031 m/s and ¢, = 5156 m/s and without viscous structural damping); from Tijsseling 1993, p.

i

neelected,

Behind the wave front dispersion occurs because of strong interaction between shear and
bending waves. The jump. will however decrease as its front travels when damping mechanisms
are included. This decrease is governed by the relationship

(&), = (@),e i (13)

between the initial jump (&W), and the jump at time ¢, (&), The wave front travels at constant
speed with attenuation predicted by the new equation (13). It is also noted that the bending wave
front travels with the speed of an axial stress wave (see Section 4.2) as might be expected, since
bending is composed of axial stresses.

The shear wave front is illustrated in Figure 2 (bottom) as a peak in the shear force travelling
to the left at speed c; = 103 1m/s.

Introducing a complex E, and hence G, modulus is a method by which hysteretic damping
may be included within the equations (Cremer et al. 1988, pp. 195-204). This has meaning only
in a frequency domain analysis and it has a similar effect on the phase velocities as introducing
viscous damping by removing infinite equivalent wave speeds (i.e. purely imaginary bending phase
velocities) except at a single frequency, f= (7).

4. AXIAL WAVES

4.1. Pressure waves
4.L.1. Quasi-steady linear friction
The waterhammer equations with a linear friction term are given by (1) with

X 1 ? gy ek " [f* GJ UI] 0
= y B= T = ] = * = 14
0 P ; ’:é’ o o ? P o K%
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Figure 3: (Quasi-steady linear friction) Pressure waves: equivalent wave speeds (left, in m/s)
and attenuation factors (right, in 1/m) as function of frequency (in Hz) based on data in Table 1.

(Wylie and Streeter 1993). Linear friction has been introduced through the term /*U, in which the
value of f* depends on the type of flow, namely: f*= E,LIZQIRI for laminar flow and
f*=fU,2R for turbulent flow, where f'is the Darcy-Weisbach friction coefficient and U is the
steady-state fluid velocity. The classical pressure wave speed (TD) is defined as

mon

The relation between an initial jump (P), and its value (&P), at time ¢ is
(6P), =(6P) e (16)

0

This equation is derived from the ordinary differential equations (ODE) obtained by MOC. The
ODE is written for upper and lower sides of the characteristic path along which the jump
propagates and a difference of the two equations is taken. This difference can be written in terms
of &P only, by using the relation & = pe,8U, (Joukowsky formula). The resulting ODE for &P is
then integrated to give the desired result. Equation (16) predicts the attenuation with time of the
magnitude of the jump (which propagates with constant speed) as caused by linear friction. This
15 particularly important in long pipe-lines.
The phase velocities (FD) obtained from the dispersion equation (5) are

%
-
c =¢. | 1l+—— 17
=e | = an
The phase velocities are illustrated in Figure 3, showing equivalent wave speeds and attenuation
factors as a function of frequency (see equation (7)). The graph demonstrates that the attenuation
becomes constant as frequency increases, which can also be proven analytically such that

lim,_.,q(f)= */2c, .

4.1.2. Unsteady friction

This section examines the influence of unsteady friction models on equivalent wave speeds.
In the basic waterhammer equation (Navier-Stokes) the effect of viscosity is included through the
term: 1/r ﬂ,"ﬁ'r(rpﬂU () Xﬁr) , Where r is the radial coordinate and U/r) is the axial velocity profile.
A Laplace transform of the equations of motion and continuity is taken to find analytical solutions
in the frequency domain in terms of transfer matrices. The wall shear stress for each frequency is
found to be linearly related to the axial flow acceleration.

For laminar flow the viscosity u is constant, whereas for turbulent flow a viscosity profile

[
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Figure 4: Viscosity profiles in steady turbulent pipe flow.
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Figure 5: (Unsteady friction) Pressure waves: equivalent wave speeds (left, in m/s) and
attenuation factors (right, in 1/m) as function of frequency (in Hz) based on data in Table 1.

is used in the analysis, i.e. the turbulent eddy viscosity depends on r. Exact models for laminar
flow with unsteady friction may be found in Zielke 1968 (TD) and D’ Souza and Oldenburger 1964
(FD). The turbulent flow model used herein is analogous to that of D’Souza and Oldenburger for
laminar flow, which remains as a special case.

Including the aforementioned viscosity term in the basic equations leads to a complex
frequency-dependent phase velocity which can be written in the form cf{ fl=¢ / {—fﬁ( F )} with,
for laminar flow:

2 Jl{z'mR(erffv)m) _E
. -1 18
R P R(27f /)" Ju(ﬁf'zﬂ(z;rfg v]‘”) k%)

in which J, and J, are Bessel functions and v is the kinematic viscosity, and for turbulent flow:
1

2MD(R,f) |2

i (19)
D(R, f) ]

in which MD(r.f) and D(r f) are power series in terms of 7, with frequency-dependent coefficients

determined by the viscosity profile used (see Appendix). Laufer (1954) produced accurate

ﬂ{f}{
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Figure 6: Axial stress waves: equivalent wave speeds (left, in m/s) and attenuation factors (right,
in 1/m) as function of frequency (in Hz) based on data in Table 1.

experimental results for the turbulent viscosity profile in steady pipe flow. Using a viscosity profile .
of the form u(r) = a+br’, the quantities a and b can be chosen to approximately fit Laufer’s
profile, as shown in Figure 4, where a =y, and b= (u,— ) /RT :
The quantity R./w/v, , with v, the core kinematic viscosity and wthe angular frequency, is
an important dimensionless number in this analysis. In the numerical calculations it restricts the
range of values which may be used (in turbulent flows the ratio of core and wall viscosities, v, and
v,, respectively, also affects the range). This is due to numerical errors and series failing to
converge for large arguments. Approximations are available for the evaluation of Bessel functions
with large arguments but not yet for the power series MD(r,f) and D(r,f) (given in the Appendix).
In laminar flow, where vis constant, and thus v, = v, R./w/v, must be less than about 966, so
that for the Dundee test pipe (Table 1) the numerical calculations are limited to frequencies less
than 2 . For turbulent flow one is even restricted to frequencies less than 10Hz
(Rwfv_ £98 when v,/v, ~ 440). With this restriction on frequencies and assuming a basic
waterhammer frequency 4c, /L , the analysis is valid for pipelines longer than 30m (based on
data in Table 1). Further approximations for both the Bessel functions and the power series
MD(r.f) and D(r.f) with large arguments will extend the range of applicability of the model. Figure .
5 compares equivalent wave speeds and attenuation factors for laminar and turbulent flows. It
shows that for turbulent flow there is a higher attenuation and the equivalent wave speeds are
reduced.

4.2, Stress waves
The beam equations for axial pipe vibration with viscous damping are given by (1) with

1o g 5 D, 0 U, 0
VAN QR I R
P’ 1 0 0 0 o 0

The classical wave speed (TD) is defined as

& & Bl (21)
The relation between an initial jump (Jo), and its value (Jo), at time 7 is

(60), = (85), e (22)

Wave fronts travels at constant speed (21) with attenuation, as a result of viscous damping, .
predicted by (22). Equation (22) and its derivation are analogous to equation (16) for pressure
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Figure 7: Graph of FSI/classical (a) pressure wave speed ratios and (b) stress wave speed
ratios as function of mass ratio.

waves,
The phase velocity (FD) found from the dispersion equation (5) is

-
D, .
e(f)= e5[1+ szj (23)

Figure 6 illustrates the phase velocities given by (23) in terms of equivalent wave speeds and
attenuation factors as function of the frequency. It demonstrates that for large frequencies the
equivalent wave speed asymptotes to ¢, and the attenuation becomes constant. It can be proven
that for large frequencies the attenuation asymptotes to D, /2c, .

4.3. FSI
Extended waterhammer and axial beam equations with linear friction coupling and structural
viscous damping are given by (1) with

0 \ :
[1 ? 9 0 PL 0 ﬂ] o 8 =iy 0 L.r]
T 0 0 ¢ c 0 0 0 P
f- 1 0 -2»v O
e 1 g R 00 0 Il[' Rlip o gen oot gk o0 A
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in which ¢, is the classical wave speed given by

e S

To focus on FSI effects (v > 0, where v is Poisson’s ratio) the damping mechanisms are
neglected (C = 0). Thus the wave speeds (TD) and phase velocities (FD) found from the
characteristic and dispersion equations (4) and (5) are identical:

Cres cfrs;(f) = J%{?z & (:'le = 434‘?2("‘:2)“}

(26)
cru=eml)-{E b 7T
where
o [1 +2v* %%] ¢+, (27)

The wave speeds, given by (26), are written in non-dimensional form to allow for a parameter
study. In terms of the quantities v, mr = Rpg,f2p,e (the mass ratio between fluid and pipe) and
the ratio ¢,/c. we have:

)

B [1+ (¢, Jc,) —\[(1—. (e:”*c,}l)z ~4(c, fe)} (1= mr (c, fc,)?)
o '\ 2(cffc:]z(l—ﬂ’fvzmr[cﬁ"c,}:) »
28

1+(c, fe,) + \[(1+ {cf;cj): ~4(c, fe,V (1-4Vmr (e, fe,)?)
B 2{cffc,}l(l—siv:mr[cffc‘}z]

Note that c,as defined in (15) has been used as a reference for ¢, . Figure 7 shows that as the
mass ratio mr increases so does the effect of FSI on the wave speeds: the pressure and stress wave
speeds slightly decrease and increase, respectively, such that for smaller wave speed ratio ¢ L
the influence of FSI becomes less.

-8 CONCLUSIONS

When mechanical systems are non-dispersive and non-dissipative the wave speeds and phase
velocities obtained from time- and frequency-domain analyses, respectively, are identical. For
dispersive systems, e.g. laterally vibrating pipes, this is not true with wave speeds representing the
constant propagation of contact discontinuities and frequency-dependent phase velocities
describing oscillatory flow phenomena. From the phase velocities one can obtain equivalent wave
speeds and attenuation factors.

With damping terms included in the analysis the equivalent wave speeds obtained are reduced
compared to non-damped systems (attenuation factors increase) and this effect is more significant
at lower frequencies. Damping has no effect on wave speeds in the time-domain analysis, because
damping terms are not included in the characteristic equation and wave fronts therefore travel at
constant speed. Attenuation ofthe travelling jump can be determined and for linear damping terms
an exponential relationship can be obtained. FSI, however, does affect the wave speeds causing
a change which depends on the fluid-structure mass ratio, Poisson’s ratio and the ratio of the
classical pressure and stress wave speeds.
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List of symbols (in addition to Table 1)

A, B, C matrices of constant coefficients 3 frequency

A* matrix given by (3) % friction coefficients

e wave speed G shear modulus (=1 E/(1+v))
c(f) phase velocity J, polar second moment of area

D damping coefficient mr fluid-structure mass ratio

=



M bending moment @ angular frequency .
o8 pressure i
q attenuation .
0 lateral shear force f :[rl: T
r YEELIE eq equivalent
5 Laplace parameter i imaginary part
{ time %
u friction velocity LHE fhi
LF ol valod r real part, radial coordinate
. L yetosey s pipe (solid structure)
¥ lateral velocity g P
z axial coordinate do i
1:6)) see (18) and (19) = ik
¥ see (27)
5 jump abbreviations
i state vector FD frequency domain
7 dmpmg coefficient FSI fluid-structure interaction
A g;iggn\raiue MOC method of characteristics .
v Poisson ratio, kinematic viscosity ODE 'lffdiﬂﬂf}f di_ﬂ'ﬂfﬂﬂﬁﬂl equation
W angular velocity D time domain
Appendix
With a viscosity profile given by u(r) = a+br” the series MD(r,f) and D(r.f) in Eq.(19) are
MDe.f)=3 2 wmd D.f)=Yas (A1)
m=0 =+ 2 r=0
where the frequency-dependent coefficients
a=1 a=0,
_lepa,,
a, = o n=23...0 (A2)
a, = {I'mﬂ’an—z = ba;—rn{n— 7) T
an .
define an analytical solution. Notice particularly that a = £(0) is the core dynamic viscosity.

Bessel functions of order n, J,(z), are given by (or as above with b = 0)

s (- l}k (z;"Z)Zhn

= (A3)
Ia(2) E, &1k + n)!
with approximations for moderate arguments given by Kuiken (1989) as:
¥ m—1
1+(-1 1
—ﬂ+ —Z cos(zsint) cosmi, n=02...
2m m o
Jn (4"-'} = =i X
(—1)"511'12 IZ 2 { . .I'} i 13 Ad
——————— — zsint)sinn n=13,...
om + = JE=Ism smnt)s A 3 (Ad4)
where
k
o et L -
f= ] m2 2lz|+ 4 {J'I-l- EIm,.ﬂ,

in which m is the number (integer) of intervals required for an absolute error less than 10", .
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DISCUSSIONS

SESSION E - Hydroelastic vibrations in hydraulic turbines

PAPER E.1 - D.J Leslie, A.S.Tijsseling:

WAVE SPEEDS AND PHASE VELOCITIES IN LIQUID-FILLED PIPES

Question from: H. Brekke:

I will congratulate you with an interesting paper, which is very complex. My question is
very simple:

This theory is very complex and you have made computations of a simple system. Do you
have any idea of how far is the future it will be possible to analyse complex piping systems of
pipes connected in 3 dimensional space containing pipes of different stiffness (wall
thickness)? Can you make a short comment on this?

Answer from: D. Leaslie

Indeed, the underlying calculations are complex, but the final result is not. The final result
is a frequency-dependent phase-velocity with a real and an imaginary part, which can be
directly fed into conventional one-dimensional transfer matrix methods These methods are
widely used in practice to analyse industrial pipe systems.



