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causes the maximum velocity and the oscillation in the first 10 seconds. Without this 
extra volume the maximum velocity is lower and is the initial curve less steep. 
 
 
7 CONCLUSIONS 
 
The numerical model for modelling rapid filling of pipelines presented here 
simplifies the elastic models for rapid filling as proposed by Malekpour et al. (2011) 
and Zhou et al. (2018) to trade off accuracy for performance and implementation 
simplicity. In the proposed model, special attention is given to volume tracking and 
the interaction between junctions and air pockets. The results show that the proposed 
model increases the execution time of an efficient MoC solver with 34% when it is 
used to simulate the filling of a heavily branched piping system. 
The proposed model compares reasonably well with experiments and numerical 
results found in literature despite of the reduction in accuracy of the proposed model. 
These experiments include situations of small and large air pockets. Therefore, it is 
reasonable to assume if the proposed model can predict these situations, then the 
proposed model can predict the impact pressure surges in larger and more complex 
piping systems during rapid filling.  
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ABSTRACT 
 
This paper reports the development and application of an elastic-column model for rapid 
draining of pipelines. The water-hammer equations with a moving boundary are used to 
model the emptying process, and the SPH method is employed to solve the governing 
equations. The image particle method is used to ensure complete kernel support and impose 
boundary conditions, simultaneously. The velocity-Verlet method is applied for time 
integration to enhance accuracy. The developed SPH-based elastic-column model clearly 
shows the transient effect in the emptying process, and it is a promising tool for the 
simulation of rapid emptying of pipelines with undulating elevation profiles. 
 
 
1 INTRODUCTION 
 
Fast transient flow in piping systems is generally caused by rapid changes in flow 
conditions due to sudden valve operation, pump start up or shut down, and power failure. 
This phenomenon is known as pressure surge or water hammer, and it may damage 
hydraulic machinery, piping and supports. If possible, it should be anticipated in the design 
process and prevented in practice (1). Fast transients may also occur in rapid pipe filling 
and emptying processes, for which a recent literature review is presented by Fuertes-
Miquel et al. (2). Rapid pipe filling and emptying occur in various hydraulic applications, 
such as water-distribution networks, storm-water and sewage systems, fire-fighting 
systems, oil transport pipelines and pipeline cleaning. With respect to rapid filling of an 
empty pipeline, while the water column is driven by a high head, air is expelled by the 
advancing water column. If the air flow is not blocked, the water column grows with little 
adverse pressure and attains a high velocity. For emptying of a pipeline initially filled with 
water, while the air is blown into the pipeline, water is expelled out of the system. If the 
driving air pressure is high and the resistance from pipe components is low, the water 
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column shortens and attains a high velocity. When the advancing column is suddenly 
stopped (fully or partially), severe pressure changes occur in the system. A reliable model 
that can predict the change of the water column velocities and the induced overpressure in 
the system is desirable. 
The pipe filling processes have been mostly focused on and the models have shown great 
accuracy in comparison to experimental data. For the modelling of the rapid filling of 
pipelines, the rigid-column theory is commonly used. The rigid-column filling model for 
pipes in series was formulated in (3). The model describes the unsteady motion of a 
lengthening water column filling empty pipelines with an undulating elevation profile. The 
model was validated against laboratory tests and extended to represent a branched system 
with undulating pipe segments (5). By coupling the rigid-column model with an entrapped 
air model, Cabrera et al. (6) addressed filling pipes with initial air entrapped between water 
columns. The rigid-column model gave good results as long as the flow remains axially 
uniform. When the water column is disturbed somewhere in the system, pressure 
oscillations along its length or even column separation may occur and the rigid-column 
model will fail. The elastic model for unsteady flow in conduits is capable of dealing with 
potential fast transients in rapid pipe filling. However, the elastic model with a moving 
boundary is difficult to solve using traditional mesh-based methods. A recent attempt is 
the fully implicit box or Preissmann finite-difference scheme of Malekpour and Karney 
(7). This method uses a fixed spatial grid and a flexible temporal grid, and hence the 
Courant number is time dependent. The obtained results gave acceptable agreement with 
the laboratory tests of Liou and Hunt (3). However, a serious and unsolved numerical 
convergence problem occurred due to an uncontrollable large Courant number. To solve 
this problem, the method of characteristics (MOC) was applied by Malekpour and Karney 
(8). Since both the spatial and temporal grid are fixed in the MOC, the Courant number is 
constant and an interpolation has to be used to deal with the increasing water-column 
length. To better track the moving water-air interface and capture the transient effect 
without interpolation in MOC (8), Liu et al. (9) proposed a rigid-plug elastic water model, 
in which the water segment within two grid points is treated as a rigid column and the rest 
of the water column is simulated by the elastic model. To treat the transients in the whole 
water column, Hou et al. (10) developed an SPH-based elastic model, validated it against 
the experiments of Liou and Hunt (3) and then extended it for rapid filling of a pipe with 
entrapped air pocket (11). Taking the mass shedding at the water-air interface into account, 
Tijsseling et al. (12) proposed an improved rigid-column model for rapid filling and 
validated it against experiments in a large-scale pipeline (13,14,15,16), and further applied 
it to rapid filling with venting entrapped gas (17). 
 
The pipe emptying problem has not received much attention in the literature because it 
often occurs together with other hydraulic phenomena (2,12,15,18). Different from pipe 
filling, the air is under pressure and the interaction between air and water plays an 
important role in the draining process. In the case of pipeline emptying with compressed 
air supplied from the upstream end as studied by Laanearu et al. (15,16), the moving water 
column is pressurized and its tail becomes stratified flow, i.e., mixed flow situations are 
possible. Pipe emptying experiments for a small-scale single pipe (19) and a large-scale 
undulating pipe (16) were performed to study two-phase flow transitions. Coronado-
Hernandez et al. (20) developed a rigid-column model for rapid emptying and validated it 
against the large-scale experiments (13,14,15,16). To obtain results comparable with the 
measurements, the length of the pipe and the friction factor were adjusted irrationally (21). 
Recently, using the rigid-column model developed in (20), Coronado-Hernandez et al. (22) 
studied the sub-atmospheric pressure in a water-draining pipeline with an air pocket. 
 
To accurately capture the transient phenomenon in rapid emptying of pipelines and to 
better understand its mechanism and examine the influencing factors, an elastic-column 
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column shortens and attains a high velocity. When the advancing column is suddenly 
stopped (fully or partially), severe pressure changes occur in the system. A reliable model 
that can predict the change of the water column velocities and the induced overpressure in 
the system is desirable. 
The pipe filling processes have been mostly focused on and the models have shown great 
accuracy in comparison to experimental data. For the modelling of the rapid filling of 
pipelines, the rigid-column theory is commonly used. The rigid-column filling model for 
pipes in series was formulated in (3). The model describes the unsteady motion of a 
lengthening water column filling empty pipelines with an undulating elevation profile. The 
model was validated against laboratory tests and extended to represent a branched system 
with undulating pipe segments (5). By coupling the rigid-column model with an entrapped 
air model, Cabrera et al. (6) addressed filling pipes with initial air entrapped between water 
columns. The rigid-column model gave good results as long as the flow remains axially 
uniform. When the water column is disturbed somewhere in the system, pressure 
oscillations along its length or even column separation may occur and the rigid-column 
model will fail. The elastic model for unsteady flow in conduits is capable of dealing with 
potential fast transients in rapid pipe filling. However, the elastic model with a moving 
boundary is difficult to solve using traditional mesh-based methods. A recent attempt is 
the fully implicit box or Preissmann finite-difference scheme of Malekpour and Karney 
(7). This method uses a fixed spatial grid and a flexible temporal grid, and hence the 
Courant number is time dependent. The obtained results gave acceptable agreement with 
the laboratory tests of Liou and Hunt (3). However, a serious and unsolved numerical 
convergence problem occurred due to an uncontrollable large Courant number. To solve 
this problem, the method of characteristics (MOC) was applied by Malekpour and Karney 
(8). Since both the spatial and temporal grid are fixed in the MOC, the Courant number is 
constant and an interpolation has to be used to deal with the increasing water-column 
length. To better track the moving water-air interface and capture the transient effect 
without interpolation in MOC (8), Liu et al. (9) proposed a rigid-plug elastic water model, 
in which the water segment within two grid points is treated as a rigid column and the rest 
of the water column is simulated by the elastic model. To treat the transients in the whole 
water column, Hou et al. (10) developed an SPH-based elastic model, validated it against 
the experiments of Liou and Hunt (3) and then extended it for rapid filling of a pipe with 
entrapped air pocket (11). Taking the mass shedding at the water-air interface into account, 
Tijsseling et al. (12) proposed an improved rigid-column model for rapid filling and 
validated it against experiments in a large-scale pipeline (13,14,15,16), and further applied 
it to rapid filling with venting entrapped gas (17). 
 
The pipe emptying problem has not received much attention in the literature because it 
often occurs together with other hydraulic phenomena (2,12,15,18). Different from pipe 
filling, the air is under pressure and the interaction between air and water plays an 
important role in the draining process. In the case of pipeline emptying with compressed 
air supplied from the upstream end as studied by Laanearu et al. (15,16), the moving water 
column is pressurized and its tail becomes stratified flow, i.e., mixed flow situations are 
possible. Pipe emptying experiments for a small-scale single pipe (19) and a large-scale 
undulating pipe (16) were performed to study two-phase flow transitions. Coronado-
Hernandez et al. (20) developed a rigid-column model for rapid emptying and validated it 
against the large-scale experiments (13,14,15,16). To obtain results comparable with the 
measurements, the length of the pipe and the friction factor were adjusted irrationally (21). 
Recently, using the rigid-column model developed in (20), Coronado-Hernandez et al. (22) 
studied the sub-atmospheric pressure in a water-draining pipeline with an air pocket. 
 
To accurately capture the transient phenomenon in rapid emptying of pipelines and to 
better understand its mechanism and examine the influencing factors, an elastic-column 

model has to be used. In this model, the transients are governed by the waterhammer 
equations with moving boundary, for which numerical difficulties are inevitable for mesh-
based Eulerian methods. However, it can be conveniently solved by the smoothed particle 
hydrodynamics (SPH) (10,11), which is a meshless Lagrangian method. In this work, a 
SPH-based elastic-column model is developed for the rapid emptying of pipelines with 
undulating elevation profiles. 
 
 
2 SPH-BASED ELASTIC-COLUMN MODEL 
 
2.1 Problem statement and governing equations 
For the emptying of a pipeline with undulating elevation profile, consider a pipeline with 
two valves and an upstream air tank as sketched in Fig. 1. Water is initially filled in the 
pipe between the upstream tank (filled with pressurized air) and the closed downstream 
valve. When the downstream valve is opened, the water is expelled out of the system due 
to the pressurized air. This is an illustration of the pipe draining experiments (14,19). 
 

 
Figure 1 – Sketch of the draining of a pipeline with undulating elevation profile 

 
The flow is treated as one-dimensional, and hence the governing continuity equation in 
Lagrangian form is 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

                                                            (1) 
 
where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the total derivative, 𝑢𝑢𝑢𝑢  is the cross-sectional averaged velocity, 𝜌𝜌𝜌𝜌  is the 
density, 𝑥𝑥𝑥𝑥 and 𝑑𝑑𝑑𝑑 are spatial and temporal coordinate, respectively. 
From the equation of state 
 

𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝0 = 𝑐𝑐𝑐𝑐2(𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌0)                                                   (2) 
 
we can obtain 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −𝑐𝑐𝑐𝑐2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

                                                          (3) 
 
where 𝑝𝑝𝑝𝑝  is the pressure, 𝑐𝑐𝑐𝑐  is the sound speed, and 𝜌𝜌𝜌𝜌0  is the reference density at the 
reference pressure 𝑝𝑝𝑝𝑝0. 
 
Substituting Eq. (3) into Eq. (1) yields the continuity equation in term of pressure as 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐2 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

                                                         (4) 
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The liquid compressibility and pipe wall elasticity have been taken into account through 
the wave speed, while the density in Eq. (4) is taken constant. Assume that the filled pipes 
remain full and a well-defined water-air interface exists. Then the momentum equation 
with Darcy-Weisbach friction is  
 

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= − 1
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑔𝑔𝑔𝑔sin𝜃𝜃𝜃𝜃 − 𝑓𝑓𝑓𝑓 𝜕𝜕𝜕𝜕|𝜕𝜕𝜕𝜕|
2𝐷𝐷𝐷𝐷

                                            (5) 
 
where 𝑔𝑔𝑔𝑔 is the gravitational acceleration, 𝑓𝑓𝑓𝑓 is the friction factor and 𝐷𝐷𝐷𝐷 is the pipe diameter. 
Note that 𝑢𝑢𝑢𝑢2 instead of 𝑢𝑢𝑢𝑢|𝑢𝑢𝑢𝑢| can be used here because return flow does not occur during 
the rapid emptying process. Equations (4) and (5) are the classical waterhammer equations 
with two more convection terms in the total derivatives.  
 
With regard to the friction factor, the Darcy-Weisbach friction law developed for steady 
turbulent flow is used. Although the validity of the traditional assumption of using steady 
friction has been challenged, it should not be an issue for the inertia driven problems 
studied herein. Different from (10), where a constant friction factor 𝑓𝑓𝑓𝑓 was used, the friction 
factor used herein depends on the Reynolds number 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, which changes with the flow 
velocity. Its instantaneous value is calculated from 
 

𝑓𝑓𝑓𝑓 =

⎩
⎨

⎧
64,                                                     0 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 < 1
64
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

,                                             1 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≤ 2500

0.25 �log �𝜀𝜀𝜀𝜀/𝐷𝐷𝐷𝐷
3.7

+ 5.74
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅0.9��

−2
,          𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 > 2500

                             (6) 

 
where 𝜀𝜀𝜀𝜀/𝐷𝐷𝐷𝐷 is the relative roughness and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≔ 𝑢𝑢𝑢𝑢𝐷𝐷𝐷𝐷/𝜈𝜈𝜈𝜈 with 𝜈𝜈𝜈𝜈 the kinematic viscosity. For 
turbulent flow (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 > 2500), the above expression is known as the Swamee-Jain formula. 
The relative roughness can be directly measured, provided by the manufacturer, or found 
in handbooks. The kinematic viscosity 𝜈𝜈𝜈𝜈 = 10−6 m2/s is used here for water. 
 
Assume that the reference pressure 𝑝𝑝𝑝𝑝0 in Eq. (2) is the atmospheric pressure, the initial 
conditions are 
 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 0,    𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥, 0) = 𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎 + 𝑥𝑥𝑥𝑥sin𝜃𝜃𝜃𝜃                                    (7) 
 
where 𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎 is the pressure head of the air tank. Note that all inclination angles need to be 
included for a pipe with undulating elevation profile. 
 
The upstream side of the downstream valve is taken as the origin of the axial coordinate 
system. Then the boundary condition at the outlet is  
 

𝑝𝑝𝑝𝑝(0, 𝑑𝑑𝑑𝑑) = 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣2

2
                                                       (8) 

 
where 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣 is the head loss coefficient accounting for valve resistance and 𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣 is the flow 
velocity upstream of the valve. The moving water-air interface condition for the shortening 
water-column after valve opening is  
 

𝑝𝑝𝑝𝑝(𝐿𝐿𝐿𝐿0 − 𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑), 𝑑𝑑𝑑𝑑) = 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖                                                (9) 
 
where 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 is the pressure at the water-air interface, 𝐿𝐿𝐿𝐿0 is the initial water-column length, 
and 𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑) is the column length at time 𝑑𝑑𝑑𝑑, which is calculated by  
 



 © TU/e 2023 Pressure Surges 14 287

The liquid compressibility and pipe wall elasticity have been taken into account through 
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= − 1
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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in handbooks. The kinematic viscosity 𝜈𝜈𝜈𝜈 = 10−6 m2/s is used here for water. 
 
Assume that the reference pressure 𝑝𝑝𝑝𝑝0 in Eq. (2) is the atmospheric pressure, the initial 
conditions are 
 

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥, 0) = 0,    𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥, 0) = 𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎 + 𝑥𝑥𝑥𝑥sin𝜃𝜃𝜃𝜃                                    (7) 
 
where 𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎 is the pressure head of the air tank. Note that all inclination angles need to be 
included for a pipe with undulating elevation profile. 
 
The upstream side of the downstream valve is taken as the origin of the axial coordinate 
system. Then the boundary condition at the outlet is  
 

𝑝𝑝𝑝𝑝(0, 𝑑𝑑𝑑𝑑) = 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣2

2
                                                       (8) 

 
where 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣 is the head loss coefficient accounting for valve resistance and 𝑢𝑢𝑢𝑢𝑣𝑣𝑣𝑣 is the flow 
velocity upstream of the valve. The moving water-air interface condition for the shortening 
water-column after valve opening is  
 

𝑝𝑝𝑝𝑝(𝐿𝐿𝐿𝐿0 − 𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑), 𝑑𝑑𝑑𝑑) = 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖                                                (9) 
 
where 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 is the pressure at the water-air interface, 𝐿𝐿𝐿𝐿0 is the initial water-column length, 
and 𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑) is the column length at time 𝑑𝑑𝑑𝑑, which is calculated by  
 

𝐿𝐿𝐿𝐿(𝑑𝑑𝑑𝑑) = 𝐿𝐿𝐿𝐿0 − ∫ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
0                                                 (10) 

 
where 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is the velocity of the moving water-air interface. Air flow dynamics is not 
modelled here, in the sense that the upstream driving air pressure 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is a given function 
of time, which may be a constant.  
 
2.2 Smoothed particle hydrodynamics 
Smoothed particle hydrodynamics (SPH) is a meshless, Lagrangian, particle method that 
uses an approximation technique to calculate field variables like velocity, pressure, 
position, etc. Unlike traditional mesh-based methods, the SPH method uses a set of 
particles without predefined connectivity to represent a continuum system and thus it is 
easy to handle problems with complex geometries and interfaces. It does not suffer from 
mesh distortion and refinement problems that limit the usage of mesh-based methods for 
hydrodynamic problems with free surfaces and moving boundaries. As a Lagrangian 
method, SPH naturally tracks material history information due to movement of the 
particles (10,11). 
 
In SPH particle approximation, the derivative of a one-dimensional function 𝑓𝑓𝑓𝑓 is  
 

𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

(𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎) = ∑ 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏
(𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏)𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
                                    (11) 

 
in which the derivative of the kernel for the cubic-spline widely used in SPH is 
 

𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= sign(𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎−𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏)

ℎ2
�
−2𝑞𝑞𝑞𝑞 + 1.5𝑞𝑞𝑞𝑞2, 0 ≤ 𝑞𝑞𝑞𝑞 < 1,
−0.5(2 − 𝑞𝑞𝑞𝑞)2, 1 ≤ 𝑞𝑞𝑞𝑞 < 2,
0,                                    𝑞𝑞𝑞𝑞 > 2

                          (12) 

 
where the subscripts 𝑎𝑎𝑎𝑎  and 𝑏𝑏𝑏𝑏  are the indices of particles, 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏  and 𝜌𝜌𝜌𝜌𝑏𝑏𝑏𝑏  are the mass and 
density of particle 𝑏𝑏𝑏𝑏, 𝑊𝑊𝑊𝑊(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏 ,ℎ) is the kernel function with ℎ the smoothing length, and 
𝑞𝑞𝑞𝑞 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏/ℎ with 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏 the distance between the particles.  
 
Replacing the spatial derivatives in Eqs. (4) and (5) with the approximation (11) yields the 
SPH formulation of the water-hammer equations as  
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −𝑐𝑐𝑐𝑐2 ∑ 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏(𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎 − 𝑢𝑢𝑢𝑢𝑏𝑏𝑏𝑏)𝑏𝑏𝑏𝑏
𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
                                       (13) 

 
 𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= − 1
𝑑𝑑𝑑𝑑2
∑ 𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏(𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 + 𝛱𝛱𝛱𝛱𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏)𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
+ 𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃𝑎𝑎𝑎𝑎 −

𝜆𝜆𝜆𝜆𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎|𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎|
2𝐷𝐷𝐷𝐷

             (14) 
 
The fact that the density is nearly constant has been used in the derivation of Eqs. (13) and 
(14). To alleviate possible oscillations at sharp wave fronts, an artificial viscosity term 𝛱𝛱𝛱𝛱𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 
(10,11) has been added to Eq. (14), which has the following form: 
 

𝛱𝛱𝛱𝛱𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 = −𝑐𝑐𝑐𝑐ℎ
𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �(𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎−𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏)(𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎−𝜕𝜕𝜕𝜕𝑏𝑏𝑏𝑏)

𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏
2 +0.01ℎ2

;  0�                                     (15) 
 
2.3 Numerical boundary conditions 
The SPH pressure boundary concept proposed in (10,11) is employed to impose the 
boundary conditions (8) and (9). The essential ingredient is to properly complete the 
truncated kernel supports using image particles.  
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The enforcement of the boundary condition (8) is sketched in Fig. 2a. Suppose that at time 
t fluid particle ‘o’ is the one closest to the downstream end and that its velocity is 𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜. To 
complete the kernel support associated with particle ‘o’, a set of particles with spacing 𝑑𝑑𝑑𝑑0 
is placed outside the pipe end. Their velocity is taken as 𝑢𝑢𝑢𝑢o and their pressure is  
 

𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜 = 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜2

2
                                                         (16) 

 
The moving air-water interface condition (9) is imposed in a similar way. The illustration 
is shown in Fig. 2b. Suppose that at time t fluid particle ‘f’ represents the moving air-water 
interface and its velocity is 𝑢𝑢𝑢𝑢𝑓𝑓𝑓𝑓. To complete the kernel associated with particle ‘f’, a set of 
particles with spacing 𝑑𝑑𝑑𝑑0 is placed upstream of the particle ‘f’. Their velocity is 𝑢𝑢𝑢𝑢𝑓𝑓𝑓𝑓 and 
their pressure is  
 

𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 = 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖                                                       (17) 
 
All the introduced image particles are referred to as pressure particles as they are used to 
impose pressure conditions. The number of pressure particles for each boundary, 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
depends on the radius of the kernel support, which is 2ℎ for the cubic-spline. To meet the 
requirement that the kernel associated with any a fluid particle needs to be fully supported, 
an integer 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ⌊2ℎ/𝑑𝑑𝑑𝑑0⌋ must be taken. Practically, 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2 is used, which satisfies the 
above requirement for all one-dimensional cases. When a fluid particle leaves the pipeline, 
it becomes an outlet particle and at the same time the most downstream particle is deleted. 
 

(a)  (b)  

Figure 2 – Illustration of pressure particles for (a) downstream outlet and (b) 
moving water-air interface 

 
2.4 Time integration and stability 
The time derivatives in the SPH-based elastic model (13) and (14) are integrated by the 
velocity-Verlet method, which is second-order accurate and, more importantly, symplectic. 
The calculation process of the velocity-Verlet integral algorithm is given by 
 

𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖+1/2 = 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + ∆𝑑𝑑𝑑𝑑

2
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�
𝑖𝑖𝑖𝑖

                                           (18) 
 

𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖+1/2 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + ∆𝑑𝑑𝑑𝑑

2
𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖+1/2                                           (19) 

 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖+1 = 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + ∆𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑛𝑛𝑛𝑛+1/2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
                                             (20) 

 
𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖+1 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎

𝑖𝑖𝑖𝑖+1/2 + ∆𝑑𝑑𝑑𝑑
2
𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖+1/2                                          (21) 

 

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1 = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖+1/2 + ∆𝑑𝑑𝑑𝑑

2
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�
𝑖𝑖𝑖𝑖+1

                                       (22) 
 
where superscripts 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠 + 1/2 and 𝑠𝑠𝑠𝑠 + 1 represent the time levels. 
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The enforcement of the boundary condition (8) is sketched in Fig. 2a. Suppose that at time 
t fluid particle ‘o’ is the one closest to the downstream end and that its velocity is 𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜. To 
complete the kernel support associated with particle ‘o’, a set of particles with spacing 𝑑𝑑𝑑𝑑0 
is placed outside the pipe end. Their velocity is taken as 𝑢𝑢𝑢𝑢o and their pressure is  
 

𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜 = 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜2

2
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The moving air-water interface condition (9) is imposed in a similar way. The illustration 
is shown in Fig. 2b. Suppose that at time t fluid particle ‘f’ represents the moving air-water 
interface and its velocity is 𝑢𝑢𝑢𝑢𝑓𝑓𝑓𝑓. To complete the kernel associated with particle ‘f’, a set of 
particles with spacing 𝑑𝑑𝑑𝑑0 is placed upstream of the particle ‘f’. Their velocity is 𝑢𝑢𝑢𝑢𝑓𝑓𝑓𝑓 and 
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All the introduced image particles are referred to as pressure particles as they are used to 
impose pressure conditions. The number of pressure particles for each boundary, 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
depends on the radius of the kernel support, which is 2ℎ for the cubic-spline. To meet the 
requirement that the kernel associated with any a fluid particle needs to be fully supported, 
an integer 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ⌊2ℎ/𝑑𝑑𝑑𝑑0⌋ must be taken. Practically, 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2 is used, which satisfies the 
above requirement for all one-dimensional cases. When a fluid particle leaves the pipeline, 
it becomes an outlet particle and at the same time the most downstream particle is deleted. 
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Figure 2 – Illustration of pressure particles for (a) downstream outlet and (b) 
moving water-air interface 

 
2.4 Time integration and stability 
The time derivatives in the SPH-based elastic model (13) and (14) are integrated by the 
velocity-Verlet method, which is second-order accurate and, more importantly, symplectic. 
The calculation process of the velocity-Verlet integral algorithm is given by 
 

𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖+1/2 = 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + ∆𝑑𝑑𝑑𝑑

2
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�
𝑖𝑖𝑖𝑖

                                           (18) 
 

𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖+1/2 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + ∆𝑑𝑑𝑑𝑑

2
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𝑖𝑖𝑖𝑖+1/2                                           (19) 

 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖+1 = 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + ∆𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑛𝑛𝑛𝑛+1/2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
                                             (20) 

 
𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖+1 = 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎

𝑖𝑖𝑖𝑖+1/2 + ∆𝑑𝑑𝑑𝑑
2
𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖+1/2                                          (21) 

 

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1 = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖+1/2 + ∆𝑑𝑑𝑑𝑑

2
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�
𝑖𝑖𝑖𝑖+1

                                       (22) 
 
where superscripts 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠 + 1/2 and 𝑠𝑠𝑠𝑠 + 1 represent the time levels. 
 

For the velocity-Verlet scheme, the time step must satisfy the Courant-Friedrichs-Lewy 
(CFL) stability condition (23): 
 

∆𝑑𝑑𝑑𝑑 ≤ 0.25 ℎ
𝑐𝑐𝑐𝑐+𝜕𝜕𝜕𝜕𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚

                                                (23) 
 
where 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the maximum flow velocity in the simulation.  
 
The time step size is not only crucial to stability, but also to accuracy and efficiency. If the 
time step is too large, instability occurs and accuracy reduces. On the other hand, 
unnecessary computation cost will be caused if the time step is too small. For optimization, 
a variable time step is taken here. 
 
 
3 NUMERICAL RESULTS 
 
To verify the SPH model for pipe emptying, we examine a physical setup as in the pipe 
filling experiment of Liou and Hunt (3). Differently, the water tank is replaced by an air 
tank, and the downstream end is equipped with a valve (see Fig. 1 with i = 1, 2). The two 
PVC pipes are initially full of water, which is at rest and under pressure. Two different 
cases are simulated. One is a small-scale case with short pipe and low driving head, and 
the other is a large-scale case with longer pipe and higher driving head.  
 
3.1 Small-scale pipeline 
In the first case, the air tank has a constant head of 𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎 = 0.2 m of water. The lengths of 
the two pipes are 𝐿𝐿𝐿𝐿1 = 3.55 m and 𝐿𝐿𝐿𝐿2 = 3.11 m, and their diameter is 22.9 mm. The 
inclination angles are 𝜃𝜃𝜃𝜃1 = 2.66° and 𝜃𝜃𝜃𝜃2 = 2.25° downward, respectively. The relative 
roughness is 𝜀𝜀𝜀𝜀

𝐷𝐷𝐷𝐷
= 0.00015 and the sound speed c = 300 m/s. After the downstream valve 

opens instantaneously, water is driven out of the system by the constant air pressure and 
gravity. The resistance of the downstream valve is neglected, i.e., 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣 = 0. 
 
3.1.1 Velocity change 
In SPH the selected particle spacing is 𝑑𝑑𝑑𝑑0 = ∆𝑥𝑥𝑥𝑥 = 10 mm, and hence there are initially 
666 particles in the system. The simulation is terminated after the system is empty (after 
about 6 s). The predicted history of the averaged velocity and acceleration of the water 
particles is shown in Fig. 3 together with those obtained by the rigid-column model (19). 
The water column experiences rapid velocity changes at the early and late stages (Fig. 3a). 
The early rapid change is because of the low friction, and the late rapid change is because 
of the small column length (i.e., small mass). The velocity increases with shortening 
column length and experiences two rapid changes with large accelerations (Fig. 3b). At the 
early stage, inertia dominates and the water column accelerates at (𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎 + 𝐿𝐿𝐿𝐿1sin +
𝜃𝜃𝜃𝜃1𝐿𝐿𝐿𝐿2sin𝜃𝜃𝜃𝜃2)/(𝐿𝐿𝐿𝐿1 + 𝐿𝐿𝐿𝐿2) = 0.72  m/s2. When the velocity increases, friction becomes 
important and decreases the acceleration. When the column length is smaller, the friction 
force becomes less important again and the column experiences another rapid acceleration 
due to its small mass. This is clearly seen from the acceleration history shown in Fig. 3b. 
An inflection point exists in the velocity profile in Fig. 3a, which corresponds to the 
minimum acceleration exhibited in Fig. 3b. For both the averaged velocity and acceleration 
of the water column, the SPH simulation results agree well with the rigid-column solutions. 
 

The computed velocity at the outlet is shown in Fig. 4a. Although fluctuations do exist in 
the early stage of the emptying process, the water elasticity effect is invisible without 
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zooming in. This is because the pipe length is too short. However, when one examines the 
maximum and minimum acceleration of the particles during pipe emptying, large 
variations due to liquid compressibility and pipe wall elasticity are clearly seen in Fig. 4b. 
 

   

Figure 3 – History of the averaged (a) velocity and (b) acceleration of the column in 
pipe draining by rigid-column model and elastic-column model 

 

   

Figure 4 – (a) Outlet velocity vs. column length and (b) histories of acceleration  
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acceleration head ℎ𝑎𝑎𝑎𝑎 = 𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎/𝑔𝑔𝑔𝑔 (𝑎𝑎𝑎𝑎 is the averaged acceleration among all fluid particles) and 
the friction head loss ℎ𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝑢𝑢𝑢𝑢2/(2𝐷𝐷𝐷𝐷𝑔𝑔𝑔𝑔) are shown in Fig. 5 together with the driving 
pressure head and gravity head. Since the downstream valve resistance is zero, the driving 
head is equal to upstream constant pressure head ℎ𝜕𝜕𝜕𝜕 = 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖/(𝜌𝜌𝜌𝜌𝑔𝑔𝑔𝑔). The head transition 
and the equilibrium of the water column are verified. 
 

   

Figure 5 – Contribution of the active heads during the emptying process 
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zooming in. This is because the pipe length is too short. However, when one examines the 
maximum and minimum acceleration of the particles during pipe emptying, large 
variations due to liquid compressibility and pipe wall elasticity are clearly seen in Fig. 4b. 
 

   

Figure 3 – History of the averaged (a) velocity and (b) acceleration of the column in 
pipe draining by rigid-column model and elastic-column model 

 

   

Figure 4 – (a) Outlet velocity vs. column length and (b) histories of acceleration  
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3.1.3 Controlled pipe emptying 
For controlled pipe emptying through partially opening the downstream valve, the head 
loss coefficient 𝐾𝐾𝐾𝐾𝑣𝑣𝑣𝑣 significantly affects the pipe emptying process as shown in Fig. 6. The 
valve resistance largely affects the emptying time and maximum velocity, but its effect on 
the early stage of emptying is insignificant because of the low flow velocities. There is a 
point (t = 1.25 s) in Fig. 6, where the velocity histories separate. This is because the flow 
velocity in the early stage is relatively small, and hence the head loss due to valve resistance 
is unimportant relative to the inertia force. 
 

   

Figure 6 – Effect of valve resistance on column velocity in the emptying process 
 
3.2 Large-scale pipeline 
In the second case, the head of the air tank is 𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎 = 2 m of water. The lengths of the two 
pipes are five times longer than those in the first case. Other parameters are unchanged.  
From the simulated velocity history at the valve shown in Fig. 7, the good agreement 
between the results of the rigid-column model and the elastic-column model is clearly 
observed. The slight disagreement in the early stage (before the column velocity increases 
to 1.5 m/s) is due to the effect of water compressibility. It becomes negligible in the rest 
of the emptying process, when the ratio of the change in internal energy to the change in 
kinematic energy is much less than one (24).  
 

 

Figure 7 – History of velocity at valve in pipe draining by the elastic-column model 
 
The effect of air tank pressure on the emptying process is shown in Fig. 8. With increasing 
driving air pressure, the draining process ends earlier with higher velocities and the 
compressibility effects become negligible earlier. Due to the increased driving pressure, 
higher velocity changes during one traveling period of the water hammer wave are also 
seen. These are consistent with expectations.  
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Figure 8 – History of velocities at valve under different driving air pressure 

 
 
4  SUMMARY AND CONCLUSIONS 
 
Based on the full elastic model, a numerical model in Lagrangian framework is developed 
for simulating rapid emptying of pipelines with undulating elevation profiles. Since the 
water column has a shortening length with time, it actually is a transient phenomenon in a 
computational domain with moving boundary, which is hardly solved using traditional 
mesh-based methods. Thus, smoothed particle hydrodynamics (SPH) has been applied, 
which is a meshless second-order accurate method. The image particle method was used 
to simultaneously ensure complete kernel support and impose boundary conditions. The 
velocity-Verlet method was employed for time marching to enhance integration accuracy. 
For validation, two cases of rapid emptying processes of pipelines with large differences 
in length and driving air head were simulated and the solutions were compared with those 
of the rigid-column model. 
 
The results show that there is excellent agreement in averaged velocities and accelerations 
between the rigid-column model and the elastic-column model, confirming the SPH 
approach. The water column moves as a rigid column during the emptying process of 
pipelines with small lengths, where the effect of water elasticity is negligible. However, in 
the emptying process of long pipelines, to capture the water hammer wave during the early 
emptying stage, the elasticity effect must be taken into account and thus a full elastic model 
should be employed. Furthermore, if the emptying process is disturbed at a certain point, 
say by rapid tank or valve operation, the rigid-column theory will fail and an elastic-
column model has to be used.  
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Figure 8 – History of velocities at valve under different driving air pressure 
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