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Modeling Liquid Slugs
Accelerating in Inclined Conduits
In this article, we simulate traveling liquid slugs in conduits, as they may occur in sys-
tems carrying high-pressure steam. We consider both horizontal and inclined pipes in
which the slug is accelerated by a suddenly applied pressure gradient, while at the same
time, gravity and friction work in the opposite direction. This causes a steep slug front
and an extended slug tail. The shapes of front and tail are of interest since they determine
the forces exerted on bends and other obstacles in the piping system. The study also aims
at improving existing one-dimensional (1D) models. A hybrid model is proposed that ena-
bles us to leave out the larger inner part of the slug. It was found that the hybrid model
speeds up the two-dimensional (2D) computations significantly, while having no adverse
effects on the shapes of the slug’s front and tail. [DOI: 10.1115/1.4037716]

1 Introduction

The phenomenon of traveling liquid slugs in pipelines inevita-
bly occurs in the process of rapid pipe emptying and filling opera-
tions [1], but is especially observed in piping systems that carry
high-pressure steam. In power plants, for instance, electricity is
produced by means of steam turbines. When such systems are
shut down for maintenance or lack thermal insulation, steam con-
densates and accumulates in the lower sections of the system. The
liquid slug that thus arises forms a potential danger when the sys-
tem is reactivated. Due to the high velocity of the slugs, which
can easily be over 40 m/s, serious impact forces are imposed when
they hit obstacles like bends and (partly) closed valves. This may
lead to severe damage to the piping system, its supports, and its
direct environment when leakage is the result. Severe accidents
with casualties have been scrutinized in the literature [2–6].
Reference [2] is recommended reading for anyone interested in
condensation-induced waterhammer, and Ref. [5] reports a
2500 kg pipe blown away an unbelievable distance of 800 m. Sev-
eral laboratory investigations have been undertaken [7–12] as well
as theoretical modeling and numerical simulation [13–21] on the
formation, evolution, and structural impact of liquid slugs. The
severity of the impact depends on the velocity and length of the

slug, and on the steepness of its front. This is investigated herein
by means of two-dimensional (2D) SPH simulations in order to
check the plane-front assumption adopted in one-dimensional
(1D) models and to quantify the amount of holdup (liquid that is
left behind). In particular, it is computed how liquid is pushed out
of a dip and how the slug’s front and tail develop in time in an
inclined pipe before hitting a downstream bend. To reduce the
computation times, a hybrid 1D-2D model is proposed which is
most efficient for multiphase pipe flows with large regions of pure
liquid.

2 Mathematical Model

We will simulate the traveling slugs as two-dimensional bodies.
To that end, we consider the vertical cross section through the

Fig. 1 A two-dimensional initial situation
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central axis of the pipe, as depicted in Fig. 1. The x-axis is taken in
the axial direction along the pipe. We neglect the effect of the cir-
cular shape of the pipe by assuming that there is no flow in the z-
direction. In this way, we can directly use the continuity equation

r � v ¼ 0 (1)

and the Euler equation

dv

dt
¼ �rp

q
þ g (2)

to simulate the two-dimensional flow of the liquid. Notice that Eq. (2)
implies that the fluid is assumed to be inviscid. The two-dimensional
velocity vector v consists of the velocities u and v in the x and y-
direction, respectively. The pressure is denoted by p, the density by q,
and g is the gravitational acceleration vector.

Initially, the liquid is at hydrostatic rest. Then, as illustrated in
Fig. 1, a constant pressure P is suddenly exerted on the left surface
of the slug, while at the right surface, a zero gauge pressure is
assumed. Skin friction at the pipe walls is included as an addi-
tional deceleration mechanism according to

du

dt
¼ � f

2D
u2 (3)

where f is the Darcy–Weisbach friction coefficient and D is the
hydraulic diameter of the circular and square conduits considered
herein.

3 Numerical Method

3.1 Incompressible SPH (ISPH). We use smoothed particle
hydrodynamics for our numerical simulations, in which the slug is
described by a large number of incompressible particles, each of
mass m. Every time step Dt (indicated by n), we carry out the fol-
lowing (more or less standard) calculations for each particle i:

� Compute the auxiliary velocity field resulting from gravity

v�i ¼ vn
i þ g Dt (4)

� Compute the new pressure field from the Poisson equation

hr2piinþ1 ¼ q
Dt
hr � v�i i (5)

� Calculate the new accelerations

�
dvi

dt

�nþ1

¼ C�1
i;r
X
j2Si

mj

pnþ1
j � pnþ1

i

qjqi

!
rxj

Ki j (6)

� Update the velocities

vnþ1
i ¼ vn

i þ
�

dvi

dt

�nþ1

Dt (7)

� Update the particle positions

xnþ1
i ¼ xn

i þ
1

2
vn

i þ vnþ1
i

� �
Dt (8)

Here, Si is the set of particles contained in the support domain of
particle i, Ki j :¼ Kðxi � xj; hÞ is a kernel function with smoothing
parameter h, and Ci;r is a normalization matrix defined by

Ci;r :¼ �
X
j2Si

rxj
Ki j xT

j i Vj (9)

where V denotes volume, xj i :¼ xj � xi, and superscript T indi-
cates transpose. The boundaries (both rigid walls and free surfa-
ces) need special treatment, in that particles close to walls need to
be mirrored in those walls and particles constituting the free sur-
face need to be identified to impose the zero pressure boundary
condition. Also, the flow separation points and the particle distri-
bution require some attention, since without proper treatment par-
ticles will maneuver themselves into particle chains, thereby
inevitably decreasing the accuracy. The precise details of the SPH
algorithm used in this article are fully described in Ref. [22].

3.2 A Hybrid Model. The regions of particular interest are
the front and the tail of the slug. These are the regions where gen-
uine two-dimensional flow occurs. In the inner part of a slug in a
straight pipe the velocities are unidirectional, with the magnitudes
depending only on the y-coordinate. Despite its less interesting
behavior, the inner part forms the largest part of the slug and
therefore has a dominant contribution to the total computational
effort. To make our algorithm more efficient—i.e., save computa-
tional time and avoid the need to store large matrices—we adopt a
quasi two-dimensional model for the inner part of the slug. It turns
out that the only assumption we need to include is that the pres-
sure field inside the inner part is linear in the axial direction. The
model is applicable only when the entire inner slug is in a straight
section. It is a novel procedure and therefore fully described in
Appendix A.

Results of the hybrid model are compared with those of the full
simulation. To that end, we simulate an initially block-shaped
slug of length L0¼ 2 m and density q¼ 1000 kg/m3, traveling in a
horizontal pipe with diameter D¼ 0.1 m. The slug is accelerated
by a suddenly applied upstream pressure of P¼ 500,000 Pa, and
there is no friction with the walls. The particles are initially dis-
tributed hexagonally, with particle distance d¼ 0.005 m. This
gives a total of 9223 particles. When the hybrid model is applied,
the computations are started with only 1564 particles (represent-
ing front and tail), reducing the computational time by a factor 5.
We emphasize, however, that this factor increases significantly
when the liquid slug is much longer (for example, in pipe empty-
ing), since this would increase the number of particles in the full
simulation, while exactly the same number of particles can be
used for a simulation with the hybrid model.

Figure 2 shows the tail of the slug at t¼ 0.25 s for both the full
simulation and the simulation that employs the hybrid model. If
one looks closely, it is possible to distinguish slight variations in
particle positions, but otherwise the shapes of the free surfaces are
practically identical. Figure 3 confirms that the shapes and posi-
tions of the slug fronts are nearly the same.

3.3 Wall Friction. Wall or skin friction is caused by the fluid
being in contact with the wall. Hence, the main contribution to the
total amount of wall friction comes from the inner part of the slug.
With the hybrid model, however, the inner part of the slug does
not explicitly take part in the SPH computations. We therefore
have to impose the effects of wall friction after the accelerations
of the fluid particles in the front and tail of the slug have been
computed. The average speed of the inner slug particles is

uavg ¼
1

jSj
X
s2S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
vn

s � vn
s

p
(10)
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with S the set of particles that has been temporarily stored, as
explained in Appendix A. Then, the accelerations tangent to the
wall of all particles (also those in front and tail) are reduced per
time step according to

du

dt
¼ � f

2D
u2

avg (11)

Any additional friction, turbulence, or air-entrainment effects in
front and tail have not been taken into account.

4 The Slug’s Velocity and the Holdup Coefficient

We now compare our SPH results with those of the symbolic
one-dimensional solutions given in Appendix B. To that end, we
simulate an initially block-shaped liquid slug with length L0¼ 1 m
in a horizontal pipe with diameter D¼ 0.01 m. Gravity is
included, as well as wall friction with f¼ 0.016. The initial parti-
cle distance is d ¼ 5� 10�4 m, resulting in 46,023 particles. In
the early stages of the simulation, the hybrid model reduces the
number of particles to just 1564. The density of the fluid is
q¼ 1000 kg/m3. In Eq. (6), we use the Wendland kernel

Ki j ¼ K jqj; ~h
� �

¼ 7

p~h
2

1� jqjð Þ4þ 4jqj þ 1ð Þ (12)

where ð�Þþ :¼ maxð0; �Þ; q :¼ ðxi � xjÞ=~h, and ~h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð18=5Þ

p
h is

the radius of the support domain, with smoothing length h¼ 1.5d.

4.1 The Velocity of the Slug’s Front. During the computa-
tions, we keep track of the average horizontal velocity of all the

particles that constitute the free surface at the slug’s front. We
consider two cases: in case one, P¼ 105 Pa and Dt¼ 10–5 s, while
in case two, P¼ 106 Pa and Dt ¼ 5� 10�6 s. The velocity histor-
ies of the slug’s front in both cases are shown in Fig. 4, together
with one-dimensional solutions. The one-dimensional model is
sketched in Fig. 5(a). The holdup coefficient b is defined as the
holdup area divided by the conduit area. For a rectangular cross
section, b¼H/D (Fig. 5(b)).

Initially, the results of the SPH simulation are almost identical
to those of the one-dimensional solution without holdup (b¼ 0).
This might be expected, because the effect of holdup on the slug’s
acceleration is proportional to u2 and therefore small in the begin-
ning. Soon, however, the holdup starts to have effect. After the
slug has traveled about twice its own initial length, the difference
between the SPH simulation and the one-dimensional model with-
out holdup becomes visible.

Figure 4 also shows the velocity profiles given by the one-
dimensional model with holdup for several values of b. Clearly,
the one-dimensional models are able to predict the shape of the
slug’s velocity profile very well. More specifically, in the case
P¼ 105 Pa, we find that if we choose b¼ 0.0415, the predicted
velocity profile of the one-dimensional model is in very close
agreement with that of our two-dimensional simulation. In the
case P¼ 106 Pa, accurate predictions are found when b¼ 0.044
(not shown in Fig. 4(b)) and b¼ 0.043.

4.2 The Holdup Coefficient in Relation With the Slug’s
Length. The unknown value for b that should be used in the one-
dimensional model can be extracted from the SPH simulation. To
that end, we keep track of the length of the inner slug, which we
define as the horizontal distance between the two flow-separation

Fig. 2 Comparison of the tail of the slug at t 5 0.25 s calculated with (a) the full simulation and
(b) the hybrid model.

Fig. 3 Comparison of the front of the slug at t 5 0.25 s calculated with (a) the full simulation and (b) the hybrid
model.
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points at the top of the conduit. This length is shown in Fig. 6(a),
together with a linear fit of the data.

From the definition of the slug length L in Eq. (B3) in Appendix B,
we derive that the slope s of the curves in Fig. 6(a) is related to the
holdup coefficient in the following way:

s ¼ � b
1� b

or b ¼ s

s� 1
(13)

We approximate the slope of the curve corresponding to
P¼ 106 Pa in Fig. 6(a) by means of a first-order finite difference
scheme. Through Eq. (13), this leads to an approximation for the
holdup coefficient b, which is depicted in Fig. 6(b). Apart from
the peaky behavior, the result seems to suggest that b is constant
in time.

If we use the slope of the linear fit we find that b� 0.044 (hori-
zontal line in Fig. 6(b)), which agrees well with the results of the
velocity profiles in Fig. 4(b). Thus, we may conclude that the
assumption of a constant holdup coefficient is very reasonable
indeed.

4.3 The Holdup Coefficient in Relation With the Slug’s
Tail. The holdup coefficient b in a rectangular conduit is the ratio
of the depth H of the holdup and the height D of the slug (Fig.
5(b)). As such, we are able to approximate its value from the SPH
simulation by computing the average depth of the slug’s tail (the
holdup). To that end, we count the number of particles left of the
left flow-separation point (this is the point where the inner slug
feels the driving pressure P; the pressure gradient in the tail is
small). This number is multiplied by the volume of a single parti-
cle and divided by the horizontal length of the slug’s tail (distance
from the outer left particle to the left flow-separation point). This
gives an estimate for b, which for the case in which P¼ 106 Pa is
shown in Fig. 6(b).

When the traveled distance is small, there is little or no holdup.
Therefore, the results for small values of x are unreliable and of
less importance, because holdup does not influence the slug’s
velocity initially. After that, for distances between 4 m and 22 m,
the values of the holdup coefficient converge to b� 0.040. Again,
this supports the assumption of a constant holdup coefficient,
albeit with a slightly smaller value. Recall that with the one-
dimensional model the most accurate predictions are found when

Fig. 4 The slug’s front velocity as a function of its position when (a) P 5 105 Pa and (b) P 5 106 Pa. Comparison between
the SPH simulation and the one-dimensional models without (b 5 0) and with holdup.

Fig. 5 Illustration of the one-dimensional models with holdup, as in Ref. [20]

Fig. 6 (a) the slug’s length as a function of its front position for both P 5 105 Pa and P 5 106 Pa and (b) the values of b derived
from the SPH simulation for P 5 106 Pa, where the black line indicates b 5 0.044

061301-4 / Vol. 139, DECEMBER 2017 Transactions of the ASME



Fig. 7 Setup of the numerical simulations. The tilted line is the horizontal and indicates the angle of inclination.

Fig. 8 Simulation of a traveling liquid slug starting from rest in an inclined pipe, showing the pressure distribu-
tion in the slug. In Figures (e), (f) and (g) the slug is fully contained in the straight section of the pipe and the
hybrid model is applied.

Journal of Pressure Vessel Technology DECEMBER 2017, Vol. 139 / 061301-5



b¼ 0.043 or 0.044, which is close to the currently estimated value
of 0.040.

5 Accelerating Liquid Slugs in an Inclined Pipe

In our simulations, we consider the experiments by Bozkuş
et al. [9] on a pipe with diameter D¼ 0.1 m. The main pipe is
12 m long and has an upward slope of h¼ 0.08 radians (see Fig. 7).
In our first simulation, the slug has an initial length of L0¼ 3 m. The
initial particle spacing is chosen as d¼ 0.006 m, leading to 11,975Fig. 9 Representation of the observed slug flow pattern by

Bozkuş and Wiggert [7]

Fig. 10 Simulation of a traveling liquid slug in an inclined pipe.

061301-6 / Vol. 139, DECEMBER 2017 Transactions of the ASME



particles. Both the downstream and upstream bend have a smooth,
circular shape in the simulation (at the moment we are not able to
correctly simulate the impact on a square bend; possible reasons are
the geometric discontinuity and the incompressible liquid resulting
in infinite accelerations). A sudden pressure P¼ 500,000 Pa is

exerted from the left, as illustrated in Fig. 1. This induces a pressure
distribution as shown in Fig. 8(a).

The early stages of the simulated slug motion are shown in Fig. 8.
Here, Dt¼ 10�5 s. The liquid slug is gently pushed through the
lower bend. When the slug has just passed around the corner, the

Fig. 11 Simulation of a liquid slug hitting and passing an elbow. The cross in (a) indicates the position
of the monitor point.

Journal of Pressure Vessel Technology DECEMBER 2017, Vol. 139 / 061301-7



upper layer of the slug is already accelerating faster than the bottom
layer. This results in an overshoot of the upper layer at the front of
the slug, which is visible in Fig. 8(e). The overshoot is “pulled on”
by gravity, so that over time the slug’s front becomes steep and
finally nearly planar. An opposite effect occurs at the slug’s tail.
There, the higher acceleration of the top layer increases the dam-
break mechanism of gravity, so that the slug’s tail gradually forms
the holdup.

When the top layer of the slug overtakes the bottom layer, a
protuberance is created at the bottom of the slug’s front (see Fig.
8(f)). This makes the front look very similar to the one observed
in reality in Ref. [7] and which is shown in Fig. 9. The protuber-
ance is a result attributed to the small inclination angle, because it
does not (or less) appear when h is larger. Notice that in Figs.
8(e)–8(g), the entire slug is contained in the straight section of the
pipe, and therefore, the hybrid model is applied, with an assumed
linear pressure distribution in the inner slug.

Figure 10 shows the slug’s front and tail at later stages of the
simulation. Over time, the slug’s tail becomes a bit smoother. The
protuberance at the front of the slug becomes less apparent (see
Figs. 10(b)–10(j)).

When the slug reaches the elbow at the end of the main pipe, it
has an inner length of approximately 2.1 m and a velocity of 46 m/s.
By this time, the protuberance has almost disappeared completely
and the front is nearly planar (see Fig. 11(a)). The slug travels
through the bend quite gently, especially sometime after the impact
(see Fig. 11(h)).

The pressure force exerted by the slug on the bend is calculated
at a monitor position xm according to

hpmi ¼
X
j2Sxm

pj Kðxm � xj; hÞVj (14)

As for the measured signals in Ref. [9] (see Eq. (11) in that paper),
we carry out a smoothing treatment (5 ms time average) to filter
out any nonphysical oscillations

hpmin ¼
1

50

Xnþ49

i¼n

hpmii (15)

For xm¼ (11.965, �0.09) m, the resulting pressure evolution is
shown in Fig. 12(a). It also shows the pressure prediction based
on the inner slug’s horizontal velocity (p ¼ qu2

avg). We compare
our results with the pressure history obtained experimentally by
Bozkuş et al. [9]. Their results, for a slug of initial length L0¼ 3 m
and a pressure of P¼ 500,000 Pa, are also given in Fig. 12(a). We
find that the magnitude of the impact pressure is in very close
agreement with that found experimentally. This implies that the
impact velocity is correctly predicted. The pressure decay in our
simulations is more or less constant, whereas in the experiments
by Bozkuş et al. [9], it decreases faster immediately after the
impact and slower at later stages. To determine what causes this
difference, more (experimental) results are needed, in particular
photographic or video images. The qu2

avg -result gives an accepta-
ble conservative prediction.

In a second simulation, the slug has an initial length of L0¼ 5 m.
Other parameters are the same as before, including the initial parti-
cle spacing, so that we start with 15,577 particles. We find that the
behavior of the slug during the early stages of the acceleration, as

Fig. 12 The gauge pressure exerted by the liquid slug on the downstream bend in an inclined pipe when (a) L0 5 3 m and (b)
L0 5 5 m. A comparison of our SPH simulation with the measurement of Bozkuş et al. [9]. Note: 100 psi�7 bar.

Fig. 13 The front (right) and tail (left) of the slug are simulated with two-dimensional SPH.
The middle part is replaced by a quasi two-dimensional model.

061301-8 / Vol. 139, DECEMBER 2017 Transactions of the ASME



well as in the straight section of the pipe, is similar to the behavior
of the shorter slug in the first simulation. At the time of impact, the
slug has an inner length of approximately 4.5 m and a velocity of
30 m/s. The calculated impact pressure exerted by the slug on the
upper bend is lower and different than in the previous case, as
shown in Fig. 12(b). After the impact, the exerted force on the bend
stays on the same level. Intuitively this seems correct, as the slug is
still traveling at nearly constant speed through the bend, but it does
not agree with the experimental results of Bozkuş et al. [9], which
show a nearly two times higher pressure peak and a gradual decay.
The analytical one-dimensional model predicts an impact velocity
similar to that in our SPH simulations [20], which suggests that for
long slugs there is something wrong in either the experiment or our
model assumptions. For example, an entrapped air pocket may
occur in the upper corner of the elbow.

6 Conclusions

In this paper, we simulated liquid slugs traveling in void pipelines.
To that end, we adopted the incompressible SPH method. We intro-
duced a hybrid model that enabled us to leave out the larger inner
part of the slug. This saved a significant amount of computational
time, depending on the slug’s length. Furthermore, a higher resolu-
tion could be achieved in the slug’s front and tail. The hybrid model
had no adverse effect on the shapes of the slug’s front and tail.

We validated our simulation results against laboratory measure-
ments. The steep front and the smooth tail of the slugs found in
our simulations were consistent with the shapes found by Bozkuş
and Wiggert [7]. Also, the slug’s speeds and the pressure force
exerted by the short slugs on bends were consistent with the
results obtained experimentally by Bozkuş et al. [9]. For long
slugs, peak pressures were underestimated.

We also validated our results against the analytical, one-
dimensional model of Tijsseling et al. [20]. It was found that the
impact velocities predicted by our simulations were consistent
with the velocities given by the analytical model.

Finally, we studied the one-dimensional model of Tijsseling
et al. [20] and the unknown holdup-coefficient b that they use. We
found that their assumption of a constant holdup coefficient is a
valid one. More specifically, we found that the predictions of the
one-dimensional model with 0.041�b� 0.044 were in very close
agreement with our two-dimensional SPH results.

Acknowledgment

The authors would like to thank the reviewers for their helpful
comments.

Funding Data

� Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO) VICI Grant No. 639.033.008.

Appendix A: The Hybrid Model

The hybrid model is implemented as follows. First, we look for
the flow separation points (left and right top corners of the inner
slug). Before the hybrid model is applied, the free surface particles
have already been identified through the procedure described in
Ref. [23]. We now consider the particles constituting the left free
surface. The left flow separation point is then indicated by the posi-
tion of the particle with the largest x-coordinate. A similar proce-
dure is followed to find the right flow separation point. Both
particles are at the top at xt and xf, respectively, in Fig. 13. Let us
denote the axial locations of these particles by xt (tail) and xf (front).
Then, all particles s for which

xt þ ðDx þ DbÞ < xs < xf � ðDx þ DbÞ (A1)

are temporarily removed from the SPH simulation. We denote this
set of particles by S. The value of Dx should be chosen such that
at a distance Dx from the separation points the effects of the free

surface are negligible. The distance Db is used to define a thin
layer in which particles will act as boundary particles. In our com-
putations, we used Dx¼ 20 h and Db¼ 2 h, but other values may
be used as well. The separated inner part always has height D,
while its length Ds is adapted every time step. It may be very long
relative to D, as indicated by the bold dashed lines representing
the walls in Fig. 13. The particle-removal step is performed at the
beginning of a time step, even before the computation of the aux-
iliary velocities.

By removing the particles in S we are left with two separate
parts of the slug: the front and the tail. This introduces two more
boundaries: right from the tail and left from the front. To solve
Eq. (5), we need to know which particles constitute these bounda-
ries. In general, these particles will not be positioned on straight
vertical lines. Therefore, we introduce boundary areas, with all
particles b for which

xtþDx< xb< xtþDxþDb or xf �Dx�Db< xb< xf �Dx

(A2)

designated as boundary particles. The set containing these
particles is denoted by B¼Bt [ Bf (with Bt and Bf containing the
particles of B located in the tail and front of the slug,
respectively). These boundary particles will impose the necessary
boundary conditions on Eq. (5), in addition to the existing set of
boundary conditions for rigid walls and free surfaces. To that end,
we select two axial positions for every particle b. For instance, if
b � Bt, one point is located at xb,t¼ xb� 4Db and the other—at
the front of the slug—–at xb,f¼ xbþDsþ 5Db (while yb,t¼ yb,f¼ yb).
This is illustrated for a particle in Bt in Fig. 13.

Now we use our assumption that the pressure in the inner part
of the slug (taken from xt to xf) decreases linearly in the axial
direction. With particle b � Bt located exactly on the line between
xb,t and xb,f, the pressure pb at xb is

pb � pb;t þ
pb;f � pb;t

jxb;f � xb;tj
jxb � xb;tj

¼ pb;t þ
pb;f � pb;t

Ds þ 9Db
4Db;

(A3)

where pb,t and pb,f are the (still unknown) pressures at the left and
right selected points, respectively. We could approximate these
pressures by the pressures of the nearest particles, but we choose
to approximate it in a typical SPH way. Using

hf ðxÞi :¼
X
j2Sx

f ðxjÞKðx� xj; hÞVj (A4)

we calculate an average pressure hpb;ti at xb,t in terms of the pres-
sures of surrounding particles

hpb;ti ¼
X

j2Sxb;t

pj Kðxb;t � xj; hÞVj (A5)

with an analogous expression for hpb;f i. This step is illustrated by
the circular support domains in Fig. 13. The final expression for
the pressure at xb (with b � Bt) then reads

pb � hpb;ti þ
hpb;f i � hpb;ti

Ds þ 9Db
4Db (A6)

Thus, we have written the pressure for a boundary particle b in
terms of the pressures of internal fluid particles. In that sense,
Eq. (A6) is used to enforce Neumann-like boundary conditions
(depending on many particles instead of just one), which are
added to the existing set of boundary conditions for Eq. (5). The
devised procedure explained earlier ensures that the pressures of
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the particles in the front and tail are directly connected. This
makes the inner part of the slug (the Ds-area) redundant, and it
can therefore be left out of the computations.

In the simulation with the hybrid model, we see particles get-
ting a bit close to each other in the top part of the slug (see
Fig. 3(b)), at the interface between the inner slug and the front
part. This indicates that the inner part is moving slightly faster
than the front part, which implies that the slug’s tail is moving
faster than its front. However, the extent to which this happens is
very small [22], so that the model satisfactorily preserves volume.

After the pressures, accelerations, and new velocities and posi-
tions of the particles constituting the slug’s front and tail have
been computed, the inner slug’s particles are reintroduced into the
computations. The new velocities of these particles are unknown,
since they were left out of the computations. Therefore, their new
velocities are computed as follows. For the boundary particles
b � Bt, a linear relation is assumed between the horizontal veloc-
ities and the y-coordinates of the particles

unþ1
b ¼ gty

nþ1
b þ ft for b 2 Bt (A7)

The coefficients gt and ft are found from the two particles in Bt

with the smallest and largest y-coordinate and their respective hor-
izontal velocities u. The same procedure is then performed for the
boundary particles in Bf. The horizontal velocities of the inner
slug’s particles are then computed as

unþ1
s ¼ gyn

s þ f for s 2 S (A8)

where g ¼ ð1=2Þðgt þ gf Þ and f ¼ ð1=2Þðft þ ff Þ. The vertical
velocities v are set to zero in the quasi two-dimensional model

vnþ1
s ¼ 0 for s 2 S (A9)

These velocities are then used to update the inner particle posi-
tions according to Eq. (8).

Appendix B: One-Dimensional Model

The one-dimensional model derived by Tijsseling et al. [20] is
summarized. Assuming that the conduit is horizontal, the slug has
no initial velocity, no force is exerted at its front, and no liquid is
left behind (no holdup), they find that the velocity of the slug is
given by

uðtÞ ¼ u1tanhð
ffiffiffiffiffiffiffiffiffiffiffi
C1C2

p
tÞ (B1)

where C1 :¼P=ðqL0Þ;C2 :¼ f=ð2DÞ, and u1¼uð1Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C1=C2

p
.

Recall that P is the magnitude of the driving pressure and L0 is the
(initial) length of the slug.

Tijsseling et al. [20] also considered the case in which liquid is
left behind (see Fig. 5(a)). To that end, they introduced the holdup
coefficient b, defined such that the cross-sectional area of the sta-
tionary liquid layer that is left behind is Aholdup¼ bA, where A is
the cross-sectional area of the conduit (and the liquid slug). The
velocity of the front of the slug can then be expressed in terms of
incomplete gamma functions as

u Lð Þ ¼ ef �L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C a; 2Lf �ð Þ

2Lf �ð Þa �
C a; 2L0f �ð Þ

2L0f �ð Þa
L0

L

� �a
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1� bð Þ2

b 1� 1
2
b

� �P

q

s

(B2)

where

a:¼2
1�b

1� 1
2
b
; f � :¼ f

2D

1�bþ 1
3
b2

b� 1
2
b2

; and L¼L0�
b

1�b
Lpipe

(B3)

In their notation, Lpipe is the distance traveled by the slug’s front.
If the incomplete gamma functions have very small values (close
to machine precision), they are replaced by the leading term of
their asymptotic expansions, so that Eq. (B2) becomes

u Lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L0

L

� �a�1

e�2 L0�Lð Þf �

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bð Þ2

b 1� 1
2
b

� � P

qLf �

s
(B4)

The holdup coefficient b relates the cross-sectional area of the liq-
uid slug, A, to that of the holdup, Aholdup. Because in our simula-
tions, we consider the vertical midplane of the pipe in which the
slug moves, we prefer to relate the height of the slug D to the
depth of the holdup H. For a rectangular conduit of width W and
height H, as illustrated in Fig. 5(b), this relation simply is

b ¼ H

D
(B5)
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[9] Bozkuş, Z., Baran, O., and Ger, M., 2004, “Experimental and Numerical Analy-
sis of Transient Liquid Slug Motion in a Voided Line,” ASME J. Pressure Ves-
sel Technol., 126(2), pp. 241–249.

[10] Prasser, H., �Ezs€ol, G., Baranyai, G., and S€uhnel, T., 2008, “Spontaneous Water
Hammers in a Steam Line in the Case of Cold Water Ingress,” Multiphase Sci.
Technol., 20(3–4), pp. 265–290.

[11] Martin, C., 2013, “Waterhammer in a Horizontal Pipe Induced by Slug Forma-
tion and Rapid Condensation,” ASME Paper No. PVP2013-97424.

[12] Dirndorfer, S., Kulisch, H., and Malcherek, A., 2013, “Experiments of
Condensation-Induced Water Hammers at the UniBw Munich,” Kerntechnik,
78(1), pp. 22–24.

[13] Barna, I., Imre, A., Baranyai, G., and �Ezs€ol, G., 2010, “Experimental and Theo-
retical Study of Steam Condensation Induced Water Hammer Phenomena,”
Nucl. Eng. Des., 240(1), pp. 146–150.

[14] Barrera, C., and Kemal, A., 2010, “Condensation Induced Water Hammer: Prin-
ciples and Consequences,” AIChE Spring Meeting and Sixth Global Congress
on Process Safety, San Antonio, TX, Mar. 22–24, pp. 719–731.

[15] Xing, L., Yeung, H., and Lo, S., 2011, “Investigation of Slug Flow Induced Forces
on Pipe Bends Applying STAR-OLGA Coupling,” 15th International Conference
on Multiphase Production Technology, Cannes, France, June 15, pp. 327–344.

[16] Swidersky, H., 2013, “Condensation Induced Water Hammer (CIWH)—
Relevance in the Nuclear Industry and State of Science and Technology,”
Kerntechnik, 78(1), pp. 16–21.

[17] Bl€omeling, F., Neuhaus, T., and Schaffrath, A., 2013, “1D Models for Conden-
sation Induced Water Hammer in Pipelines,” Kerntechnik, 78(1), pp. 31–34.
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