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ABSTRACT 
 
 Liquid slugs have a relatively low mass and can therefore − 
when they occupy a full cross-section of a pipeline − be 
accelerated to very high velocities by means of pressurized gas. 
When entrapped gas pockets are present, pressures and 
temperatures may become dangerously high. Simple models and 
analytical solutions are derived and used to predict transient 
velocities, pressures and temperatures. The models have a 
generic character as they also describe the basics of breaking 
surface waves impacting on a wall, and pigs and bullets 
propelled by compressed gas. 
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INTRODUCTION 
 
 Condensates may form in pipelines that carry vapors or 
condensable gases. These condensates will collect in the lower 
parts of the system thereby forming (partial) blockages which 
can be blown away by pressurized gas flowing at high speed. 

The condensates may transform to accelerating liquid slugs that 
impose serious hazard to the system safety. The authors have 
studied the phenomenon of traveling liquid slugs by experiment 
and theory [1-3]. Entrapped gas pockets form another danger in 
pipelines that carry liquids [4-8]. The pockets have the property 
to store and release energy in agreement with the dynamics of 
the system. In impacts and other rapid events, the system 
pressures and temperatures may rise to unacceptably large 
values. The authors have studied this subject for the event of 
rapid pipe filling [9-10]. 
 In the present paper the motion of the liquid slug is impeded 
by trapped gas ahead of it. The slug will eventually bounce back 
and a mass oscillation is what remains. Analytical solutions are 
found for 0D (in the sense that the model in fact is a spring-
mass system) and 1D (in the sense that the flow is one direction, 
with a flat-faced traveling liquid front) models. These give 
useful insight and directly lead to non-dimensional parameters 
that characterize the problem. 
 The first model of this kind is by Bagnold (1939) [11] who 
studied the impact of breaking free-surface water waves on rigid 
walls. He showed experimentally that entrapped air pockets and 
accompanying phenomena have a big effect on the wave impact 
pressures. His simple model described a given mass of water 
hitting a rigid wall, where a small layer of air (that cannot 
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escape fast enough) is present. The subject still is of uttermost 
importance in sloshing liquids [12-15] and for the impact of an 
irregularly shaped solid body onto the free surface of a liquid or 
even in the case of perfectly flat impacts [16-18]. Another 
relevant application is solid capsules [19] and pigs [20-24] 
driven by (or driving) gas and liquid flows. Yet another 
application is autoinjectors in medicine [25]. 
 Our study concerns a rigid body (liquid or solid) moving 
into a confined gas volume. Analytical expressions are derived 
for the rigid body’s velocity from which extreme pressures and 
temperatures can be calculated. The acoustic effects (gas and 
water hammer) that occur in extreme cases of impact are 
ignored herein. 
 
 
LIQUID SLUG TEST PROBLEM 
 
 The theoretical test problem is a liquid slug accelerating 
from rest towards gas that is trapped at a closed end. Figure 1 is 
a simple sketch of the situation. Sudden opening of an upstream 
valve connected to a pressurized gas tank (not shown in Fig. 1) 
initiates the event. The input data are taken from the parameter 
variation study presented in [3] and concern a water-air system 
where the diameter of the horizontal pipe is D = 0.01 m and the 
constant length of the cylinder-shaped water-slug is L0 = 3 m. 
The air occupies an initial length Lgas,0 = 9 m and has an initial 
absolute pressure Pgas,0 = 1 bar, so that the pipe length is xL = L0 
+ Lgas,0 = 12 m. The absolute pressure in the air-tank is PR,0 = 6 
bar, the specific gas constant for air is R = 287 m2/(s2 K), and 
the polytropic coefficient n is either 1 or 1.4 herein. The skin 
friction coefficient for the slug flow is f = 0.016. The liquid slug 
and air pocket have initial masses of 0.24 kg and 0.85 g, 
respectively. The mass density of the water is ρ = 1000 kg/m3, 
and the initial air density is taken equal to ρgas,0 = 1.2 kg/m3, 
which corresponds to an initial temperature Tgas,0  = 290 K. The 
gravitational acceleration is g = 9.81 m/s2, but it is not an input 
parameter when the pipe is horizontal (θ = 0). 

 
Fig. 1  Sketch of analyzed system with 0 1 2L x x= −  and  
            θ = 0. 
 
 
GOVERNING EQUATIONS 
 
 The mathematical model is that of a nonlinear spring-mass 
system with damping due to skin friction. Any acoustic effects − 
that is wave propagations − are ignored: the slug is rigid with 
planar front and tail, and the gas is ideal and uniform. There is 
no hold-up and pick-up of liquid so that the slug does not break 
down and has infinite life time. The governing equations for 

liquid velocity v, liquid front position x1, and absolute gas 
pressure Pgas, read [3, 9]: 
 

 2 gas

0

d sin
d 2

P Pv fg v v
t L D

θ
ρ
−

= + −            (1) 

 1d
d
x v
t
=                (2) 

 gas gas gas,0gas,0
nnL P L P=              (3) 

 
where P2 is the pressure at position x2, θ is the downward 
inclination of the conduit, and gas 1LL x x= − , see Fig. 1. The 
pressure P2 can be either constant (as PR,0 in the slug impact 
problem) or variable (as in the extended Bagnold model). 
Substitution of Eq. (3) into Eq. (1) gives 
 

 1
d ( )
d 2
v fF x v v
t D
= −              (4) 

where 

 gas,01,02
1

0 1 0
( ) sin

n
L

L

Px xPF x g
L x x L

θ
ρ ρ

− 
= − + − 

         (5) 

 
is the driving acceleration and x1,0 = L0 + x2,0 is the starting 
position of the slug front. 
 
 
ANALYTICAL SOLUTIONS 
 
 The Eqs. (2) and (4) can be combined such that 
 

2

1
1 1 1

1 d d (d d ) d d d ( )
2 d d (d d ) d 2

v v v t v t v fv v v F x v v
x x x t v t D

= = = = = −
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2
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1

1
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v f v F x
x D
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which is a linear ODE in terms of 2

1( )v x . 
 
For a frictionless system (f = 0) the solution is 
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For n = 1 this gives 
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and for n ≠ 1 : 
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             (7b) 
 
The relation 2

1( )v x  describes a symmetrical closed curve (for 

f = 0) with 2
1 1( ) ( )= +v x v x  for forward flow and 

2
1 1( ) ( )v x v x= −  for backward flow. 

 
For the liquid slug moving into the gas pocket (v > 0) and with 
friction (f > 0) the solution is 
 

( ) 1
1 1,0 1

1,0

2 2
1 1,0( ) ( ) e 2e e ( ) d

f f x fx x x x
D D D

x

v x v x F x x
− − −
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with 2
1 1( ) ( )= +v x v x .  For n = 1 [in F(x)] this leads to a 

symbolic solution in terms of exponential integrals.  See 
Appendix A.  For n ≠ 1 the symbolic solution contains incomplete 
gamma functions. Of course, the integral in Eq. (8a) can easily be 
calculated numerically. 
 
For the liquid slug moving away from the gas pocket (v < 0) and 
with friction (f > 0) the solution is 
 

( ) 1
1 1,00 1

1,00

2 2
1 1,00( ) ( ) e 2e e ( ) d

f f x fx x x x
D D D

x

v x v x F x x
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with 2
1 1( ) ( )v x v x= −  and where x1,00 is the position of the slug 

front when it reverses direction for the first time, that is at 
maximum x1, minimum Lgas and maximum Pgas. The function 

1( ( ))v x t  becomes double-valued after the first flow reversal at 

1( ( )) 0=v x t  and spirals towards the equilibrium point. 
 
 
 
 
 

Bagnold model 
 
 The Bagnold model [11] is a special case where there is no 
friction, no gravity, no driving acceleration, but an initial velocity 
v(x1,0) = v0 > 0. Thus  f = 0,  g = 0,  θ = 0,  2 gas,0P P= . 
For n = 1 this gives 
 

( ) ( )gas,0 1,02 2
1 0 1 1,0 1,0
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2
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L
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      (9a) 
and for n ≠ 1 : 
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1 0 1 1,0
0 1

2
( ) 1

1
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L
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             (9b) 
 
These solutions are exactly those derived by major Bagnold [11]. 
 
Extended Bagnold model 
 
 The extended Bagnold model [12, 29] is a special case where 
there is no friction, but gravity (not necessarily in the vertical 
direction), and there is gas (not necessarily the same) trapped 
upstream and downstream of the liquid slug as sketched in Fig. 2.  
Thus  f = 0,  g ≠ 0,  θ ≠ 0,  v(x1,0) = v0 ≥ 0. The relation 

2,gas 2,gas,02,gas 2,gas,0
n nL P L P=  with 2 1 02,gas = = −L x x L  is an 

additional equation analogue to Eq. (3). The slug oscillates in 
between two gas pockets entrapped in a closed tube. In [12, 29] 
the liquid slug is elastic. Herein the liquid slug is rigid and exact 
solutions can be obtained just as in the single-pocket case.  These 
solutions are derived in Appendix B. The equilibrium pressure 
(obtained from 1 2 0 eqsinρ θ= + =P P g L P  and two times Eq. 3) 
is 

 
1 1

1,0 2,01,0 2,0
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 =
 + 
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The corresponding equilibrium length of the “upstream” gas 
pocket is 
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Fig. 2  Sketch of extended Bagnold model with 0 1 2L x x= −  
           and θ = π / 2. 
 
 
Pig motion 
 
 A simple model for pig motion is obtained when the liquid 
slug is conceived of as a solid body sliding along the pipeline, 
with a different friction term in Eq. (1). The pig is driven by the 
pressure difference across it. Assuming that the pig travels long 
distances, one further assumption is made, namely that the pig 
length is relatively small: 0 1,gasL L0  and 0 2,gasL L0 , so that 

1 2Lx L L= + . Pig control and stabilization is an issue. The 
simple situation with closed ends shown in Fig. 2 is considered 
to recognize how fast a pig comes to rest from a non-
equilibrium position. The pig has mass m, velocity v, ignored 
length, and experiences linear friction c with the pipe wall. The 
governing equations in terms of first derivatives are 
 

 2 1d sin
d

P Pv cA g v
t m m

θ
−

= + −        (11a) 

 1 1

1

d
d

= +
P n P v
t L

          (11b) 

 2 2

2

d
d

= −
P n P v
t L

          (11c) 

 1d
d
L

v
t
= −            (11d) 

 2d
d
L v
t
= +            (11e) 

 
where A is the cross-sectional pipe area, and P1, L1 and P2, L2 
are gas pressures and lengths “downstream” and “upstream” of 
the pig, respectively. Equation (11b) follows from Eq. (11d) and 

the relation  
( )11 111

11 1

d dd
0

d d d
−= + =

n
n n

L P LPL n L P
t t t

. 

Analytical solutions of Eqs. (11) have not been found for f ≠ 0, 
because − strange enough − the friction term is linear instead of 
quadratic. Numerical time integration using the explicit Euler 
method is the easiest option, although not the most accurate 
one. 
 The Eqs. (11) can be combined into one second-order ODE 
for L1  (θ = 0): 
 

 
2

2,0 1,01 2,0 1,0 1
2

1 1

d d
dd ( )

 
 − = − +
 − 

n n

n n
L

P L P LL L
m A c

tt x L L
     (12a) 

 
and its linearization for small values of 1 1,0ξ = −L L : 
 

 ( )
2

1,0 2,0
1,0 2,02

1,0 2,0

d d
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ξ ξ ξ
 
 + + + = −
 
 

n P A n P A
m c P P A

tt L L
 

              (12b) 
 
Equation (12b) represents a spring-mass-damper system with 

mass m, damping c, and stiffness 1,0 2,0

1,0 2,0

 
 = +
 
 

P P
k n A

L L
. Its 

period of undamped free oscillation is 2 m
k

τ π= . Special cases 

include f = 0,  P1,0 = 0  (vacuum) and  L1,0 = ∞. 
 
Pigs 
 
Pigs (pipeline inspection gauges) are used for the internal 
cleaning and inspection of pipelines [20-24] and for the 
removal of condensates. They sometimes produce an audible 
sound similar to that of a screaming pig. They can be self-
propelling or flow-driven. Conversely, capsules or trains in 
tunnels drive the flow [19]. When modelling pigs in pipelines, it 
is necessary to allow for non-uniform pipe cross-section and for 
debris driven ahead of the capsule. The current model is 
therefore too simple for practical applications. 
 
Too short or too long gas pockets 
 
 When the gas pockets become very small ( gas 0L D ), the 
limit of the current model is reached. First of all, unrealistically 
high temperatures may occur, with values according to the ideal 
gas law: 

 gas
gas

gas

P
T

R ρ
=    with   gas gas,0

gas,0 gas

L
L

ρ
ρ

=             (13) 

 
Second, when the stiffness of the gas pocket becomes of the order 
of the stiffness of the liquid slug, that is 
 

 
*

gas

0gas
≈

n P A K A
LL

     or     
2

gas
2

0gas ga
1ρ

ρ
≈

s

La
La

           (14) 

 
water hammer will occur [12-13, 26-29] depending on the 
different time and length scales. The effective bulk modulus K* of 
the liquid includes the hoop elasticity of the pipe wall. Relation 
(14) corresponds to the dimensionless number δ defined and 
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investigated in [27]. Third, the assumption of a relatively planar 
slug front (compared to L0 and Lgas) is violated when 
 

 
gas

1w
L

≈                (15) 

 
where w is the width of the front. This is of particular importance 
for breaking waves hitting a vertical wall [11] and for flat impacts 
of solid bodies onto a liquid free-surface [16-18]. Fourth, the 
validity of the ideal gas law itself becomes questionable. For long 
gas pockets, gas hammer [30] should be modeled as in [1, 12, 21-
24, 28]. This again has to do with multi-scales: the acoustic wave 
travel time in the gas compared to the convective travel time of 
the slug. 
 
Work and energy 
 
 The liquid slug or pig acts as a piston that compresses the gas. 
Work and energy relations give useful insight [8, 12], but these 
are not pursued herein. 
 
 
NUMERICAL SOLUTION 
 
 All governing equations can be reformulated into one 
autonomous first-order ODE similar to Eqs. (11), that is 
 

 d ( )
dt

=
y f y  ,     with  

1

2

1

2

:

v
P
P
L
L

 
 
 
 =
 
 
 
 

y          (16) 

 
The explicit Euler method has been used to solve Eq. (16) with 
a numerical time step ∆t = 1 ms for all simulations herein. 
 
 
RESULTS 
 
Liquid slug impact 
 
 The laboratory experiment reported in [31] concerns the 
impact of an accelerated water slug with a miter bend. The 
current test problem concerns the impact with compressed gas 
trapped at a dead end at the location of the bend. The pipe 
diameter is taken ten times smaller than in [31] to enhance the 
effect of friction and θ = 0. The calculated slug velocity as 
function of its front position is shown in Fig. 3a for n =1.4. The 
slug accelerates from rest and is impeded in its motion by 
increasing friction and rising gas pressure. Only one flow 
reversal is shown, because − in reality − the slug is likely to 
break down when it bounces onto the gas pocket. The 1D model 

with two planar fronts and no hold-up becomes questionable 
when the slug changes direction. The theoretical oscillation is 
around the equilibria Pgas,eq and Lgas,eq: 

 gas,eq 2 0 sin( )P P g Lρ θ= +    and   

1

gas,0
gas,eq gas,0

gas,eq

nP
L L

P
 

=   
 

 

                (17) 
 
with values of 6 bar (PR,0) and 2.5 m (Eq. 17), respectively. The 
maximum pressure is 8.2 bar and the minimum pocket length is 
2.0 m, so that the maximum temperature is 256 °C according to 
formula (13). From Fig. 3a it is evident that the analytical 
solution (8) is correct, because it overlaps the numerical 
solution. The strong influence of friction is clear from the 
comparison with the f = 0 result, which is given as reference 
solution. Figure 3b shows the pressure build-up in time and the 
overshooting of the equilibrium pressure by 37%. 
 
 
(a) 

 
(b) 

 
 
Fig. 3  Liquid slug impact: (a) slug velocity versus position; (b) 

gas pressure versus time. 
 
 
 
 
 

0 0.2 0.4 0.6 0.8 1
0

2 105×

4 105×

6 105×

8 105×

1 106×
Pgas
Pgas0
P2

time  (s)

ga
s p

re
ss

ur
e 

 (P
a)

3 6 9 12
10−

0

10

20

30

40
numerical
exact
exact reverse
f = 0
zero level

slug front position x1  (m)

slu
g 

ve
lo

ci
ty

  (
m

/s)



 6 Copyright © 2017 by ASME 

Bagnold model 
 
 The Bagnold model [11] is tested for v0 = 40 m/s and n = 
1.4. As stated before: f = 0, g = 0, θ = 0 and 2 gas,0P P= . The 
dimensionless Bagnold or impact number defined in [12] is 
based on a non-zero initial velocity: 
 

 
2
0 0

gas,0 gas,0
B

v L
S

P L
ρ

=             (18) 

 
and follows directly from the symbolic solution if it is made 
dimensionless [Eq. (9) with xL − x1,0 = Lgas,0]. For 8>BS  water 
hammer in the slug becomes of significance and for 200>BS  it 
dominates [12].  Here SB = 5.3 so that we have a rather extreme 
impact, which is confirmed by a calculated maximum pressure of 
22 bar (Eq. 9b) and a maximum temperature of 730 °C (Eq. 13). 
 
Adding friction (f > 0) to the model allows introduction of the 
dimensionless friction-volume parameter or Martin number [4] 
defined by 
 

 gas,0 gas,0 1,0
3

( )
4 4
π π −

= = = L
M

f V f L f x x
S

D DD
      (19) 

 
where the latter two formulas hold for circular cross-sections and 
where 1,0−Lx x is the maximum distance that can be travelled by 
the slug. The factor π/4 may be taken 1 for convenience; formula 
(19) is then consistent with the expressions in the symbolic 
solution Eq. (8a). 
 
The extended Bagnold model [12] is similar to the bouncing pig 
considered in the next paragraph. 
 
Bouncing pig 
 
 Instead of the liquid slug, a small copper cylinder is taken 
with mass m = 20 gram which corresponds to a length of about 
3 cm when its diameter is just less than D = 0.01 m. This “pig” 
is driven into the closed pipe by 1 liter of compressed air (P2,0 = 
2 bar) behind it. This 1 liter is contained in an “upstream” pipe 
of length L2,0 = 12.7 m. As before, L1,0 = xL = 9 m,  P1,0 = 1 bar, 
T1,0 = 290 K  and  θ = 0. The resistance coefficient for the pig is 
c = 0.1 kg/s and n = 1. The system is like an air gun with a solid 
bullet. The equilibrium pressure Peq (for n = 1) is (Eq. 10a): 

( ) ( )eq 1,0 1,0 2,0 2,0 1,0 2,0= + +P P L P L L L  = 1.6 bar.   Figure 4a 
shows the pig velocity, and Fig. 4b shows the upstream and 
downstream gas pressures. The linear undamped period of 
oscillation τ = 0.6 s fits well with the calculated first period of 
0.5 s of the nonlinear damped oscillation. 
 
 

 
(a) 

 
(b) 

 
 
Fig. 4  Solid pig impact: (a) pig velocity versus time; (b) gas 

pressures versus time. 
 
 
CONCLUSION 
 
 The pressure-driven propagation of a rigid body (liquid or 
solid) in a closed gas-filled pipe has been studied by means of 
basic models for which analytical solutions have been derived. 
The obtained solutions are used to predict maximum velocities, 
maximum pressures and maximum temperatures. The symbolic 
expressions reveal dimensionless parameters that fully 
characterize the problem. The solution’s sensitivity to these 
parameters can now be determined analytically. The symbolic 
solutions are easily implemented in scientific software and they 
can be used to verify numerical solutions. 
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NOMENCLATURE 
 
A = cross-sectional conduit area (m2) 
a  = sonic speed in liquid (m/s) 
agas  = sonic speed in gas (m/s) 
c  = linear friction coefficient (kg/s) 
D  = pipe diameter (m) 
e  = exponential function 
Ei  = exponential integral 
En  = generalized exponential integral 
F  = driving acceleration (m/s2) 
f  = Darcy-Weisbach friction coefficient 
f  = vector function 
G  = driving acceleration (m/s2) 
g  = acceleration due to gravity (m/s2) 
K*  = effective bulk modulus (Pa) 
k  = spring stiffness (N/m) 
Lgas = length of gas pocket (m) 
L0  = length of liquid slug (m) 
m  = mass of liquid slug or solid body (kg) 
mgas = mass of gas pocket (kg) 
n  = constant polytropic exponent 
ODE = ordinary differential equation 
P  = absolute pressure (Pa) 
Pgas = absolute pressure of gas pocket (Pa) 
PR,0 = constant absolute reservoir pressure (Pa) 
R  = specific gas constant (m2/(s2 K)) 
SB  = Bagnold number 
SM  = (Sam) Martin number 
T  = absolute temperature (K) 
t  = time (s) 
Vgas = volume of gas pocket (m3) 
v  = velocity of liquid slug or rigid body (m/s) 
w  = width of slug front (m) 
xL  = total pipe length (m) 
x1  = axial position of slug front (m) 
x2  = axial position of slug tail (m) 
y  = vector of unknowns 
Γ  = incomplete gamma function 
θ  = angle of downward inclination of pipe (rad) 
ξ  = small displacement (m) 
ρ  = mass density of liquid (kg/m3) 
ρgas  = mass density of gas (kg/m3) 
τ  = period of oscillation (s) 
 
Subscripts 
eq  = equilibrium 
max = maximum 
min = minimum 
0  = constant, initial value 

1  = “downstream” 
2  = “upstream” 
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APPENDIX A 
 
The integrals in Eqs. (8) can be evaluated symbolically if one 
wishes to do so.  For example, for n = 1, 
 

   
1

1,0

1,0 1
e d e Ei[ ( )] Ei[ ( )] = − − − 
−  ∫

L

f xx fD x
D

L L
Lx

f fx x x x x
x x D D

 

               (A1) 
where Ei is the exponential integral.  For n ≠ 1, the integral 
 

 
1

1,0

1e d
 
 − 

∫
x nf x

D

Lx

x
x x

          (A2) 

 
can be expressed in terms of the generalized exponential 
integral 
 

 1

1 1 1

eE ( ) : d

1(1 , ) (2 , ) e
1

∞ −

− − − −

= =

 Γ − = Γ − − −

∫
u x

n n

n n n u

u x
x

u n u u n u u
n

      (A3) 

 
where Γ is the incomplete gamma function. Note that 

1E ( ) Ei( )= − −u u , u > 0. Transformations of variables and 
integrations by parts are needed to arrive at valid analytical 
expressions.  It is therefore easier (and probably more accurate) to 
integrate Eqs. (8) numerically. 
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APPENDIX B 
 
The extended Bagnold [12] model describes the frictionless 
motion of a liquid slug sandwiched between two entrapped gas 
pockets. The governing equations for a rigid slug are 
 

 2 1

0

d sin
d

θ
ρ
−

= +
P Pv g

t L
          (B1) 

 1d
d
x v
t
=             (B2) 

 1 1,01 1,0=n nL P L P            (B3) 

 2 2,02 2,0=n nL P L P            (B4) 
 
where P1 and P2 are the absolute gas pressures, 1 1= −LL x x  and 

2 2 1 0= = −L x x L , as sketched in Fig. 2.  Substitution of Eqs. 
(B3) and (B4) into Eq. (B1) gives 
 

 1
d ( )
d

=
v G x
t

            (B5) 

where 

 0 1,0 2,0 1,0 1,0
1

0 1 0 1 0
( ) sinθ

ρ ρ
− −   

= − +   − −  

n n
L

L

L x P x x P
G x g

L x L x x L
 

               (B6) 
and x1,0 = L0 + L2,0. 
 
The Eqs. (B2) and (B5) can be combined such that 
 

 
2

1
1

d 2 ( )
d

=
v G x
x

      (B7) 

 
The solution is 
 

 
1

1,0

2 2
1 1,0( ) ( ) 2 ( ) d− = ∫

x

x

v x v x G x x     (B8) 

 
For n = 1 this gives 
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2 2
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0 1 1
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0 1 1,0
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 + −  
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v x v x

L x x x
P L x P x x
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and for n ≠ 1 : 
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2 2
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1
2,0 0 1,0

0 1,0
0 1

1
1,0 1,0

1,0
0 1

0 1 1,0
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P L x
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n L x

P x x
x x

L n x x
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          (B9b) 
 

The functions 2
1 1( ) ( )= +v x v x  and 2

1 1( ) ( )v x v x= −  together 

describe a symmetric closed curve. The functions are defined 
between x1,min and x1,max (the turning points), the values of which 
are the two zeros of the function 2

1( )v x .  For 2
1,0( ) 0=v x  it is 

obvious that x1,min = x1,0. The maximum displacement x1,max [the 
non-trivial root of 2

1( )v x when starting from rest] can easily be 
determined numerically. The maximum gas pressure P1,max 
follows then from L1,min = xL − x1,max and Eq. (3), and the 
corresponding maximum temperature from Eq. (13). 
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